
The Annals of Probability
1997, Vol. 25, No. 1, 361�392

VERTEX-REINFORCED RANDOM WALKS
AND A CONJECTURE OF PEMANTLE

¨BY MICHEL BENAIM

Universite Paul Sabatier´
We discuss and disprove a conjecture of Pemantle concerning vertex-

reinforced random walks.
The setting is a general theory of non-Markovian discrete-time random

� 4processes on a finite space E � 1, . . . , d , for which the transition proba-
bilities at each step are influenced by the proportion of times each state
has been visited. It is shown that, under mild conditions, the asymptotic
behavior of the empirical occupation measure of the process is precisely
related to the asymptotic behavior of some deterministic dynamical sys-
tem induced by a vector field on the d � 1 unit simplex. In particular, any
minimal attractor of this vector field has a positive probability to be the
limit set of the sequence of empirical occupation measures. These proper-
ties are used to disprove a conjecture and to extend some results due to
Pemantle. Some applications to edge-reinforced random walks are also
considered.

1. Introduction. This paper considers a class of random processes with
Ž .reinforcement introduced by Pemantle 1992 as well as some generalizations.

� 4Let Y be a discrete time stochastic process living in a finite staten n� 0
� 4space E � 1, . . . , d representing the vertices of a graph. Initially each edge

is given a weight but each time Y visits a vertex all the weights of the edges
leading to this vertex are increased by a positive amount. At the next step an
edge leading out from the current vertex is chosen with a probability propor-
tional to its weight.

Formally, the process is defined as follows. Let R be a real d � d matrix
Ž .with positive entries. Let S 0 denote a positive integer which represents thei

Ž . Ž .initial importance given to vertex i and let S n � S 0 denote the numberi i
Ž .of times Y has occupied the state i between times 1 and n. S 0 can be seeni

as the number of times Y has occupied vertex i before the initial time t � 0.
That is,

n

S n � S 0 � � .Ž . Ž . Ýi i Y , ik
k�1

Suppose that

R S nŽ .Y , j jn�P Y � j FF �Ž .n�1 n dÝ R S nŽ .k�1 Y , k kn
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� 4 d Ž .where FF denotes the �-field generated by Y : 0 � j � n . Set n � Ý S 0n j 0 i�1 i
and let

S nŽ .
v n �Ž .

n � n0

denote the empirical occupation measure.
d Ž .Let � � R denote the d � 1 unit simplex. For v � �, let M v denote the

Markov transition matrix defined by

R vi , j j
M v � , i , j � 1, . . . , dŽ .i , j Ý R vk i , k k

Ž . Ž . Ž .and let � v denote the invariant probability for M v . Pemantle 1992
proved the following theorem.

Ž .THEOREM 1.1 Pemantle, 1992 . Suppose that the matrix R is symmetric.
Then the following hold.

Ž . � Ž .4i The sequence v n converges, with probability 1, toward the criti-n� 0
cal set

CC � v : v � 0, v � � v .� 4Ž .i

Ž . Ž . Ž .ii In the generic situation where C is finite lim v n exists almostn��

surely.

He also proposed the two following conjectures.

Ž . Ž .CONJECTURE 1.2 Pemantle, 1992 . Part ii of Theorem 1.1 holds without
any nondegeneracy assumption.

Ž . Ž .CONJECTURE 1.3 Pemantle, 1992 . Part i of Theorem 1.1 holds whether
or not R is symmetric.

The principal and initial motivation of this paper was to disprove Conjec-
ture 1.3. To achieve this goal we will introduce a general class of processes
with reinforcement and show how the asymptotic behavior of these processes
can be precisely related to the asymptotic behavior of some vector field on the

Ž .unit d � 1 -dimensional simplex.
The organization of the paper is as follows: Section 2 introduces the

Ž .general class of Vertex-reinforced random walks VRRW to be considered.
Section 3 reviews earlier results on which the paper is based and states the
main result: with probability 1, the limit set of the sequence of empirical

Ž .occupation measures is a continuum i.e., a compact connected set L which is
Ž .invariant under the flow � of some vector field defined on the unit d � 1 -

�dimensional simplex and such that the restricted flow � L enjoys a technical
property, akin to ergodicity, called chain recurrence. As an application of this
result, we give in Section 4 a short proof of Pemantle’s main result and we
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discuss the behavior of a class of edge-reinforced processes inspired by the
Ž .work of Coppersmith and Diaconis 1986 . Section 6 gives some conditions

which ensure that a given attractor of the vector field has a positive probabil-
� Ž .4ity to be the limit set of the sequence v n . Section 7 makes precise the

� 4behavior of v near an attractor and states some shadowing propertiesn
which are used to give a partial answer to Conjecture 1.2. All these results
are used in Section 9 to construct a simple counterexample to Pemantle’s
conjecture. Finally, Sections 5 and 8 contain proofs of the more technical
results.

2. Generalized VRRW.

Notation. Throughout the paper we use the following notation: the unit
Ž . dd � 1 simplex � � R is the set

� � v � Rd : v � 0, v � 1 .Ýi i½ 5
i

The affine hull of � is the set

aff � � v � Rd : v � 1Ž . Ý i½ 5
i

and its tangent space is

T� � v � Rd : v � 0 .Ý i½ 5
i

The boundary of � is the set

�� � v � � : v � 0Ł½ 5i
i

and its ith face is

� 4� � � v � �� : v � 0 .i i

Let M be a d � d real matrix. M is called a transition matrix if it has
nonnegative entries and satisfies the normalization condition

M � 1, i � 1, . . . , d.Ý i , j
j

Ž . Ž .Let MM R denotes the space of real d � d matrices. We let MM � MM R denoted d
the set of d � d transition matrices and we set

T MM � M � MM R : 	 i , M � 0 .Ž . Ýd i , j½ 5
j

� � 1 d � � d � �We let 
 denote the L norm on R defined by v � Ý v . We mayi�1 i
denote by d the induced distance.
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Definition. This paper considers a generalized version of Pemantle’s
vertex-reinforced random walk which is defined as follows.

Let
M : � � MM

v � M v � M vŽ . Ž .� 4i , j

k Ž . Ž .be a C k � 1 map. Given a point v � Int � , a vertex y � E and a positive
� Ž Ž . Ž ..4integer n � N, consider a stochastic process Y , S n , . . . , S n de-0 n 1 d n� 0

fined on E � RE by�

S 0 � n v , Y � y ;Ž .i 0 i 0
n

S n � S 0 � � , n � 0;Ž . Ž . Ýi i Y , ik
k�1

�P Y � j FF � M v n ,Ž .Ž .Ž .n�1 n Y , jn

� 4 Ž . Ž .where FF denotes the �-field generated by Y : 0 � j � n and v n � S n �n j
Ž .n � n . Hereafter the parameters v 0 � v, Y � y and n will be referred to0 0 0

as the initial condition, the initial state and the initial mass, respectively.

EXAMPLES. Urn processes: Let � : � � � be a C k map and suppose
Ž . Ž .M v � � v . In this case, the VRRW associated to M is a generalizedi, j j

Polya urn process as it has been considered by Hill, Lane and Sudderth´
Ž . Ž . Ž .1980 , Arthur, Ermol’ev and Kaniovskii, 1983 , Pemantle 1990 and Benaım¨

Ž .and Hirsch 1995 , among others.
ŽEdge-reinforced random walks: Let GG � E � E be an oriented graph i.e., a

.set of oriented edges with E as vertices set. Let

� GG � W � MM R : W � 0; i , j � GG � W � 0; W � 1Ž . Ž . Ž . Ýd i , j i , j i , j½ 5
i , j

ˆ Ž . � 4and let M: � GG � MM be a map. Consider the process Y � Y on E definedn
by

ˆ�P Y � j FF � M W n ,Ž .Ž .Ž .n�1 n Y , jn

Ž . Ž . Ž .where W n � � GG is such that W n represents the proportion of time Yi, j
has moved from site i to site j between times 1 and n. Here, the probability
transitions are influenced by the moves along each edge of the graph.

We call such a process a generalized edge-reinforced random walk. The
Ž .original idea is due to Coppersmith and Diaconis 1986 who studied thor-

oughly the case of nonoriented graphs where each edge is given initial weight
1 and each time Y travels over an edge, 1 is added to the edge-weight.

Ž .Let Z � Y , Y � E � E. It is readily seen that Z is a generalizedn n�1 n
vertex-reinforced random walk on E � E. Thus, the results given in this

Ž .paper can be used to analyze the asymptotic behavior of the sequence W n .
Ž .The empirical occupation measure of Y is related to W n by the relationn

Ž . Ž .v n � Ý W n . A detailed example will be considered in Section 4.i j j, i
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3. Main properties. As usual, a finite homogeneous Markov chain is
Žcalled indecomposable if it has only one recurrent class either periodic or

.aperiodic . From now on, we suppose that the following condition holds.

Ž .HYPOTHESIS 3.1. For each v � �, the matrix M v is indecomposable.

By a standard result of Markov chain theory this implies the existence of a
Ž . Ž .unique invariant measure � v for M v . Observe that the recurrence class of

Ž .M v may be periodic and may depend on v in a nontrivial way.
Following Pemantle, we define the critical set of M as

CC � v � � : � v � v .� 4Ž .

To the map M we associate the vector field

F : � � T� ,
v � �v � � v .Ž .

Ž .The main result of this section Corollary 3.5 shows that the asymptotic
� 4behavior of the sequence v can be precisely related to the asymptoticn

behavior of the flow generated by F regardless of the dynamics of F. We
begin by a lemma which records a few elementary properties of F.

Ž . kLEMMA 3.2. i The vector field F is C .
Ž .ii � is positively invariant under the dynamics of F.
Ž . Ž .iii If for all j � E, v � 0 implies M v � 0, then � and its faces arej i, j

globally invariant.

Ž . Ž .PROOF. i Let L: � � aff � � T� be a function defined by

L v , � � M T v � � � ,Ž . Ž .
T Ž . Ž .where M v denotes the transpose of M v .

Ž .The invariant measure � � � v is the solution to the implicit equation
Ž . Ž .L v, � � 0. Identifying the tangent space of aff � at any point with T�, we

see that

�L
T �v , � v � M v � Id T� .Ž . Ž .Ž . Ž .

��

Ž .T Ž .By uniqueness of the invariant measure, the kernel of M v � Id is R 
 � v
Ž . Ž . Ž . � 4 Ž .Ž Ž ..and since � v � aff � , R 
 � v 	 T� � 0 showing that � L��� v, � v

Ž . kis invertible. Now, the implicit function theorem shows that v � � v is C .
Thus F is C k.

Ž . Ž .ii F v points into � whenever v belongs to the boundary of �. Thus any
forward trajectory based in � remains in �.

Ž . Ž . Ž .iii If M v � 0 when v � 0, the invariant measure � v satisfies thei, j j

 Ž . � Ž .same property i.e., � v � 0 when v � 0 . Thus, F v � 0 when v � 0 andj j i i

the result follows. �
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Being smooth, the vector field F generates a smooth semiflow on �,

� : R � � � � ,�

t , v � � v ,Ž . Ž .t

Ž . Ž .such that the solution to the initial value problem du�dt � F u with
Ž . Ž .initial condition u 0 � v is the curve t � � v . When � is globally invari-t

ant, � extends to a flow on �, meaning that the solutions are defined for all
t � R.

Let X: R � � be a continuous function. Using the terminology introduced�
Ž .in Benaım and Hirsch 1996 , we say that X is an asymptotic pseudotrajec-¨

tory of � if

lim d X t � T , � X t � 0Ž . Ž .Ž .Ž .T
t��

n Ž Ž ..locally uniformly in T � R . Set � � 0, � � Ý 1� i � n , n � 1 and� 0 n i�1 0
define the interpolated process V: R � � as shown in the following.�

Ž . Ž .1. V � � v n .n

 �2. V is affine on � , � .n n�1

PROPOSITION 3.3. V is almost surely an asymptotic pseudotrajectory of the
semiflow � induced by F.

For convenience, the proof of this proposition is postponed to Section 5.
The asymptotic behavior of asymptotic pseudotrajectories is related to the

Ž .dynamics of � by the following theorem proved in Benaım 1996 for stochas-¨
Ž .tic approximation processes and Benaım and Hirsch 1996 for the more¨

general class of asymptotic pseudotrajectories.

Ž .THEOREM 3.4. Let X be a precompact asymptotic pseudotrajectory of �.
Let

L X � X t , �Ž . .�
t�0

Ž .denote the limit of X. Then L X is compact �-invariant connected and
internally chain recurrent.

Ž� 4. � Ž .4� 4Let L v � � v : k � n denote the limit set of the sequence v n .n n� 0 k
Ž� 4. Ž .Clearly, L v � L V . The corollary follows.n

Ž� 4.COROLLARY 3.5. L v is almost surely compact �-invariant connectedn
and internally chain recurrent.

� Ž .4This result, which is the main tool to analyze the behavior of v n ,
requires some explanations: a set L � � is invariant if for all x � L the

Ž . Ž . Ž . Ž .solution t � � x of du�dt � F u , u 0 � x is defined for all t � R andt
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remains in L. In this case the semiflow � induces a flow on L which we
� �denote � L. Let L � � be a compact invariant set and let � � � L. Let

Ž .� � 0, T � 0. A � , T pseudo-orbit for � from a � L to b � L is a finite
sequence of partial trajectories

� x : 0 � t � t ; i � 0, . . . , k � 1; t � T ,Ž .t i i i

such that

x � L, j � 0, . . . , k � 1;j

d x , a � � ,Ž .0

d � x , x � � , j � 0, . . . , k � 1;Ž .Ž .t j j�1j

x � b.k

Ž .We write a � b if for every � � 0, T � 0 there exists a � , T -pseudo-orbit
�from a to b. If a � a then a is a chain recurrent point for the flow � � � L.

If every point of L is chain recurrent for �, then L is said to be internally
chain recurrent.

If a � b for all a, b � L, we say that L is internally chain transitive.
When L is connected, this is equivalent to ‘‘internally chain recurrent.’’ This
is also equivalent to the condition that there are no proper attractors for �
Ž .see Section 6 for a definition of attractors . For example, any compact alpha
or omega limit set for a flow � is internally chain transitive. The omega limit

Ž .set of x is the set of points p such that p � lim � x for some sequencek �� tk

t � �. The alpha limit set of x is defined as the omega limit set of x for thek
� 4reversed flow � . The equilibria set of � is internally chain recurrent. The�t

Ž .nonwandering set of � is an example of a set which is not always internally
chain recurrent but consists of points which are chain recurrent for �. x is
wandering if there is a neighborhood U of x and a positive time T such that

Ž .U 	 � U is empty for all t � T. Otherwise x is nonwandering.t
For more details and the basic theory of chain recurrence, we refer the

Ž . Ž .reader to Conley 1978 or Bowen 1975 .

� 4REMARK. Given a sequence of positive weights  , define thek k � 0
weighted sum

n

S n � S 0 �  �Ž . Ž . Ýi i k Y , ik
k�1

and the weighted occupation measure

S nŽ .
v n � .Ž . nn � Ý 0 k�1 j

Then Corollary 3.5 remains valid provided that the average weight � �k
Ž n . 1�� � n � Ý  satisfies the conditions: Ý � � � and Ý � � � for somek 0 j�1 j k k k k

� � 1.
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4. Some applications.

Pemantle’s convergence theorem. To illustrate Corollary 3.5 we will give a
short proof of Pemantle’s main convergence result in the case where the
matrix R has positive entries. Set

d

1 N v � R vŽ . Ž . Ýi i , k k
k�1

and suppose the map M is defined by

R vi , j j
2 M v �Ž . Ž .i , j N vŽ .i

The matrix R is called reversible if there exist positive numbers  ,i
Ž .i � 1, . . . , d such that for all i, j � E � E with i � j:

 R �  R .i i , j j j , i

Ž . Ž .Suppose R is reversible. Set h v �  N v . Then for i � j,i i i

v h v M v � v h v M v .Ž . Ž . Ž . Ž .i i i , j j j j , i

Ž . Ž .It follows that the invariant measure � v of M v is given as

v h vŽ .i i
� v � , i � 1, . . . , d ,Ž .i H vŽ .

Ž . Ž . d Ž . Ž .where H v is the normalization number H v � Ý v h v . Since H v � 0i�1 i i
for all v � �, we can multiply the vector field F � �Id � � by H without

Ž .changing the phase portrait this only changes the length of the vector field .
This leads us to the following differential equation on �:

dvi
3 � v h v � H v .Ž . Ž . Ž .Ž .i idt

Notice that

� H � h vŽ .j� h v � v � h v � v  R v � 2h v ,Ž . Ž . Ž .Ý Ýi j i j j j , i i i� v � vi ij j

where the last equality follows from the reversibility of R and definition of
Ž . Ž .h v . Thus, taking the derivative of H along trajectories of 3 givesi

dH � H
� v h v � H � 2 h v v h v � H vŽ . Ž . Ž . Ž .Ž . Ž .Ý Ýi i i i idt � vii i

2� 2 v h v � H v .Ž . Ž .Ž .Ý i i
i

Therefore, we are in the situation where the following holds.

1. H is a continuous function which is strictly increasing along nonstationary
Ž . Ž .orbits i.e., nonequilibrium points of 3 .
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Ž . � Ž . 42. The restriction of H to the equilibria set Eq F � v � �: F v � 0 � CC

takes a finite number of values.

In this situation it is not very difficult to prove that any compact internally
chain recurrent set consists of equilibria. This follows, for example, from

Ž .Proposition 3.2 of Benaım 1996 . Then from Corollary 3.5 we deduce the¨
Ž .following result which has been proved by Pemantle 1992 for symmetric R.

Ž� 4.THEOREM 4.1. Suppose R is reversible. Then L v is almost surely an
compact connected subset of CC.

A class of edge-reinforced random walks. We describe here a class of
edge-reinforced random walks which is directly inspired by the work of

Ž . Ž .Coppersmith and Diaconis 1986 and Diaconis 1988 .
Ž .Let GG � E � E be an oriented graph i.e., a set of oriented edges with E


Ž . Ž . �as a set of vertices. We suppose that GG is symmetric i, j � GG � j, i � GG ,
Ž .connected and aperiodic. Initially each edge i, j � GG is given a positive

weight A � A .i, j j, i
Let 0 � � � inf A . A random walk Y starts at a particular vertex.i, j i, j

Ž .Each time Y travels from i to j or from j to i, the weight of the edge i, j is
positively reinforced by A and each time Y travels over another edge, thei, j

Ž .weight of i, j is reinforced by � A . At the next step, an edge leading outi, j
from the current vertex is chosen with a probability proportional to its
weight.

The case � � 0 and A � 1 was introduced by Coppersmith and Diaconisi, j
Ž . 
 Ž .�1986 see also Diaconis 1988 as a simple model of exploring a new city.
Imagine a person visiting this city. At first she explores at random the area
where she lives, but as time goes on, routes that have been used more in the
past become more familiar and are more likely to be traveled.

ŽThe choice of different numbers A means that in this city as in mosti, j
.cities some paths are more attractive than others. The parameter � � 0

Ž .models the fact that this person like me tends to forget the areas she has
Ž . Ž .not visited for a long time. Indeed, let A n denote the weight of i, j ati, j


 Ž . Ž . �time n with the convention that A n � 0 if i, j � GG and suppose thati, j
the process Y does not visit vertex i between times n and n � p. Then, at
time n � p the probability of transition from i to j is given by

A n � p� AŽ .i , j i , j

Ý A n � p� AŽ .Ž .k i , k i , k

and we see that this last quantity tends to the initial transition probability
A �Ý A when p tends to infinity.i, j k i, k

Ž . � Ž .4THEOREM 4.2. Let W n � W n denote the empirical occupa-i, j i, j�1, . . . , d
Ž Ž .tion measure of oriented edges i.e., W n is the proportion of time Y hasi, j

.moved from vertex i to vertex j between times 1 and n . Then we have the
following.
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Ž . � Ž .4 �i The sequence W n converges almost surely toward a point W �n� 0
Ž .� GG .
Ž . �Ž . 4 �ii Let A � sup A and GG � i, j � GG: A � A . Point Wmax i, j i, j max i, j max

satisfies
� i , jŽ .GGma x�lim W � ,i , j card GG��0 Ž .max

Ž . Ž .where � i, j equals 1 for i, j � GG and 0 otherwise.GG maxma x

Ž .COROLLARY 4.3. Let v n denote the empirical occupation measure of the
process at time n. Then

Ž . � Ž .4 �i The sequence v n converges almost surely toward a point v � �.n� 0

card j � E : i , j � GG� 4Ž . max�ii lim v � .Ž . i card GG��0 Ž .max

Note that there is no presumption here that GG is connected. Thusmax
Corollary 4.3 has the interpretation that�for small ��our visitor tends to
visit all the most attractive spots of the town.

Ž .PROOF OF THEOREM 4.2. Define functions f : � GG � R byi, j �

f W � A � � W � W � � AŽ . Ž . Ž .i , j i , j i , j j , i i , j

Ž .if i, j is an edge and
f W � 0Ž .i , j

Ž . Ž . n Ž .otherwise. Set S 0 � 1, S n � 1 � Ý � � and W n �i, j i, j k�1 Y , i Y , j i, jk� 1 k
Ž . Ž .S n �n � card GG . With these notations we havei, j

ˆ�P Y � j FF � M W n ,Ž .Ž .Ž .n�1 n Y , jn

where
f WŽ .i , j

M̂ W � .Ž . i , j Ý f WŽ .k i , k

Ž .Let � W be the measure given by

Ý f WŽ .k i , k
� W � , i � 1, . . . , d.Ž .i Ý f WŽ .l , k l , k

ˆŽ Ž . Ž ..A straightforward computation shows that M W , � W is reversible. Thus
ˆŽ . Ž .M W admits � W as invariant measure. Now introduce the expended

�Ž . 4process Z � Y , Y : n � 1 . This new process Z is a VRRW, whichn n�1 n
satisfies

�P Z � i , j FF � N W nŽ . Ž .Ž .Ž .n�1 n Z , Ž i , j.n

with
ˆN W � � M W .Ž . Ž .Žk , l . , Ž i , j. l , i i , j
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Ž .The map N satisfies Hypothesis 3.1 and for all W � � GG the homogeneous
Ž .Markov chain N W admits a unique invariant measure � defined by

ˆ� W � � W M W .Ž . Ž . Ž .i , j i i , j

Ž . Ž .Thus, the vector field F: � GG � T� GG associated to Z is given by

f WŽ .i , j
F W � �W � � W � �W � .Ž . Ž .i , j i , j i , j i , j Ý f WŽ .l , k l , k

Ž .Multiplying F by the positive function Ý f W leads to the differentiall, k l, k
system

dWi , j
4 � �W f W � f W .Ž . Ž . Ž .Ýi , j l , k i , jž /dt l , k

� Ž . 4LEMMA 4.4. Let � � W � � GG : W � 0; W � W . Then any compacti, j i, j j, i
Ž .connected internally chain recurrent set for 4 is contained in �.

Ž .PROOF. If W � 0 then dW �dt � f W � � A . Thus, the vector fieldi, j i, j i, j i, j
Ž . Ž Ž .. � Ž .F points inward to � GG . This implies that L � Int � GG � W � � GG :

4W � 0 .i, j
Ž . Ž .The property f W � f W implies thati, j j, i

2
d W � WŽ .i , j j , i 2 2� �2 W � W f W � �C W � WŽ .Ž . Ž .Ýi , j j , i l , k i , j j , iž /dt l , k

Ž .for some positive constant C. Thus, W � W converges exponentiallyi, j j, i
Ž . � Ž .toward zero along the trajectories of 4 . This implies that the set W � � GG :

4 Ž .W � W is a global attractor for 4 . The fact that a chain recurrent seti, j j, i
contains no proper attractor concludes the proof of the lemma. �

Ž . Ž . Ž .Define functions g : R � R by g x � 2 A � � x � � A if i, ji, j � � i, j i, j i, j

Ž . Ž .is an edge and g x � 0 otherwise. The dynamics induced by 4 on thei, j
positively invariant set � are given by

dWi , j
5 � �W g W � g WŽ . Ž . Ž .Ýi , j l , k k , l i , j i , jž /dt l , k

Ž . Ž .Let i , j � GG . A straightforward computation shows that 5 admits one0 0 max
unique equilibrium W � in � which is given by the equations

A A A � Ai , j max max i , j� � 2 , i , j � GG ,Ž .� �W W �i , j i , j0 0

where W � is given by the normalization conditioni , j0 0

Ai , j � 1.Ý �A �W � 2 A � A ��Ž .max i , j max i , jŽ .i , j �GG 0 0
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� Ž .From these relations it is easy to deduce that W satisfies assertion ii of
Theorem 4.2.

Ž .Now, let L � � GG be a compact connected internally chain recurrent set.
According to the preceding lemma and by compactness of L, there exists an

Ž . �open subset U of �, such that L � U � clos U � �. Let � � inf W : W �i, j
Ž .4clos U � 0. Consider the function H: U � R given by

2 �1 g x g xŽ . Ž .W k , l k , lk , lH W � g W � .Ž . Ž .Ý ÝHk , l k , lž /2 x�k , l k , l

Ž .Taking the derivative of H along trajectories of 5 gives

dH � H dWk , l� Ýdt � W dtk , lk , l

2�g WŽ .k , l k , l� � �W g W � g WŽ .Ž .Ý Ýk , l i , j i , j k , l k , lž /Wk , lk , l i , j

� 2g W dWŽ .k , l k , l k , l� � .Ý ž /W dtk , lk , l

� Ž .Since g W �W � 0 for W � U, this implies that H is strictly de-k , l k , l k , l
Ž .creasing along nonstationary orbits of the dynamics induced by 5 on L. We

conclude exactly as in the proof of Theorem 4.1 that L must consist of
� �4equilibria. It follows that L � W . This concludes the proof of theorem 4.2.

�

5. Proof of Proposition 3.3. The proof of Proposition 3.3 uses the ideas
Ž .introduced in Metivier and Priouret 1987 with some simplifications due to´

the particular form of the process considered here. The main idea is to
Ž .introduce a solution to the Poisson equation for the Markov chain M v .

�Ž .Let M v denote the matrix defined by

M� v � � v .Ž . Ž .i , j j

Ž .Let H v denote the matrix solution to the linear differential equationt

dH vŽ .t � �Id � M v H vŽ . Ž .Ž . tdt
Ž . Ž . Ž Žwith initial condition H v � Id. In other words t � H v � exp t �Id �0 t

Ž ..M v is the transition matrix function of the continuous time Markov
Ž . Ž . Ž .process associated with M v . Indecomposability of M v implies that H vt

�Ž .converges toward M v at an exponential rate. Thus, the map

Q : � � T MM

�
�v � Q v � H v � M v dtŽ . Ž . Ž .Ž .H t

0

is well defined.
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Ž . Ž Ž .. Ž . �Ž . Ž .Ž Ž ..LEMMA 5.1. i Id � M v Q v � Id � M v � Q v Id � M v .
Ž . kii Q is C .

Ž . Ž . �Ž . �Ž . �Ž . Ž .PROOF. i It is easily seen that M v M v � M v � M v M v . From
Ž .these relations we deduce i .

Ž .ii Consider the map

L: � � T MM � T MM

L v , Q � Q Id � M v � Id � M� v .Ž . Ž . Ž .Ž . Ž .
Ž . Ž . Ž .By assertion i , Q � Q v is solution to the implicit equation L v, Q � 0.

We have
� L

v , Q v : T MM � T MMŽ .Ž .
� Q

A � A 
 Id � M v .Ž .Ž .
Uniqueness of the invariant measure implies that the kernel of
Ž .Ž Ž .. Ž .� L�� Q v, Q v is zero. Indeed if A � AM v , each column of A must be

Ž .proportional to � v but since A is in T MM, A must be the zero matrix. We
conclude that Q is C k by the implicit function theorem. �

Ž .For each v � �, y � E let U v, y � T� be the vector defined by

U v , y � � � � v , j � 1, . . . , d.Ž . Ž .j y , j j

Since
S n � 1 � S n � � ,Ž . Ž .i i Y , in� 1

we have

1
v n � 1 � v n � F v n � � ,Ž . Ž . Ž .Ž . n�1n � 1 � n0

where

U v n , YŽ .Ž .n�1
� � .n�1 n � 1 � n0

Or, equivalently, using the interpolated process

6 V � � V � � � � � F V � � �Ž . Ž . Ž . Ž . Ž .Ž .n�1 n n�1 n n n�1

Ž . � 4Set m t � sup p � N: � � t andp

k�1

� n , T � sup �Ž . Ý i�1
� 4k : 0�� �� �T�1 i�nk n

Ž .Now, if one compares 6 with the solution to the deterministic equation

dW
� F W s , t � s � TŽ .Ž .

ds



¨M. BENAIM374

Ž . Ž .with initial condition W t � V t , it is easily seen by a standard Gronwall’s

 Ž .�inequality see, e.g., Lemma 4.4 of Benaım 1996 that¨

7 sup d � V t , V t � h � C T � m t , TŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž .h
0�h�T

Ž .for some constant C T � 0. Thus the proof of Proposition 3.3 reduces to show
Ž .that lim � n, T � 0.n��


 �Notation. If A is a matrix and y � E, we let A y denote the vector
whose jth component is A . We let Cste denote an arbitrary positivey, j
constant depending only on the map M.

Ž . Ž �Ž ..
 � Ž .
 �By Lemma 5.1 we have U v, y � Id � M v y � Q v y �
Ž Ž . Ž ..
 �M v Q v y . Thus

� � � � � � � � � ,i�1 1, i�1 2, i�1 3, i�1 4, i�1

where


 � 
 �Q v i Y � M v i Q v i YŽ . Ž . Ž .Ž . Ž . Ž .Ž .i�1 i
� � ,1, i�1 i � 1 � n0


 � 
 �M v i Q v i Y M v i Q v i YŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .Ž . i i
� � � ,2, i�1 i � 1 � n i � n0 0


 � 
 �M v i Q v i Y M v i � 1 Q v i � 1 YŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .Ž . Ž .i i�1
� � � ,3, i�1 i � n i � 1 � n0 0

and


 � 
 �M v i � 1 Q v i � 1 Y M v i Q v i YŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .Ž . Ž .i�1 i�1
� � � .4, i�1 i � 1 � n i � 1 � n0 0

Continuity of Q, M and compactness of � ensure that
kCste Cste

� �� � and � � .Ý2, i�1 3, i�12 n � 1 � ni � nŽ . 0i�n0

By smoothness of M and Q we get

v i � 1 � v i 1Ž . Ž .
� �� � Cste � Cste .4, i�1 2i � 1 i � 1Ž .

Thus
k�1 C1

8 � n , T � sup � �Ž . Ž . Ý 1, i�1 n � 1 � n� 4 0k : 0�� �� �T�1 i�nk n

Ž .for some positive constant C depending only on M . To conclude, notice that1
Ž � . � � 2 Ž .2E � FF � 0 and � � C � i � n for some positive constant C1, i�1 i 1, i�1 2 0 2

Ž . ndepending only on M . Thus Z � Ý � is a martingale which con-n i�1 1, i�1
Ž .verges almost surely and, therefore, lim � n, T � 0. This concludes then��

proof of Proposition 3.3.
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REMARK. Notice that the variance of the martingale Ýk�1� is boundedi�n 1, i�1
by

k�1 k�11 � � � � � �i�1 i k n
C � C � C .Ý Ý2 2 22 n � i � 1 n � nŽ .n � i � 1Ž . 0 0i�n i�n0

Ž .Thus from estimate 8 and a Doob’s inequality, we get the estimate: for any
 � 0 and n � n � 2C � ,0 1

k�1

P � n , T �  � P sup � � �2Ž .Ž . Ý 1, i�1ž /� 4k : 0�� �� �T�1 i�nk n9Ž .
C TŽ .1� 2 n � nŽ .0

Ž .for some constant C T depending on T and M.1

6. Reachable sets and attractors. The aim of this section is to show
that the behavior of general VRRW can be as complicated as the behavior of
any vector field on � and to give the practical condition ensuring that a given

� 4attractor of F has a positive probability to be the limit set of v . We beginn
Ž .modestly in Lemma 6.1 by showing that up to a time reparametrization any

vector field on � is the vector field associated to a VRRW.

LEMMA 6.1. Let G: � � T� be a C k, k � 1 vector field leaving � positively
invariant. Then there exists a C k map M: � � MM and � � 0 such that we have
the following.

Ž .i M satisfies Hypothesis 3.1.
Ž .ii The vector field F associated to M is F � � G.

Ž . Ž .PROOF. Set � � , v � v � � G v . We claim that for � � 0 small enough,
Ž . Ž . Ž .� � , v � �. Clearly � � , v � aff � for all � .

iŽ . Ž iŽ . iŽ . . iŽ .Let p v � p v , . . . , p v � � denote the point defined by p v � v1 d j j
iŽ .for j � i and p v � 0. By smoothness of G there exists a continuousi

˜ i ˜Ž . Ž Ž .. Ž . Ž . Žfunction G such that G v � G p v � v G v . Thus � � , v � v 1 �i i i i i
˜ i ˜Ž .. Ž Ž .. Ž .� G v � � G p v . Choose � small enough so that 1 � � G v � 0. Since Gi i i

Ž iŽ .. Ž .leaves � positively invariant, G p v � 0. Therefore � � , v � 0. To con-i i
Ž . Ž .clude, it suffices to choose M v � � � , v . �i, j j

Ž .Let GG v � E � E denote the graph of the Markov transition matrixM
Ž .M v . That is:

i , j � GG v � M v � 0.Ž . Ž . Ž .M i , j

A sequence x , . . . , x � � is called admissible if there exist vertices0 k
Ž . Ž .i , . . . , i � E such that statements 1 and 2 hold.0 k

Ž . Ž .1. i , i � GG x ; l � 0, . . . , k � 1;l l�1 M l
Ž .Ž .2. x � x � 1� l � 1 � n �x � e , where e , . . . , e denote the vectorsl�1 l 0 l i 1 dl

of the canonical basis of Rd.
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The points x and x are, respectively, the initial and terminal points of0 k
the sequence. The length of the sequence is the integer k � 1. The vertices
i , . . . , i are the states of the sequence.0 k

A point w � � which is the terminal point of an admissible sequence with
Ž .initial point v and initial state y is called reachable from v, y . The set of all

Ž . Ž .points which are reachable from v, y is called the reachable set of v, y and
�Ž . Ž .is denoted R v, y . The set of all points which are reachable from v, y by

�Ž .admissible sequences of length greater than k � 1 is denoted R k, v, y .
�Ž . �Ž .Thus R v, y � � R k, v, y .k � 0

Define the GG -limit set of v with initial state y, asM

� �S v , y � R k , v , y .Ž . Ž .�
k�0

�Ž .Equivalently, a point w � � belongs to S v, y if and only if for every
neighborhood U of w and every integer k:

�P v n � U for some n � k v 0 � v , Y � y � 0.Ž . Ž .Ž .0

LEMMA 6.2. Let v � � and y � E. Then we have the following.

Ž . �Ž .i S v, y is a nonempty compact set positively invariant under the flow

 Ž �Ž .. �Ž . �� i.e., � S v, y � S v, y for all t � 0 .t
Ž . Ž Ž� 4. �Ž . � Ž . .ii P L v � S v, y v 0 � v, Y � y � 1.n 0

Ž . �Ž .PROOF. i By compactness of � and definition of S v, y , it is clear that
�Ž . �Ž .S v, y is a nonempty compact subset of �. Let w � S v, y and T � 0.

Ž . �Ž .Our next goal is to show that � w � S v, y . Fix � � 0. By uniformT
continuity of � there exists  � 0 such thatT

d x , x� �  � d � x , � x� � � .Ž . Ž . Ž .Ž .T T

�Ž .Since w � S v, y , for every k � N, there exists an admissible sequence
Ž . Ž .v � x , . . . , x with m � k and d x , w � �2 . Consider now the process0 m m

� Ž .4 Ž . �Ž .Y , S n with initial value v 0 � x , initial mass n 0 � m � n andn n� 0 m 0
where the initial state Y is chosen to be the terminal state i of the0 m

Ž . Ž . Ž .sequence. According to estimates 7 , 8 and 9 , we see that

1
P d V T , � v 0 � ��2 � C TŽ . Ž . Ž .Ž .Ž .Ž . �T 2 2n 0 � 1 �Ž .Ž .

Ž .for some positive constant C T , where V denotes the interpolated process2
� Ž .4 �Ž .associated to Y , S n . Since n 0 � n � m we see that for k large enoughn 0

this probability can be made arbitrarily small. Therefore there exists an
admissible sequence z � x , . . . , z from x to a point z which is in the0 m l m l

Ž . Ž . Ž Ž . .��2 neighborhood of � x . Since d x , w �  we get d � w , z � � .T m m T l
Putting together the sequences v � x , . . . , x and z , . . . , z gives a new0 m 0 l

Ž Ž ..admissible sequence of length greater than k from v to z � B � w . Sincel � T
Ž . �Ž .k and � are arbitrary, this shows that � w � S v, y .T

Ž . �Ž . �Ž .4ii follows from the definitions of S v, y and L v . �n
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A subset A � � is an attractor for � if the two following conditions hold:

Ž .1. A is nonempty, compact and invariant � A � A .t
Ž .2. A has a neighborhood W � � such that dist � x, A � 0 as t � � uni-t

formly in x � W.

Ž .The basin of A denoted B A is the positively invariant open set compris-
Ž .ing all points x such that dist � x, A � 0 as t � �.t

A global attractor is an attractor whose basin is all the space �.
An attractor A is said to be minimal if it contains no proper invariant

subset or, equivalently, every orbit in A is dense in A. Simple examples of
minimal attractors are asymptotically stable equilibria and periodic orbits.

The next two theorems are proved at the end of this section.

Ž .THEOREM 6.3. Let A � � be an attractor with basin of attraction B A .
Ž . �Ž . Ž .Let v � Int � and y � E. Suppose that S v, y 	 B A � �, then

�� 4P L v � A v 0 � v , Y � y � 0.Ž .Ž .Ž .n 0

In order to state the next theorem we need to define a few terms. Let
GG � E � E be an oriented graph whose vertices are the elements of E. We

Ž .use the notation i � j to represent the arrow i, j � GG. We suppose that GG is
indecomposable. By indecomposable, we mean that there exists a nonempty
set R � E, called the recurrence class of GG, such that for every pairGG

Ž .i, j � E � R it is possible to find a sequence of arrows i � i � 


 �GG 1
Ž . Ž .i � j but no such sequence exists if i, j � R � E � R .n GG GG

� 4A set C � i , i , . . . , i � E is called a cycle if there exists a permuta-0 1 n�1
� 4 � 4tion � : 0, . . . , n � 1 � 0, . . . , n � 1 such that i � i � 


 �� Ž0. � Ž1.

i � i . A proper subcycle of C is a proper subset of C which is a cycle.� Žn�1. � Ž0.
We define the barycenter of C as the vector

1
B C � e ,Ž . Ý icard CŽ . i�C

Ž .where card C is the cardinal of C. We call C a basic cycle of GG if it satisfies
the two following conditions.

1. C � R .GG

Ž .2. B C cannot be written as a convex combination of the barycenters of
proper subcycles of C.

Ž .Let C , . . . , C denote the proper subcycles of C. The condition 2 is1 k
equivalent to the condition that the linear system

k

1 x � 1, i � 1, . . . , card CŽ .Ý �i� C 4 jj
j�1

� 4admits no solution x with nonnegative entries.j
� ŽFinally we will say that two graphs GG and GG are equivalent written

�.GG � GG if they have the same set of basic cycles. Figure 1 gives an example of
� 4 � 4 � 4two equivalent graphs for which the basic cycles are 1 , 2 , 1, 2, 3 .
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� 4 � 4 � 4FIG. 1. Two equivalent graphs. The basic cycles are 1 , 2 and 1, 2, 3 .

Ž . Ž .THEOREM 6.4. Suppose that one of the two following conditions a or b
holds.

Ž .a There exists an indecomposable graph GG � E � E such that:

	 v � Int � , GG � GG v and GG � GG v .Ž . Ž . Ž .M M

Ž . Ž �. Ž . Ž �.b 	 v, v � � � �, GG v � GG v .M M

Ž . �Ž .Then for all v � Int � , y � E, S v, y contains a global attractor of �.

Ž . Ž .COROLLARY 6.5. Suppose that condition a or b of Theorem 6.4 holds.
Ž .Then for every attractor A � �, v � Int � , y � E,

�� 4P L v � A v 0 � v , Y � y � 0.Ž .Ž .Ž .n 0

If furthermore, A is a minimal attractor then

�� 4P L v � A v 0 � v , Y � y � 0.Ž .Ž .Ž .n 0

The first part of the corollary follows immediately from Theorems 6.3 and
6.4. The second part follows from Corollary 3.5

Ž . Ž .REMARKS. i When the map M is given by 2 and R has positive entries,
Ž .condition a of Theorem 6.4 is satisfied. Thus Corollary 6.5 implies that any

� Ž .4minimal attractor has a positive probability to be the limit set of v n . This
Ž .has been proved by Pemantle 1992 for asymptotically stable equilibria when

R is symmetric.
Ž .ii According to Lemma 6.1 and Corollary 6.5, we see that for an arbitrary

� 4VRRW the limit set of v can be as complicated as any minimal attractor.n
� 4For example, it is easy to construct a generalized VRRW on E � 1, 2, 3 such

Ž� 4. � 4that L v is homeomorphic to a circle or a VRRW on E � 1, 2, 3, 4 forn
Ž� 4.which L v is homeomorphic to a two-torus.n
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7. Shadowing properties. This section states some shadowing proper-
ties for generalized VRRW which are used to give a partial answer to
Conjecture 1.2.

Let K � � be a compact set positively invariant by the flow �.
The expansion constant of � at K ist

EC � , K � inf m D� x : x � K ,� 4Ž . Ž .Ž .t t

where

�1�1� �m D� x � inf D� x v : v � 1 � D� x .� 4Ž . Ž . Ž .Ž .t t t

The logarithmic expansion rate of � at K is defined as

1
l � , K � lim log EC � , K ,Ž . Ž .Ž .exp ttt��

where the limit exists by standard subadditivity arguments. The logarithmic
Ž .expansion rate has been introduced and used by Hirsch 1994 to study

Ž .shadowing properties of dynamical systems. The techniques of Hirsch 1994
convert nicely to prove shadowing theorems for stochastic approximation

Ž . Ž . Ž .processes Benaım, 1996 . Recently Schreiber 1995 proved that l �, K¨ exp
equals the smallest Liapounov exponent for ergodic measures of � with
support in K. This has the nice consequence that

l � , K � l � , M � 	 K ,Ž . Ž .Ž .exp exp

Ž . Ž .where M � is the smallest closed set such that � M � 1 for every �
Ž .invariant probability measure. By the Poincare recurrence theorem M � 	 K´

is contained in the Birkoff center of � restricted to K :

BC � , K � x � K : lim inf d x , � x � 0 .Ž . Ž .Ž .½ 5t
t��

Ž .This last property is particularly useful to estimate l �, K . The nextexp
Ž .result follows easily from Theorem 5.2 of Benaım 1996¨

Ž .THEOREM 7.1. Let A � � be an attractor for F. Suppose that l �, A �exp
� Ž . 4�1�2. Then with probability 1 on the set L v � A , there exists a randomn

Ž .vector W � B A such that

lim � W � v � 0.Ž .� nnn��

� Ž .4COROLLARY 7.2. Let A � C � v � �: v � � v be an attractor. Suppose
Ž .that for each v � A all the eigenvalues of the linear map D� v : T� � T�

have their real parts greater than 1�2. Then with probability 1 on the set
� Ž . 4 Ž .L v � A , there exists a random vector W � B A such thatn

lim � W � v � 0.Ž .� nnn��
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Ž . Ž Ž .. �PROOF. If v � C, D� v � exp tDF v . Since � A is the identity flow,t
�ergodic invariant measures of � A are Dirac measure. The smallest

�Liapounov exponent of � A for the Dirac measure � equalsv
Ž . Ž Ž Ž ..lim 1�t log m exp tDF v . A straightforward application of Jordan’s de-t ��

composition shows that this last number equals the real part of the eigen-
Ž . Ž . Ž .value of DF v having the smallest real part. Since DF v � �Id � D� v ,

the result follows. �

This corollary will now be used to give a partial answer to Pemantle’s
Conjecture 1.2.

Ž . Ž .COROLLARY 7.3. Suppose M v is given by 2 with R � R � 0. Sup-i, j j, i
pose that

inf R 1i , j i , j
� .

sup R 2i , j i , j

Then Conjecture 1.2 is true.

Ž . Ž .PROOF. Let v � C. That is v � � v . First suppose that v � Int � . A
simple computation shows that

�� Ri i , j
v � v � 2 � � .Ž . i i , jž /� v H vŽ .j

Ž . Ž . Ž .Since v � C 	 Int � , we have h v � H v . Thusi

�� Ri j , i
v � v � 2 � � � M v � 2v � � .Ž . Ž .i i , j j , i i i , jž /� v h vŽ .j i

Ž .It follows that D� v is given by:

D� v : T� � T� ,Ž .
w � M T v w � wŽ .

Ž .and the computation of the eigenvalues of D� v reduces to the computation
Ž . Ž .of eigenvalues of M v . Recall that the Markov chain M v is reversible with
Ž . Ž .invariant measure � v � v. Therefore, eigenvalues of M v are reals. Also, if

Ž . Ž . Ž .we let � v denote the smallest eigenvalue of M v , � v satisfies the
variational formula

² :Id � M v f , fŽ .Ž . v
1 � � v � inf : f � 0 ,Ž . ½ 5² :f , f v
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² : 2Ž .where f, g � Ý f g v denote the scalar product in l v . Now we use thev i i i i
following convenient fact:

1 2² :Id � M v f , f � f � f M v � vŽ . Ž . Ž .Ž . Ž .Ýv i j i , j i2 i , j

1 R vi , j j2� f � f vŽ .Ý i j i2 h vŽ .ii , j

inf R 1i , j i , j 2� f � f v vŽ .Ý i j j isup R 2i , j i , j i , j

inf Ri , j i , j 2² : ² :� f , f � 2 f , 1 .Ž .v vsup Ri , j i , j

It follows that
inf R 1i , j i , j

1 � � v � � .Ž .
sup R 2i , j i , j

Ž .In the situation where v is not in Int � we can always suppose that
Ž .v � v , . . . , v , 0, . . . , 0 with v � 0 for i � 1, . . . , k. Then it is easily seen that1 k i

ŽŽ .Ž ..the matrix �� �� v v takes the formi j i, j

�� i A Bv � ,Ž . ž /ž / 0 D� vj i , j

Ž . Ž .where D is a d � k � d � k diagonal matrix with entries D � h v �H v ,i, i i
i � 1, . . . , k and A is a k � k matrix whose smallest eigenvalue can be

Ž .estimated exactly in the case v � Int � .
Now, we shall use the fact that for every x � � the deterministic trajectory

� Ž .4� x converges, as t approaches �, to a unique limit point which is ant
equilibrium. A nice proof of this result has been given, in a very different

Ž .context, by Losert and Akin 1983, Theorem 2 . Losert and Akin’s conver-
gence theorem combined with Corollary 7.2 concludes the proof. �

8. Proofs of Theorems 6.3 and 6.4.

PROOF OF THEOREM 6.3. Let X: R � � be an asymptotic pseudotrajec-�
tory of �. For any T � 0, define

d T � sup d � X kT , X kT � T .Ž . Ž . Ž .Ž .Ž .X T
k�N

If a point x � � belongs to the basin of attraction of an attractor A � �,
Ž .then � x � A as t � �. The next lemma shows that the same is true for ant

Ž .asymptotic pseudotrajectory X provided that d T is small enough.X

Ž . Ž .LEMMA 8.1. Let A � � be an attractor with basin B A and let K � B A
be a nonempty compact set. There exist numbers T � 0, � � 0 depending only

Ž .on K such that: if X is an asymptotic pseudotrajectory with X 0 � K and
Ž . Ž .d T � � , then L X � A.X
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Ž . Ž .PROOF. Choose an open set W such that A � K � W � clos W � B A
Ž . Ž .and choose � � 0 such that N A the 2� neighborhood of A is contained2 �

Ž . Ž .in W. Since A is an attractor, there exists T � 0 such that � W � N A .T �

Ž . Ž . Ž Ž .. Ž .Now, if X 0 � K and d T � � , we have � X 0 � N A andX T �

Ž Ž . Ž Ž ... Ž . Ž .d X T , � X 0 � � . Thus X T � N A � W. By induction it followsT 2 �

Ž . Ž . Ž .that X kT � W for all k � N. Thus, by compactness, L X 	 clos W � �.
Ž .By a theorem of Conley 1978 , every chain recurrent point for � is

Ž Ž .. Ž . Žcontained in A � � � B A . Therefore, L X which is a connected set
.consisting of chain recurrent points by Theorem 3.4 is either contained in A

Ž . Ž . Ž . Ž .or in � � B A but since L X 	 clos W � �, we must have L X � A. �

We will now use Lemma 8.1 to prove Theorem 6.3.
Ž . �ŽLet K � B A be a compact neighborhood of A. First notice that S v,

. �Ž . Ž .y 	 K � �. Indeed, by hypothesis there exists w � S v, y 	 B A . Thus
Ž . �Ž .for t � 0 large enough, � w � K and since by Lemma 6.2, S v, y ist

Ž . �Ž .positively invariant, � w � S v, y .t
To the compact set K we associate the numbers T � 0, � � 0 given by

Ž .Lemma 8.1. Let n � N be such that n � 2C �� where C is the constant1 1
Ž . �Ž .which appears in formula 8 . Since S v, y intersects K, there exists m � n

Ž Ž . � Ž . .such that P v m � K v 0 � v, Y � y � 0. Now, consider the interpolated0
Ž . Ž .process X defined by X t � V t � � for t � 0. According to Proposition 3.3,m

X is almost surely an asymptotic pseudotrajectory of �. On the other hand,

P d T � � � P d � X kT , X kT � T � �Ž . Ž . Ž .ŽŽ . Ž .Ž .ÝX T
k�N

Ž . Ž .Thus using estimates 7 and 9 ,
�

P d T � � � P � m � � k , T �Ž . Ž .Ž . Ž .ÝX mž /C TŽ .k�N

2C T C T 1Ž . Ž .1� .Ý2 m � � k� Ž .mk�N

Ž . Ž .Since log p � � converges toward some constant depending on n asp 0
p � �, it follows that

m � � k � C n mek � 1,Ž . Ž .m 0

Ž .where C n is a positive constant depending on n . Thus,0 0

C n , TŽ .0
P d T � � �Ž .Ž .X 2m�

Ž .for some constant C n , T depending on n and T. It follows that for n large0 0
� Ž . 4enough, the event d T � � has a positive probability and the resultX

follows from Lemma 8.1.

PROOF OF THEOREM 6.4. Let GG � E � E be an indecomposable graph and
R its class of recurrence. Define setsGG

�n � y � y , . . . , y � R � 


 � R : y � 


 � y , n � 1� 4Ž .ˆGG 0 n�1 GG GG 0 n�1
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and

� � �n .�GG GG
	n�N

The set � is the space of all finite sequences with symbols in R which areGG GG

Ž . nallowable for GG. Given y � y , . . . , y � � , setˆ 0 n�1 GG

n�1

� �s y � e , y � n.Ž .ˆ Ý yi
i�0

The occupation measure of GG is the map � : � � � defined byGG

s yŽ .ˆ
� y � .Ž .ˆ

� �y

A point v � � will be called a limit point of � if there exists a sequence
� � Ž . 	 Ž .y � � with lim y � � and v � lim � y . We let � G denote theˆ ˆn GG n�� n n�� n

set of all limit points for � .
Ž . nThe following notation will be useful: let y � y , . . . , y � � andˆ 0 n�1 GG

Ž . m Žz � z , . . . , z � � . If y � z , we set yz � y , . . . , y , z , . . . ,ˆ ˆˆ0 m�1 GG n�1 0 0 n�1 0
.z .m� 1

	 Ž .LEMMA 8.2. The set � GG is the convex hull of the barycenters of the basic
cycles of GG.

ŽPROOF. We prove this result in the case R � E otherwise it suffices toGG

.consider the restriction of GG to R .GG
	 Ž . 	 Ž .Our first goal is to show that � GG is convex. Let v, w � � GG and

� �0 � t � 1. Fix � � 0, n � N. Choose sequences y, z � � such that y � n,ˆ ˆ ˆGG

� � � Ž .� � Ž .�z � n, v � � y � ��4 and w � � z � ��4.ˆ ˆ ˆ
By adding at most d symbols at the beginning and the end of these

sequences we can suppose that y � y � z � z . Choose integers p, q0 � y ��1 0 � z ��1
� Ž . �such that p� p � q � t � ��4. Then we have

� � � �p z s y � q y s z p qŽ . Ž .ˆ ˆ ˆ ˆ
p � z � q � y �ˆ ˆ� y z � � � y � � z ,Ž . Ž .ˆ ˆ ˆ ˆŽ .

� � � p � q p � qp � q y zŽ . ˆ ˆ
where we use the notation y q�1 � y q y. Thusˆ ˆ ˆ

p � z � q � y �ˆ ˆ� y z � tv � 1 � t w � � .Ž .Ž .ˆ ˆŽ .
Ž Ž . . 	 Ž . 	 Ž .Therefore tv � 1 � t w � � GG . Hence � GG is convex.

Let H denote the convex hull of barycenters of the cycles of GG. Let
� 4C � i , . . . , i be a cycle of GG. Suppose i � i � 


 � i � i and set0 n�1 0 1 n�1 0
Ž . Ž . Ž m.c � i , . . . , i . Clearly B C � � c for every m � N, m � 1. Thus,ˆ ˆ0 n�1

Ž . 	 Ž . 	 Ž .B C � � GG . It follows that H � � GG . Our next goal is to show that
	 Ž .conversely, � GG � H. This will conclude the proof of the lemma because, by

definition of basic cycles, H is also the convex hull of barycenters of basic
cycles.
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n� Ž . nLet � denote the subset possibly empty of � consisting of sequencesGG GG

Ž . Ž n�.y � y , . . . , y for which y � y . We claim that � � � H. We proveˆ 0 n�1 n�1 0 GG
1� Žthis claim by induction on n. Suppose n � 1 and � � � otherwise theGG

. Ž . 1� � 4result is trivial . Let y � y � � . By definition y is a cycle, thusˆ 0 GG 0
Ž . Ž� 4.� y � e � B y and the claim is true for n � 1.ˆ y 00

Now fix n � 1 and suppose that the claim is true for every 1 � k � n.
n� Ž . n� � 4Suppose � � � and let y � y , . . . , y � � . If y , . . . , y is a cycleˆGG 0 n�1 � 0 n�1

Ž .we are done. Otherwise, write y � y , . . . , y , . . . , y . . . , y , where y � yˆ 0 k l n�1 i j
Ž .for i, j � l, i � j and y � y . Define sequences c � y , . . . , y and z �ˆ ˆl�1 k k l

Ž .y , . . . , y , y , . . . , y . We have0 k�1 l�1 n�1

� � � �c B C � z � zŽ . Ž .ˆ ˆ ˆ
� y � ,Ž .ˆ

� � � �z � cˆ ˆ

� 4 Ž .where C � y , . . . , y . Since by induction hypothesis, � z � H, it followsˆk l
Ž .that � y � H and the claim is proved.ˆ

	 Ž .Now, let v � � GG . As already noticed, v can be written as v �
Ž nk . nk nk

� 	 Ž .lim � y with n � � and y � � . It follows that � GG � H. �ˆ ˆk �� k GG

Ž Ž .We now pass to the proof of Theorem 6.4. By assumption condition a or
Ž . . Ž . Ž . Ž .b of Theorem 6.4 , the graphs GG v of the matrices M v , v � Int � haveM
the same set of basic cycles. Let H denote the convex hull of their barycen-
ters. The next two lemmas prove the theorem.

LEMMA 8.3. H contains a global attractor of the flow �.

Ž . vPROOF. First remark that � v � H. Indeed, let Y denote the Markov
Ž .chain whose transition matrix is M v . With probability 1, there exists

v Ž .m � N such that for all l � m, Y is in the recurrence class of M v and byl
the ergodic theorem,

Ýn�1e vl�0 Ym� llim � � v .Ž .
nn��

Ž .Thus, by Lemma 8.2, � v � H.
Ž . �� � 4Define a function G: � � R by G x � inf x � w : w � H . By compact-�

ness and convexity of H, G is convex and continuous. Therefore, it admits a
Ž .right derivative DG x at any point x � �, which is convex and continuous.

Let 0 � s � 1. By convexity,

G 1 � s x � s� x � G xŽ . Ž . Ž .Ž .
� �G x � G � x � �G x ,Ž . Ž . Ž .Ž .

s

Ž .where the last equality stands because � x � H. Thus, by taking the limit
s � 0�, we get

DG x F x � �G x .Ž . Ž . Ž .
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Ž .Hence, setting x � � v , givest

d
G � v � �G � v .Ž . Ž .Ž . Ž .Ž t tdt

It follows that

d � v , H � e�td v , HŽ . Ž .Ž .t

for every v � �. This proves that H contains every attractor of F. In
Ž .particular it contains the set A � � � � which is a global attractor. �t � 0 t

Ž . �Ž .LEMMA 8.4. Let v � Int � , y � E. Then H � S v, y .

Ž .PROOF. First suppose that condition a holds. Let w � H, y � E. Accord-
Ž .ing to Lemma 8.2 there exists a sequence z � z , . . . , z � � , withˆn 0, n � z ��1, n GGˆ

Ž . � �lim � z � w and lim z � �. By indecomposability, there existsˆ ˆn�� n n�� n
� �a � � such that a � y, a � z and a � d. Set y � az .ˆ ˆ ˆ ˆˆGG 0 � a ��1 0, n n nˆ

Ž .Since GG � GG v the sequence defined by x � v, andM 0, n

1
� �x � x � �x � e , l � 0, . . . , y � 1Ž . ˆl�1, n l , n l , n y nl , nl � 1 � n0

�Ž .nis an admissible sequence for which x � w, n � �. Thus, w � S v, y .� y � , nˆ
Ž . Ž .Now, suppose that condition b holds. For all v � � the graphs GG vM

have the same class of recurrence that we denote R � E.

CLAIM. There exists N � N such that for all n � N, x � � the two0
following statements are true.

Ž .i If i � E and j � R there exists an admissible sequence x , . . . , x � � of0 k
length k � 1 � d with initial point x � x, initial state i � i and terminal0 0
state i � j.k

Ž . � 4ii If C � i , . . . , i is a basic cycle and i � C, there exists a permuta-0 n�1
� 4 � 4tion � : 0, . . . , n � 1 � 0, . . . , n � 1 with i � i such that the sequence� Ž0.

defined by

1
x � v , x � x � �x � e , l � 0, . . . , n � 1Ž .0 l�1 l l i Ž l .�l � 1 � n0

is admissible.

PROOF OF THE CLAIM. By compactness of � and continuity of M there
Ž .exists � � 0 such that for every v � � and every pair i, j � E � R, it is

Ž .possible to find a sequence of states i , i , . . . , i , i , i � i, i � j, k � d,0 1 k�1 k 0 k
� � k�1 Ž . Ž .such that w � v � � implies Ł M w � 0. Now, for n � 2 d�� thel�0 i , i 0l l�1

sequence defined by

1
x � v , x � x � �x � e , l � 0, . . . , k � 1Ž .0 l�1 l l i ll � 1 � n0
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Ž . Ž .satisfies the required properties in part i . Part ii is obtained by similar
arguments.

Now, let C , . . . , C denote the basic cycles of the graphs. Let w � H,1 k
Ž .w � Ý t B C , t � 0, Ý t � 1. Fix � � 0. Chooses integers q such thati i i i i i i

q card CŽ .i i � t � � .iÝ q card CŽ .j j j

Given v � �, y � E, we construct an admissible sequence x , x , . . . , as0 1
Ž .follows: x � v and x , . . . , x are arbitrarily chosen. Then we use part i to0 1 N

construct an admissible sequence with initial point x and whose terminalN
Ž . Ž .state is in C , then use p times part ii , then use again part i and so on.1 1

This gives an admissible sequence of finite length whose terminal point is in
a neighborhood of v whose diameter is of the order of � . This implies that

�Ž .w � S v, y . �

9. Pemantle’s conjecture. In this section we use the results of Sections
3 and 6 to construct a counterexample to Pemantle’s conjecture. We suppose

Ž . Ž .that M is given by formulas 1 and 2 and R is a matrix with positive
entries. Our first goal is to give an explicit expression for the vector field F.

Ž . Ž . Ž . Ž . Ž .The vector field. Set h v �  v N v where N v is given by 1 andi i i i
Ž . Ž . v is a positive vector. We can always write the invariant measure of M v

as
v h vŽ .i i

� v � ,Ž .i H vŽ .
where

H v � v h v .Ž . Ž .Ý i i
i

From the relation

M v � v � M v � v ,Ž . Ž . Ž . Ž .Ý Ýk , i k i , k i
k�i k�i

Ž .which characterizes � v , we deduce

R v v  v � R v v  v .Ž . Ž .Ž . Ž .Ý Ýk , i i k k i , k k i i
k�i k�i

Ž . Ž .To compute  v we will use a lemma due to Freidlin and Wentzell 1984 .
ŽGiven i � E, a graph consisting of arrows m � n with m, n � E, m � i,

.m � n, is called an i-graph if the graph has no cycle and for every m � E
Ž .m � i is the origin of exactly one arrow. The set of all i-graphs is denoted
Ž . Ž . Ž .G i . Using Lemma 3.1, Chapter 6 of Freidlin and Wentzell 1984 ,  v cani

be expressed as
v  v �  g ,Ž . Ž .Ýi i

Ž .g�G i

where
 g � R v .Ž . Ł m , n n

m�n�g
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Ž . Ž .Notice that for g � G i , v always divides  g . Thus the formula given fori
Ž . Ž . v defines  v as an homogeneous polynomial of degree d � 2 in vari-i i

ables v . Now if we multiply the vector field F by the positive function H wei
see that the dynamic of F is equivalent to the dynamic induced on � by the
following differential system:

dvi
10 � v h v � H v , i � 1, . . . , dŽ . Ž . Ž .Ž .i idt

with

1
11 h v �  v N v � R v R v .Ž . Ž . Ž . Ž . Ý Ý Łi i i i , k k m , n nž / ž /v m�n�gik Ž .g�G i

A counterexample. Suppose d � 3 and let

2 1 �
R � � 2 1

1 � 2
where 2 � � � 3.

Ž .Using formula 11 we find

h v � 2v � v � �v �v � �2 v � v ,Ž . Ž . Ž .1 1 2 3 1 2 3

h v � �v � 2v � v v � �v � �2 v ,Ž . Ž . Ž .2 1 2 3 1 2 3

h v � v � �v � 2v �2 v � v � �v .Ž . Ž . Ž .3 1 2 3 1 2 3

Ž .Consider the flow induced by 10 on the face � �. Putting v � 0 and3 3

 �v � 1 � v , we can use v � 0, 1 as a single variable and the dynamic on2 1 1

� � is equivalent to the single equation3

dv1 � v h v , 1 � v , 0 � H v , 1 � v , 0Ž . Ž .Ž .1 1 1 1 1 1dt12Ž .
� v 1 � v 1 � � v � � 2v � � � 2 .Ž . Ž . Ž .ŽŽ1 1 1 1

Ž .The constraint � � 2 shows that 12 admits only two equilibria given by
� 4v � 0 and v � 1. Hence CC 	 � � � e , e . By permuting cyclically we get1 1 3 1 2

� 4CC 	 �� � e , e , e .1 2 3

However, we will prove the following result which disproves Pemantle’s
conjecture.

Ž .PROPOSITION 9.1. For all v � Int � and for all y � E,

�� 4P L v � �� v 0 � v , Y � y � 0.Ž .Ž .Ž .n 0

Ž .From equation 12 and the constraint � � 2, we see that if x � � � �3
� 4 Ž . Ž .e , e then lim � x � e and lim � x � e . Similarly, if x �1 2 t �� t 1 t ��� t 2

� 4 Ž . Ž .� � � e , e , then lim � x � e and lim � x � e wherei i�1 i�2 t �� t i�1 t ��� t i�2
Žindices are counted mod 3. From this we deduce the following property see

.Figure 2 .
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FIG. 2. � � �	.

LEMMA 9.2. The connected internally chain recurrent subsets of �� are the
� 4 � 4 � 4equilibria e , e , e and the set ��.1 2 3

Ž .For x � � we let DF x : T� � T� denote the differential of F at x. If x is
Ž . Ž .a zero of F i.e., an equilibrium , x is said hyperbolic if eigenvalues of DF x

have nonzero real parts. Let x � � be an hyperbolic equilibrium; x is called a
Ž .sink if eigenvalues of DF x have negative real parts, a source if they have

Ž .positive real parts, and a saddle otherwise. From equation 12 we see that
Ž .the eigenvalues of DF e arei

� � ��, � � � � � 2 .Ž .� �

Thus e is an hyperbolic saddle point. Also, the stable manifold of e isi i

W s e � x � � : lim � x � e � � �Ž . Ž .½ 5i t i i�1
t��

and the unstable manifold is

W u e � x � � : lim � x � e � � � .Ž . Ž .½ 5i t i i�1
t���

LEMMA 9.3. The set �� is an attractor.

s u s sŽ . uPROOF. Let � � 0. Define points p , p as follows: p � W e , p �i i i i i
uŽ . Ž s . Ž u .W e and d p , e � d p , e � � .i i i i i
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s Ž s . ŽLet � respectively, � denote a compact interval i.e., a one-dimensionali u
. uŽ . 
 sŽ .� sconvex set parallel to W e respectively, W e of length � with pi i i

Ž u. srespectively, p as endpoint. It will be useful sometimes to identify �i i
Ž s . 
 � s Ž u.respectively, � with the interval 0, � and p respectively, p with 0.u i i

s 
 � s uWhen we use this identification, we write �  0, � . � and � are locali i i
sections through ps and pu transversal to the vector field at these points.i i

Ž .Thus by choosing � small enough we can suppose that the orbit through
s � s4 uevery point of � � p intersects transversally � . This defines a Poincaréi i i

s � s4 u � u4 Ž . � Ž . u4map g : � � p � � � p , p � � p where � � inf t � 0: � p � � .i i i i i � t i
Also, there exists a smaller compact interval I u � �u and a smooth Poincaréi i

u s Ž . � Ž . s 4map h : I � � , p � � p where � � inf t � 0: � p � � .i i i�1 � t i�1

u u Ž u 
 �. ŽCLAIM. There exists � � 0 and J � I J  0, � such that under thei i i
u 
 � s 
 �. uidentifications J  0, � and �  0, � p � J impliesi�1 i i�1

10 � g � h p � p.Ž .i i�1 2

PROOF OF THE CLAIM. A natural coordinate system around e is given byi
s 
 � u 
 �x � �  0, � , y � �  0, � . Expressed in this coordinate system, thei i

dynamic of F can be rewritten as
dx

� x � � f x , yŽ .Ž .� 1dt
dy

� y � � f x , y ,Ž .Ž .� 2dt
Ž . Ž .where f and f are smooth functions such that f 0, y � f x, 0 � 0. Now,1 2 1 2

notice that the constraint 2 � � � 3 implies 0 � � � �� . Therefore for �� �
small enough it is possible to find 0 � � � �� such that˜ ˜� �

dx
� x� ,�̃dt

dy
� y� .�̃dt

Ž .Integrating this inequality from 0 to � with the initial condition x 0 � x,
Ž . Ž . Ž . Ž . Ž .y 0 � � and the constraint x � � � , gives x � � � and y � � � x��

� � u 
 �where  � � �� . Thus, under the identification �  0, � , we get˜ ˜� � i
Ž . Ž .g p � � p�� .i
Let L denote a Lipschitz bound for the maps h , i � 1, 2, 3. For everyi

u Ž Ž ..  Ž .p � I , we have g h p � L � p�� . Hence, settingi�1 i i�1
Ž .1� �1� � � 1�2 LŽ .

proves the claim.
u u Ž . Ž . Ž .Let P: J � J be a map P � g � h � g � h � g � h . Let q be the3 3 3 1 1 2 2 3

u � Ž . �endpoint of J identified with � and let q � P q . The point q belongs to3
� Ž .the forward trajectory of q, hence q � � q for some t � 0. By Jordan curvet

� Ž . 4 
 � �theorem, the curve � p : 0 � s � t � q, q separates �. Let U be thes
connected component which contains ��.
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The claim shows that P is a contraction from which it follows that
Ž Ž . .lim d � x , �� � 0 uniformly in x � U. This proves that �� is ant �� t

attractor. �

Ž .The next lemma is Pemantle’s Theorem 1.3 1992 restated for nonsymmet-
ric matrices. Since the proof given by Pemantle adapts easily to this case we
do not reproduce it but refer the reader to Pemantle’s paper.


 Ž . �LEMMA 9.4. Let p � � be an equilibrium of F i.e., � p � p . Suppose
Ž . Ž . Ž� Ž .4 .that p � � � and h p � H p for some i � E. Then P L v � p � 0.i i n

PROOF OF PROPOSITION 9.1. Corollary 6.5 is applicable; thus, since �� is an
Ž . Ž Ž� 4. .attractor Lemma 9.3 we have P L v � �� � 0. According to Corollaryn

� Ž� 4. .43.5 and Lemma 9.2 the event L v � �� decomposes asn
3

� 4 � 4 � 4L v � �� � L v � e � L v � �� ,� 4 � 4 � 4Ž . Ž . Ž .�n n i n
i�1

Ž . Ž . 2but e � � � and h e � H e � � � 2� � 0. Thus by Lemma 9.4 thei i�1 i�1 i i
� Ž� 4. 4events L v � e have zero probability and the result follows. �n i

REMARKS.

Ž . 	 Ž .i Notice that the point v � 1�3, 1�3, 1�3 is always an equilibrium of
Ž 	 .the vector field F. A computation of the Jacobian matrix DF v gives

� �7 � � � 2�2Ž .
	Tr DF v � �Ž .Ž .

9
and

22 2� � 3� � 3 � � � � 1Ž . Ž .
	Det DF v � � 0.Ž .Ž .

81
From this we see that there is a critical value

'1 � 57Ž .	� �  2.137
4

at which the stability of v	 changes.
Ž . 	 	ii When 2 � � � � , v is a source. Thus, by a result of Brandiere and

Ž . 	Duflo 1996 or by adapting the proof of Pemantle’s Theorem 1.2, v has zero
� 4 	probability to be the limit set of v . When � passes the critical value � , it isn

easy to verify that a Hopf’s bifurcation occurs: the equilibrium v	 becomes a
Žsink and gives rise to a unstable hyperbolic periodic orbit see Figures 2 and

. Ž .3 . By adapting the proof of Theorem 2.1 of Benaım and Hirsch 1995 , it can¨
be proved that this periodic orbit has zero probability to be the limit set of
� 4 	v while in virtue of Corollary 6.5 both �� and v have a positive probabil-n
ity to be this limit set. From these remarks and numerical simulations it

Ž . 	seems reasonable to think although we did not prove it that for 2 � � � � :

� 4P L v � �� � 1Ž .n
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FIG. 3. � � �	.

while

� 4 � 4 	P L v � �� � P L v � v � 1Ž . Ž .n n

when 3 � � � �	.
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