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For n, k ∈ N and r > 0 let en,r (Pk)
r = inf 1

k

∑k
i=1 ‖Xi − f (Xi)‖r ,

where the infimum is taken over all measurable maps f :Rd → R
d with

|f (Rd)| ≤ n and X1, . . . ,Xk are i.i.d. R
d -valued random variables. We

analyse the asymptotic a.s. behaviour of the nth empirical quantization error
en,r (Pk).

1. Introduction. One of the central problems of data compression concerns
the design of quantizers from empirical data. Then it is essential to evaluate the
resulting empirical error and to optimize the quantizers.

From a probabilistic point of view, the framework of quantization can be stated
as follows. Let X be a R

d -valued random variable with distribution P . For n ∈ N,
let Fn be the set of all Borel measurable maps f : Rd → R

d that take at most n
values. The elements of Fn are called n-quantizers. For each f ∈ Fn, f (X) gives
a quantized version of X. We use the Lr -distance as measure for the deviation
between X and f (X). Thus if ‖ · ‖ denotes any norm on R

d and 0 < r < ∞, we
define the (minimal) nth quantization error for P by

en,r(P )= inf
{(
E‖X − f (X)‖r )1/r :f ∈ Fn

}
(1.1)

under the integrability condition E‖X‖r <∞. The quantization problem is to find
an n-optimal quantizer for P and the value of the nth quantization error.

In electrical engineering this problem arises in the context of coding speech and
visual signals effectively. For these applications in communication and information
theory we refer to Gersho and Gray (1992). In statistics quantizers may be used as
models for the grouping of data. Beyond these classical applications, quantization
seems to be a promising tool in some recent developments in numerical probability.
See Pagès (1997) and Bally and Pagès (2000).

In practice, the underlying distribution P to be quantized is often unknown.
Furthermore, even when P is known usual quantizer design algorithms for P

like the Lloyd procedures are absolutely irrealistic in dimensions d ≥ 2 since they
involve at each step to compute P -integrals over complicated regions in R

d [see
Gersho and Gray (1992)]. In any case one has to rely on empirical data to obtain
good quantizers for P and estimates for en,r(P ).
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The purpose of this paper is to analyze the empirical quantization error. Let
X1, . . . ,Xk be a sample of k observations on P and let Pk = k−1∑k

i=1 δXi
denote

the empirical measure. Then the nth empirical quantization error is given by

en,r(Pk)= inf

{(
1

k

k∑
i=1

‖Xi − f (Xi)‖r
)1/r

:f ∈ Fn

}
.(1.2)

By the Glivenko–Cantelli theorem for the Lr -Wasserstein distance between Pk

and P ,

sup
n≥1

|en,r(Pk)
r − en,r(P )r | → 0 a.s., k → ∞

provided E‖X1‖r <∞ (see Section 4). We obtain a.s. rates of convergence for this
“uniform strong law of large numbers.” This gives some indications of how large
the sample size k should be to get a good approximation of en,r(P ) (uniformly
in n). The performance of an n-optimal quantizer fn,k(·,X1, . . . ,Xk) for Pk, where
fn,k : (Rd)k+1 → R

d is assumed to be measurable, as quantizer for P is measured
by

ên,r,k(P )=
(∫

‖x − fn,k(x,X1, . . . ,Xk)‖r dP (x)

)1/r

.(1.3)

The same rates are obtained when en,r(Pk) is replaced by ên,r,k(P ). Then we
investigate the a.s. behavior of en,r(Pk) when both n and k → ∞. Upper bounds
on probabilities of the form

P
(|en,r (Pk)

r − en,r(P )r |> t/
√
k
)

and related forms are given. These inequalities for the concentration of en,r(Pk)
r

around en,r(P )r extend those of Rhee and Talagrand (1989). The truncated version

e(c)n,r(P )= inf
{(
E
(‖X − f (X)‖ ∧ c

)r )1/r :f ∈ Fn

}
(1.4)

of en,r(P ) will play an interesting role. Furthermore, it is shown that

lim
k→∞n(k)1/den(k),r(Pk)= Qr(d)

(∫
hd/(d+r) dλd

)(d+r)/dr

a.s.(1.5)

under n(k) → ∞ and suitable conditions on the ratio k/n(k), where Qr(d) is
a constant depending on d, r and the underlying norm on R

d only and h is the
density of the absolutely continuous part of P . The limiting result (1.5) continues
to hold with en,r(Pk) replaced by ên,r,k(P ).

The results are for probability measures P with compact support. An extension
to measures with unbounded support seems to evoke great technical difficulties
and remains open. The rates obtained are, in part, the true ones for nonsingular
probability measures P . Continuous singular measures with compact support
which are of interest, for example, in connection with fractal models need
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refinements of our methods. For these measures their quantization dimension [see
Graf and Luschgy (2000, 2001)] should play the role of the space dimension d .

The paper is organized as follows. Section 2 contains basic facts for the en,r(P )-
problem and the truncated problem. In Section 3 we prove the equality of en,r (P )

and its truncated version for truncation parameters c = cn which are asymptotically
(n → ∞), up to constants, as small as possible for sufficiently regular probability
measures P . In particular, we settle a question of Rhee and Talagrand (1989). The
main results on the empirical quantization error as outlined above are contained in
Sections 4 and 5.

2. Basic properties of the quantization problem. The investigation of the
quantization problem requires the concept of Voronoi partitions. If x ∈ R

d and A

is a nonempty subset of R
d , the distance from x to A is given by

dA(x)= d(x,A)= inf
a∈A‖x − a‖.

Consider a nonempty finite subset α of R
d . The Voronoi region generated by a ∈ α

is defined by

W(a|α)= {x ∈ R
d :‖x − a‖ = d(x,α)}.(2.1)

The Voronoi regions W(a|α) are closed and star-shaped relative to a and the
Voronoi diagram {W(a|α) :a ∈ α} of α provides a covering of R

d . A Borel
measurable partition {Aa :a ∈ α} of R

d is called Voronoi partition with respect
to α if

Aa ⊂W(a|α) for every a ∈ α.(2.2)

The quantization problem (1.1) can be formulated as an optimal location prob-
lem for n-point sets and is further equivalent to the problem of approximating P

by a discrete probability with at most n supporting points. For 0 < r < ∞ and
g : Rd → R Borel measurable, let

‖g‖r = ‖g‖Lr (P ) =
(∫

|g|r dP
)1/r

.

For Borel probability measures P1,P2 on R
d with

∫ ‖x‖r dPi(x) < ∞, define the
Lr -Wasserstein (Lr -Kantorovich) distance by

ρr(P1,P2)= inf
(∫

‖x − y‖r dµ(x, y)
)1/r

,

where the infimum is taken over all Borel probability measures µ on R
d ×R

d with
marginals P1 and P2. Note that ρr is a metric if r ≥ 1 and ρr

r is a metric if r < 1.
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LEMMA 2.1. Suppose
∫ ‖x‖r dP (x) <∞. Then

en,r(P ) = inf
{‖dα‖r :α ⊂ R

d,1 ≤ |α| ≤ n
}

= inf{ρr(P,Q) :Q ∈ Pn},
where Pn denotes the set of all discrete probabilities Q on R

d with | supp(Q)| ≤ n.

PROOF. See Graf and Luschgy (2000), Lemmas 3.1 and 3.4. �

A set α ⊂ R
d with 1 ≤ |α| ≤ n is called n-optimal set of centers for P of order r

if

en,r(P )= ‖dα‖r .
Let Cn,r(P ) denote the set of all n-optimal sets of centers. If α ∈ Cn,r (P ),
{Aa :a ∈α} is a Voronoi partition of R

d with respect to α and f = ∑
a∈α a1Aa , then

en,r(P )= (
E‖X − f (X)‖r )1/r

and hence the nearest neighbor quantizer f of α is an n-optimal quantizer.
Conversely, if f is n-optimal then f (Rd) ∈ Cn,r(P ).

Under truncation we have

e(c)n,r(P )= inf
{‖dα ∧ c‖r :α ⊂ R

d,1 ≤ |α| ≤ n
}
, 0 < c ≤ ∞.(2.3)

Clearly, en,r = e
(∞)
n,r . Let C(c)

n,r (P ) denote the set of all n-optimal sets of centers
α ⊂ R

d for the truncated problem, that is, 1 ≤ |α| ≤ n and

e(c)n,r(P )= ‖dα ∧ c‖r .
Recall that for nonempty compact subsets A,B of R

d the Hausdorff metric is
given by

H(A,B) = max
{
max
a∈A d(a,B),max

b∈B d(b,A)
}

= sup
x∈Rd

|d(x,A)− d(x,B)|.

The closed (open) ball with center a ∈ R
d and radius s ≥ 0 is denoted by B(a, s)=

{x ∈ R
d :‖x − a‖ ≤ s} [ ◦

B (a, s)= {x ∈ R
d :‖x − a‖< s}].

PROPOSITION 2.2. Let 0 < c ≤ ∞. Suppose | supp(P )| ≥ n and if c = ∞,
suppose further

∫ ‖x‖r dP (x) < ∞.

(a) Let α ∈ C(c)
n,r (P ) and let {Aa :a ∈ α} be a Voronoi partition of R

d with
respect to α. Then

|α| = n,P (Aa) > 0 for every a ∈ α,

β ∈ C(c)
m,r

(
P

(
·
∣∣∣ ⋃
a∈β

Aa

))
for every β ⊂ α with |β| =m.
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(b) We have e(c)n,r(P ) < e
(c)
n−1,r (P ) [e(c)0,r (P ) := c] and C(c)

n,r(P ) is nonempty and
H -compact.

PROOF. For the nontruncation case c = ∞, see Graf and Luschgy (2000),
Theorems 4.1 and 4.12. So we assume c <∞. Set e(c)n,r = e

(c)
n,r(P ).

(a) Let γ = {a ∈ α :P (Aa) > 0}. Obviously we have γ ∈ C(c)
n,r (P ). Assume

|γ | < n. Then there exists a ∈ γ such that P (Aa \ {a}) > 0. Let K ⊂ Aa \ {a} be
compact with P (K) > 0. The open sets

Ob = {
x ∈ R

d :‖x − a‖> ‖x − b‖}∩ ◦
B (b, c/2), b ∈K,

provide a covering of K . Therefore, one can find a finite subset B of K such that

K ⊂ ⋃
b∈B

Ob ∩Aa.

Thus there exists b ∈ R
d such that

P (Ob ∩Aa) > 0.

It follows that

(e(c)n,r)
r =

∫
(dγ ∧ c)r dP

= ∑
u∈γ \{a}

∫
Au

(dγ ∧ c)r dP +
∫
Aa

(‖x − a‖ ∧ c)r dP (x)

>
∑

u∈γ \{a}

∫
Au

(dγ ∧ c)r dP +
∫
Aa∩Oc

b

(‖x − a‖ ∧ c)r dP (x)

+
∫
Aa∩Ob

(‖x − b‖ ∧ c)r dP (x)

≥
∫
(dγ∪{b} ∧ c)r dP ≥ (e(c)n,r)

r ,

a contradiction.
As for the assertion concerning β , assume β /∈ C(c)

m,r (P (·|⋃a∈β Aa)). Then there
exists δ ⊂ R

d with 1 ≤ |δ| ≤ n and∫
⋃

a∈β Aa

(dβ ∧ c)r dP >

∫
⋃

a∈β Aa

(dδ ∧ c)r dP .

It follows that

(e(c)n,r)
r =

∫
(dα ∧ c)r dP

>

∫
(d(α\β)∪δ ∧ c)r dP ≥ (e(c)n,r)

r ,

a contradiction.
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(b) Step 1. In the first step we assume e
(c)
n,r < e

(c)
n−1,r . Let e

(c)
n,r ≤ b < e

(c)
n−1,r .

Since e
(c)
n−1,r ≤ c, we can find s > 0 such that

crP
(
B(0, s)

)
> br.

Let S ≥ s + c such that

crP
(
B(0,2S)c

)
< (e

(c)
n−1,r )

r − br .

(Note that s and S depend on P , r and n.) Consider the level set

L(b)= {
α ⊂ R

d : 1 ≤ |α| ≤ n,‖dα ∧ c‖r ≤ b
}
.

Let α ∈ L(b). Then |α| = n. Let α = {a1, . . . , an} and assume without loss of
generality ‖a1‖ ≤ · · · ≤ ‖an‖. Then ‖a1‖ ≤ S. Otherwise

br ≥
∫
B(0,s)

(dα ∧ c)r dP ≥ (
(S − s)∧ c

)r
P
(
B(0, s)

)
= crP

(
B(0, s)

)
,

a contradiction. Furthermore, ‖an‖ ≤ 5S (assuming now n ≥ 2). Otherwise

‖x − a1‖ ≤ ‖x − an‖1B(0,2S)(x)+ 2‖x‖1B(0,2S)c (x)

for every x ∈ R
d . If {A1, . . . ,An} with Ai =Aai denotes a Voronoi partition of R

d

with respect to α and β = {a1, . . . , an−1}, then

(e
(c)
n−1,r )

r ≤
∫
(dβ ∧ c)r dP

≤
n−1∑
j=1

∫
Aj

(‖x − aj‖ ∧ c)r dP (x)+
∫
An

(‖x − a1‖ ∧ c)r dP (x)

≤
n−1∑
j=1

∫
Aj

(‖x − aj‖ ∧ c)r dP (x)+
∫

An∩B(0,2S)
(‖x − an‖ ∧ c)r dP (x)

+ crP
(
An ∩B(0,2S)c

)
≤

n∑
j=1

∫
Aj

(‖x − aj‖ ∧ c)r dP (x)+ crP
(
B(0,2S)c

)

<

∫
(dα ∧ c)r dP + (e

(c)
n−1,r )

r − br

≤ (e
(c)
n−1,r )

r ,

a contradiction. We thus obtain

L(b)⊂ {α ⊂ B(0,5S) : 1 ≤ |α| ≤ n}.
Since the latter set is H -compact and α → ‖dα ∧ c‖r is H -continuous, the level
set L(b) is H -compact, too. This implies that C(c)

n,r (P )=L(e
(c)
n,r ) is H -compact.
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Step 2. In the second step we prove e
(c)
n,r < e

(c)
n−1,r . We proceed inductively.

Clearly, we have e
(c)
1,r < c = e

(c)
0,r . If e

(c)
m,r < e

(c)
m−1,r for some 2 ≤ m ≤ n − 1,

then C(c)
m,r (P ) �= ∅ by the first step. Therefore, e(c)m+1,r < e

(c)
m,r , since otherwise

C(c)
m,r (P )⊂ C(c)

m+1,r (P ) which contradicts part (a). �

The diameter of a nonempty bounded subset A of R
d is the number

diam(A)= sup{‖a − b‖ :a, b ∈A}.
For A ⊂ R

d and ε ≥ 0, let Aε = {x ∈ R
d :d(x,A) ≤ ε}. The following lemma

provides a further necessary condition for n-optimality in case supp(P ) is
compact.

LEMMA 2.3. Let A ⊂ R
d be a compact set and 0 < c ≤ ∞. Suppose

supp(P ) ⊂ A and | supp(P )| ≥ n. If α ∈ C(c)
n,r(P ), then α ⊂ AD , where D =

diam(A).

PROOF. By Proposition 2.2(a), we have P (W(a|α)) > 0 and a ∈
C(c)

1,r (P (·|W(a|α))) for all a ∈ α. Assume d(a,A∩W(a|α)) > diam(A∩W(a|α))
for some a ∈ α. Let y ∈ supp(P (·|W(a|α)). Then P (W(a|α)∩ ◦

B (y, c)) > 0 and
‖x − y‖< ‖x − a‖ for all x ∈ A∩W(a|α). Hence∫

W(a|α)
(‖x − y‖ ∧ c)r dP (x)

=
∫
W(a|α)∩ ◦

B(y,c)
‖x − y‖r dP (x)+ crP

(
W(a|α)∩ ◦

B (y, c)c
)

<

∫
W(a|α)∩ ◦

B(y,c)
(‖x − a‖ ∧ c)r dP (x)+ crP

(
W(a|α)∩ ◦

B (y, c)c
)

=
∫
W(a|α)

(‖x − a‖ ∧ c)r dP (x),

a contradiction. This proves the lemma. �

Next we give bounds for |en,r (P )r − en,r (Q)r |. For a compact set A ⊂ R
d , let

Gn,r = Gn,r(A)= {
drα :α ⊂AD,1 ≤ |α| ≤ n

}
(2.4)

and

Bn = Bn(A)=
{⋃
a∈α

B(a, s) :α ⊂AD, 1 ≤ |α| ≤ n, s ≤ 2D

}
,(2.5)

where D = diam(A). For G ⊂L1(P )∩L1(Q), let

‖P −Q‖G = sup
{∣∣∣∣
∫

g dP −
∫

g dQ

∣∣∣∣ :g ∈ G

}
.
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LEMMA 2.4. Let A = supp(P ) and suppose A is compact. Let Q be a
probability measure on R

d with supp(Q)⊂ A. Then

|en,r(P )r − en,r(Q)r | ≤ ‖P −Q‖Gn,r ≤ (2D)r‖P −Q‖Bn .

Furthermore,

sup
n≥1

|en,r(P )r − en,r(Q)r | ≤ r(2D)r−1ρ1(P,Q) if r ≥ 1.

PROOF. For n ∈ N, let

An = {
α ⊂AD : 1 ≤ |α| ≤ n

}
.

Choose β ∈ Cn,r (P ) ∩ An. If |A| ≥ n, this is possible in view of Lemma 2.3. If
|A|< n, choose β =A. One obtains

en,r(Q)r − en,r(P )r ≤
∫

drβ dQ−
∫

drβ dP

≤ sup
{∣∣∣∣
∫

drα dQ−
∫

drα dP

∣∣∣∣ :α ∈ An

}
.

Now choose γ ∈ Cn,r (Q) ∩ An. If | supp(Q)| ≥ n, this is possible again by
Lemma 2.3. If | supp(Q)| < n, choose γ = supp(Q). One gets

en,r(P )r − en,r(Q)r ≤
∫

drγ dP −
∫

drγ dQ

≤ sup
{∣∣∣∣
∫

drα dP −
∫

drα dQ

∣∣∣∣ :α ∈ An

}
.

This gives

|en,r (P )r − en,r(Q)r | ≤ ‖P −Q‖Gn,r .

Let α ∈ An. Then maxx∈A dα(x)≤ 2D and hence∣∣∣∣
∫

drα dP −
∫

drα dQ

∣∣∣∣= r

∣∣∣∣
∫ 2D

0
P (dα > t)tr−1 dt −

∫ 2D

0
Q(dα > t)tr−1 dt

∣∣∣∣
≤ r

∫ 2D

0
|P (dα ≤ t)−Q(dα ≤ t)|tr−1 dt

≤ r‖P −Q‖Bn

∫ 2D

0
tr−1 dt

= (2D)r‖P −Q‖Bn .

Thus

‖P −Q‖Gn,r ≤ (2D)r‖P −Q‖Bn .
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Furthermore, let µ be a probability measure on R
d × R

d with marginals P and Q.
Since

|ur − vr | ≤ r max{ur−1, vr−1}|u− v| if r ≥ 1, u, v ≥ 0,

we have ∣∣∣∣
∫

drα dP −
∫

drα dQ

∣∣∣∣=
∣∣∣∣
∫
A×A

(
drα(x)− drα(y)

)
dµ(x, y)

∣∣∣∣
≤
∫
A×A

|drα(x)− drα(y)|dµ(x, y)

≤ r(2D)r−1
∫

|dα(x)− dα(y)|dµ(x, y)

≤ r(2D)r−1
∫

‖x − y‖dµ(x, y).
This implies

‖P −Q‖Gn,r ≤ r(2D)r−1ρ1(P,Q) if r ≥ 1. �

In the sequel the quantization problem with respect to the L∞-distance serves
as upper bound for the Lr -problem. For n ∈ N and a probability P with compact
support, let

en,∞(P )= inf{ess sup‖X − f (X)‖ :f ∈ Fn}.
For g : Rd → R Borel measurable, set

‖g‖∞ = ‖g‖L∞(P )
= inf{c ≥ 0 : |g| ≤ c P -a.s.}.

It is easy to check that

en,∞(P )= inf{‖dα‖∞ :α ⊂ R
d, 1 ≤ |α| ≤ n}.(2.6)

Since ‖dα‖∞ = max{dα(x) :x ∈ supp(P )}, en,∞(P ) depends only on the support
of P . For a nonempty compact set A ⊂ R

d , define

en,∞(A)= inf
{
max
x∈A dα(x) :α ⊂ R

d, 1 ≤ |α| ≤ n
}

(2.7)

and let Cn,∞(A) denote the set of all sets α ⊂ R
d with 1 ≤ |α| ≤ n for which the

infimum in (2.7) is attained. For m≥ 0 and β ∈ Cm,∞(A) (β = ∅ if m= 0) let

Gn,m,r = Gn,m,r(A,β) = {
drα∪β :α ⊂AD,1 ≤ |α| ≤ n

}
.(2.8)

LEMMA 2.5. Let m ≥ 0. In the situation of Lemma 2.4 we have

en+m,r(P )r − en,r(Q)r ≤ ‖P −Q‖Gn,m,r .
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PROOF. Choose α ∈ Cn,r (Q) such that α ⊂AD . Then

en+m,r(P )r − en,r(Q)r ≤
∫

drα∪β dP −
∫

drα dQ

≤
∫

drα∪β dP −
∫

drα∪β dQ

≤ ‖P −Q‖Gn,m,r . �

Having in mind the definition of ên,r,k(P ) [see (1.3)], the following bounds for
the loss of a quantizer mismatch are useful.

LEMMA 2.6. Suppose
∫ ‖x‖r dP (x) <∞ and let Q be a probability measure

on R
d with

∫ ‖x‖r dQ(x) <∞. Let α ∈ Cn,r (Q). Then

0 ≤
(∫

drα dP

)1/r

− en,r(P )≤ 2ρr(P,Q) if r ≥ 1.

In the situation of Lemma 2.4 and if α ⊂AD , then we have∫
drα dP − en,r(P )r ≤ 2‖P −Q‖Gn,r .

PROOF. We have

0 ≤
(∫

drα dP

)1/r

− en,r(P )

≤
∣∣∣∣
(∫

drα dP

)1/r

−
(∫

drα dQ

)1/r ∣∣∣∣+ |en,r(P )− en,r(Q)|.
Lemma 2.1 shows that |en,r (P )−en,r(Q)| ≤ ρr(P,Q). The Minkowski inequality
implies that, for every probability measure µ on R

d ×R
d with marginals P and Q,∣∣∣∣

(∫
drα dP

)1/r

−
(∫

drα dQ

)1/r ∣∣∣∣≤
(∫

|dα(x)− dα(y)|r dµ(x, y)
)1/r

≤
(∫

‖x − y‖r dµ(x, y)
)1/r

.

Hence ∣∣∣∣
(∫

drα dP

)1/r

−
(∫

drα dQ

)1/r ∣∣∣∣≤ ρr(P,Q)

and thus the first assertion.
The second assertion easily follows from Lemma 2.4. �

The main result concerning the asymptotics of the nth quantization error as
n → ∞ reads as follows. Let Pa denote the absolutely continuous part of P and
let U([0,1]d) denote the uniform distribution on the unit cube.
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THEOREM 2.7. Suppose
∫ ‖x‖r+δ dP (x) < ∞ for some δ > 0. Let Qr(d) =

inf
n≥1

n1/den,r(U([0,1]d)). Then Qr(d) > 0 and

lim
n→∞n1/den,r(P )=Qr(d)

(∫
hd/(d+r) dλd

)(d+r)/dr

<∞,

where h = dPa/dλ
d .

PROOF. See Graf and Luschgy (2000), Theorem 6.2. �

Little is known about the true value of the constant Qr(d) except for the
l∞-norm where Qr(d)= 1

2 (
d

d+r
)1/r . Some geometric considerations lead to

Q1(2)= 2 + 3 log(
√

3)

37/4
√

2
, Q2(2)=

(
5

18
√

3

)1/2

for the l2-norm and Qr(2) = 1√
2
( 2

2+r
)1/r for the l1-norm [see Graf and Luschgy

(2000), Section 8].

3. Truncation. Here we discuss the equality of en,r and its truncated version
for small truncation parameters. Under this equality we improve the bound of
Lemma 2.4.

We will need the following lemma. It provides a generalization of Lemma 2.2
in Hochbaum and Steele (1982).

LEMMA 3.1. Let A ⊂ R
d be compact, supp(P ) ⊂ A and 0 < c ≤ ∞. There

exists a constant C <∞ depending only on A and r (and the underlying norm but
not on c) such that

e(c)n,r(P )r − e
(c)
n+1,r (P )r ≤ Cn−1−r/d.

PROOF. Let e(c)n,r = e
(c)
n,r(P ). We may assume without loss of generality that

n ≥ 2 and | supp(P )| ≥ n+ 1. Let α ∈ C(c)
n+1,r (P ) and let {Aa :a ∈ α} be a Voronoi

partition of R
d with respect to α. Then

(e
(c)
n+1,r )

r = ∑
a∈α

∫
Aa

(‖x − a‖ ∧ c)r dP (x),

P (Aa) > 0 for all a ∈ α and |α| = n+ 1 [see Proposition 2.2]. Note that∣∣∣∣
{
a ∈ α :

∫
Aa

(‖x − a‖ ∧ c)r dP (x) >
4(e(c)n+1,r)

r

n+ 1

}∣∣∣∣≤ n+ 1

4

and ∣∣∣∣
{
a ∈ α :P (Aa)≥ 4

n+ 1

}∣∣∣∣≤ n+ 1

4
.
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This implies that

β =
{
a ∈ α :

∫
Aa

(‖x − a‖ ∧ c)r dP (x)≤ 4(e(c)n+1,r )
r

n+ 1
and P (Aa)≤ 4

n+ 1

}

satisfies |β| ≥ (n+1)/2. Since β ⊂AD with D = diam(A) (see Lemma 2.3), there
exists a1, a2 ∈ β , a1 �= a2 such that

‖a1 − a2‖ ≤ C1n
−1/d

for some constant C1 depending on A. If γ = α \ {a1}, then

(e(c)n,r)
r ≤

∫
(dγ ∧ c)r dP = ∑

a∈γ

∫
Aa

(‖x − a‖ ∧ c)r dP (x)+
∫
Aa1

(dγ ∧ c)r dP

= (e
(c)
n+1,r )

r +
∫
Aa1

[(dγ ∧ c)r − (‖x − a1‖ ∧ c)r]dP (x).

Since

dγ (x)≤ ‖x − a2‖ ≤ ‖x − a1‖ + ‖a1 − a2‖
and hence

dγ (x)∧ c ≤ (‖x − a1‖ + ‖a1 − a2‖)∧ c

≤ ‖x − a1‖ ∧ c + ‖a1 − a2‖ ∧ c

≤ ‖x − a1‖ ∧ c + ‖a1 − a2‖
we deduce

(e(c)n,r)
r − (e

(c)
n+1,r )

r

≤ (2r − 1)
∫
Aa1

(‖x − a1‖ ∧ c)r dP (x)+ 2r‖a1 − a2‖rP (Aa1)

≤ 4(2r − 1)(e(c)n+1,r)
r

n+ 1
+ 4 · 2rCr

1n
−r/d

n+ 1
.

Note that

e
(c)
n+1,r ≤ en+1,∞(A)≤ C2n

−1/d

for some constant C2 depending on A. This yields the lemma. �

For the rest of this section let A = supp(P ), D = diam(A) and suppose A is
compact.
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LEMMA 3.2.

(a) Let c > 0. The following assertions are equivalent.

(i) en,r(P )= e
(c)
n,r(P ).

(ii) Cn,r (P )⊂ C(c)
n,r (P ) and sup{‖dα‖∞ :α ∈ Cn,r(P )} ≤ c.

(iii) There exists α ∈ C(c)
n,r(P ) such that ‖dα‖∞ ≤ c.

(b) en,r(P )= e
(c)
n,r(P ) for all c ≥ 2D.

The simple proof is given for the readers convenience.

PROOF. (a) (i) ⇒ (ii). Let α ∈ Cn,r (P ). Then

en,r(P )r =
∫

drα dP ≥
∫
(dα ∧ c)r dP ≥ e(c)n,r(P )r = en,r(P )r .

Hence α ∈ C(c)
n,r (P ) and dα = dα ∧ c P -a.s. This gives ‖dα‖∞ ≤ c.

(ii) ⇒ (iii) is obvious since Cn,r (P ) �= ∅.
(iii) ⇒ (i). We have

e(c)n,r(P )r =
∫
(dα ∧ c)r dP =

∫
drα dP ≥ en,r(P )r .

(b) We may assume |A| ≥ n. Let α ∈ C(c)
n,r(P ). Then by Lemma 2.3, α ⊂ AD .

Hence ‖dα‖∞ ≤ 2D ≤ c and the assertion follows from (a). �

Lemma 3.2 shows that c = en,∞(A) is the smallest possible value for en,r(P )=
e
(c)
n,r(P ) to hold. Note that the order of convergence to zero of en,∞(A) is n−1/d if
λd(A) > 0. Here λd denotes the d-dimensional Lebesgue measure.

PROPOSITION 3.3. Suppose there is a constant C1 > 0 such that

P
(
B(a, s)

)≥ C1s
d for all a ∈A and 0 < s ≤ D.(3.1)

Then there exists a constant C2 < ∞ depending on C1,A and r (and the
underlying norm) such that cn =C2n

−1/d satisfies

en,r(P )= e(cn)n,r (P ).

PROOF. Let the truncation parameter c = cn > 0 be unspecified and let α =
αn ∈ C(c)

n,r(P ) with α ⊂ AD (see Lemma 2.3). Set

δ = δn = max
x∈A dα(x).

Choose y = yn ∈ A and a = an ∈ α such that δ = dα(y) = ‖y − a‖. For every
b ∈ α we have ‖y − b‖ ≥ ‖y − a‖. For every x ∈B(y, δ/2) and b ∈ α this yields

‖x − b‖ ≥ ‖y − b‖ − ‖x − y‖ ≥ ‖y − a‖ − ‖x − y‖ ≥ δ/2
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and hence

dα(x)≥ δ/2, x ∈B(y, δ/2).

Let β = βn = α ∪ {y}. Then

dβ(x)= ‖x − y‖, x ∈ B(y, δ/2).

Using condition (3.1) and δ ≤ 2D we deduce

e(c)n,r (P )r − e
(c)
n+1,r (P )r

≥
∫
(dα ∧ c)r dP −

∫
(dβ ∧ c)r dP

≥
∫
B(y,δ/2)

[(dα ∧ c)r − (dβ ∧ c)r]dP

≥ (
(δ/2)∧ c

)r
P
(
B(y, δ/2)

)− ∫
B(y,δ/2)

(‖x − y‖ ∧ c)r dP (x)

= r

∫ (δ/2)∧c
0

P
(
B(y, s)

)
sr−1 ds

≥ C1r

∫ (δ/2)∧c
0

sd+r−1 ds

= C1r

d + r

(
(δ/2)∧ c

)d+r
.

By Lemma 3.1, this yields(
δ

2
∧ c

)d+r

≤ C(d + r)

C1r
n−(d+r)/d

and thus
δ

2
∧ c ≤ Kn−1/d,

where K = (C(d + r)/C1r)
1/(d+r). Now let C2 = 2K and c = cn = C2n

−1/d .
Then δ ≤ c. Thus the assertion follows from Lemma 3.2(a). �

Notice that the preceding proposition implies, for αn ∈ Cn,r (P ),

H(αn,A)≤ C2n
−1/d.(3.2)

In fact, by Lemma 3.2(a) we have

max
x∈A dαn(x)≤ C2n

−1/d.

If a ∈ αn, then A ∩ W(a|αn) �= ∅ (cf. Proposition 2.2). Taking y ∈ A ∩ W(a|αn)
one gets

d(a,A)≤ ‖a − y‖ = dαn(y)≤ max
x∈A dαn(x).
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The following corollary settles a question of Rhee and Talagrand (1989),
Remark, page 195. It extends their Proposition C to arbitrary dimensions and
arbitrary norms (and any r > 0, and more general supports). The proof of Rhee
and Talagrand for the case d = 2 and the l2-norm on R

2 is purely geometric and
breaks down for higher dimensions and non-Euclidean norms.

COROLLARY 3.4. Let P = hλd . Suppose the support A of P is a finite union
of compact convex sets and h ≥ u > 0 λd -a.s. on A. Then there exists a constant
C <∞ depending on u,A and r (and the underlying norm) such that cn =Cn−1/d

satisfies

en,r(P )= e(cn)n,r (P ).

PROOF. We have

P
(
B(a, s)

)≥ uλd
(
B(a, s)∩A

)
.

Let A =⋃m
j=1 Aj with compact convex sets Aj ⊂ R

d and notice that λd(Aj) > 0
for every j . By a simple geometric argument,

λd
(
B(a, s)∩Aj

)≥ Kjs
d

for all a ∈ Aj,0 < s ≤ D and some constant Kj > 0 depending on Aj [cf. Graf
and Luschgy (2000), Example 12.7].This implies for a ∈Ai

λd
(
B(a, s)∩A

)≥ λd
(
B(a, s)∩Ai

)≥ Kis
d ≥ min

1≤j≤m
Kjs

d.

Thus condition (3.1) is satisfied which gives the assertion. �

Note that condition (3.1) is satisfied for various singular distributions P

like Hausdorff measures on surfaces of convex sets, on compact differentiable
manifolds or self-similar sets [cf. Graf and Luschgy (2000), Section 12].

Under the condition en,r = e
(c)
n,r , the bound of Lemma 2.4 can be improved. Let

G(c)
n,r = G(c)

n,r(A)= {
(dα ∧ c)r :α ⊂ AD,1 ≤ |α| ≤ n

}
.(3.3)

LEMMA 3.5. Suppose en,r(P ) = e
(c)
n,r(P ). Let Q be a probability measure

on R
d with supp(Q) ⊂A. Then

|en,r(P )r − en,r(Q)r | ≤ ‖P −Q‖
G(c)
n,r
.

PROOF. Let

An = {
α ⊂AD : 1 ≤ |α| ≤ n

}
.
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Choose β ∈ Cn,r(P ) ∩ An (cf. the proof of Lemma 2.4). Then by Lemma 3.2(a),
maxx∈A dβ(x)≤ c and hence

en,r(Q)r − en,r (P )r ≤
∫

drβ dQ−
∫

drβ dP

=
∫
(dβ ∧ c)r dQ−

∫
(dβ ∧ c)r dP

≤ sup
{∣∣∣∣
∫
(dα ∧ c)r dQ−

∫
(dα ∧ c)r dP

∣∣∣∣ :α ∈ An

}
.

Now choose γ ∈ Cn,r (Q)∩ An. Then

en,r(P )r − en,r(Q)r = e(c)n,r(P )r −
∫

drγ dQ

≤
∫
(dγ ∧ c)r dP −

∫
(dγ ∧ c)r dQ

≤ sup
{∣∣∣∣
∫
(dα ∧ c)r dP −

∫
(dα ∧ c)r dQ

∣∣∣∣ :α ∈ An

}
.

This yields the lemma. �

4. Uniform strong law of large numbers with rates. Let X1,X2, . . . be i.i.d.
R
d -valued random variables with distibution P and let Pk = 1

k

∑k
i=1 δXi

be the
empirial measure of X1, . . . ,Xk . The empirical version of en,r(P )r is given by

en,r(Pk)
r = 1

k
inf

{
k∑

i=1

drα(Xi) :α ⊂ R
d,1 ≤ |α| ≤ n

}

(see Lemma 2.1). Set

Yk,r = Yk,r (P )= sup
n≥1

|en,r(Pk)
r − en,r(P )r |

and

Zk,r =Zk,r (P )= sup
n≥1

|en,r (Pk)− en,r(P )|

and suppose
∫ ‖x‖r dP (x) < ∞. Let r ≥ 1. Then by Lemma 2.1,

Zk,r ≤ ρr(Pk,P ).(4.1)

It follows from the Glivenko–Cantelli theorem for ρr that

Zk,r → 0 a.s., k → ∞.

Since

Yk,r ≤ r max
{
e1,r (Pk)

r−1, e1,r (P )r−1}Zk,r ,
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this implies

Yk,r → 0 a.s., k → ∞.

Let r < 1. It follows from Lemma 2.1 that

Yk,r ≤ ρr(Pk,P )r(4.2)

and thus

Yk,r → 0 a.s.

Since

Zk,r ≤ 1

r
max

{
e1,r (Pk)

1−r , e1,r (P )1−r
}
Yk,r ,

this yields

Zk,r → 0 a.s.

In this section we determine a.s. rates of convergence to zero for Yk,r and Zk,r .
Let us first settle some measurability questions.

LEMMA 4.1. Let G ⊂ L1(P ) be a class of continuous functions. Then
en,r(Pk) and ‖Pk − P ‖G are measurable. If

∫ ‖x‖r dP (x) < ∞, then ρr(Pk,P )

is measurable.

PROOF. The measurability of ρr(Pk,P ) follows from a functional description
of ρr [cf. Rachev and Rüschendorf (1998), Corollary 2.5.2 and Lemma 8.4.34].
The other assertions are obvious. �

For positive random variables Vn and numbers an > 0 we write Vn = O(an) a.s.
if there is a constant C <∞ such that lim supn→∞ Vn/an ≤ C a.s.

THEOREM 4.2. Suppose supp(P ) is compact. The constants occuring in the
sequel depend on D = diam(supp(P )), d and r .

(a) Let d/1 ∧ r > 2. There exist constants C1,C2 ∈ (0,∞) such that

P(k1∧r/dYk,r > C1)≤ 5 exp(−C2k
(d−2∧2r)/d)

for every k ≥ 1. In particular

Yk,r = O(k−1∧r/d) a.s., k → ∞.

(b) Let d/1 ∧ r = 2, that is, d = 2, r ≥ 1 or d = 1, r = 1/2. There exist
constants C3 ∈ (0,∞) and C4 ∈ (1,∞) such that

P

(
k1/2

Lk
Yk,r > C3

)
≤ 5 exp

(−C4(Lk)
2)

for every k ≥ 1, where Lk = log(k ∨ e). In particular,

Yk,r = O(k−1/2 log k) a.s.
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(c) Let d/1 ∧ r < 2, that is, d = 1 and r > 1/2. Then

Yk,r =O

((
log log k

k

)1/2)
a.s.

Part (a) of the preceding theorem gives the exact a.s. order of convergence
of Yk,r in case r ≤ 1 and Pa �= 0. In fact, since en,r(Pk)= 0 for n ≥ k and thus

Yk,r = sup
n≤k−1

|en,r(Pk)
r − en,r(P )r | ∨ ek,r (P )r,

it follows from Theorem 2.7 that

lim inf
k→∞ kr/dYk,r ≥ lim inf

k→∞ kr/dek,r(P )r > 0.

For the same reason part (b) gives the exact a.s. rate up to the log k term if r ≤ 1
and Pa �= 0. For r = 1 the logk term can probably be sharpened to (log k)1/2.
However, this remains open.

Theorem 4.2 is a consequence of an entropy estimate for the function class⋃
n≥1 Gn,r with respect to the L∞(P )-norm and known inequalities for empirical

processes. For a subset B of a normed space and ε > 0, the covering number
N(ε,B) is the minimal number of balls of radius ε with center belonging to B

needed to cover B . The entropy is logN(ε,B).

LEMMA 4.3. We have

logN

(
ε,
⋃
n≥1

Gn,r ,‖ · ‖L∞(P )

)
≤ Cε−d/1∧r

for every ε > 0 and a constant C depending on D, d and r only.

PROOF. Set Gr =⋃∞
n=1 Gn,r . Let β = β(ε) ⊂ AD be a set of centers of balls

of radius δ = ε/r(2D)r−1 if r ≥ 1 and δ = ε1/r if r < 1 that cover AD . Let α be
a finite subset of AD . For every a ∈ α there is ba ∈ β such that ‖a − ba‖ ≤ δ. Set
γ = {ba :a ∈ α}. Then

‖dα − dγ ‖∞ ≤ H(α,γ )≤ δ

and hence

‖drα − drγ ‖∞ ≤ r(2D)r−1‖dα − dγ ‖∞ ≤ ε if r ≥ 1

and

‖drα − drγ ‖∞ ≤ ‖dα − dγ ‖r∞ ≤ ε if r < 1.

We deduce that the L∞(P )-balls with centers {drγ :γ ⊂ β,γ �= ∅} and radius ε

cover Gr . Thus N(ε,Gr ,‖ · ‖∞) is bounded by 2|β|. We have N(ε,Gr ,‖ · ‖∞)= 1
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for ε ≥ (2D)r [≥ diam(Gr )]. Furthermore, β(ε) can be taken to satisty |β(ε)| ≤
Kε−d/1∧r for all 0 < ε ≤ (2D)r and a constant K depending only an D,d and r .
This proves the assertion with C = K log 2. �

PROOF OF THEOREM 4.2. Let Gr = ⋃
n≥1 Gn,r(A) with A = supp(P ). It

follows from Lemma 2.4 that

Yk,r ≤ ‖Pk − P ‖Gr a.s.

(a) and (b). We have

P
(
Yk,r > (2D)rt

)≤ P
(
k1/2‖Pk − P ‖Gr/(2D)r > k1/2t

)
for all t ≥ 0, where Gr/(2D)r = {g/(2D)r :g ∈ Gr}. Since all members g

of Gr/(2D)r satisfy 0 ≤ g ≤ 1 on supp(P) and N(ε,Gr/(2D)r,‖ · ‖∞) =
N((2D)rε,Gr ,‖ · ‖∞), the assertions follow from Lemma 4.3 and a result of
Alexander [(1984), Corollary 2.2 of Correction with ε = 1/2 and 8(M,n,α) =
2M2].

(c) The assertion follows from Lemma 4.3 and the LIL for ‖Pk − P ‖Gr [cf.
Alexander (1984), Theorem 2.12]. For r ≥ 1, part (c) can also be deduced from
the LIL for empirical distribution functions. In fact, let F denote the distribution
function of P and let Fk denote the empirical distribution function of X1, . . . ,Xk .
Let the underlying norm be the absolute value. Then

ρ1(Pk,P )=
∫

|Fk(x)− F(x)|dx ≤ D sup
x∈R

|Fk(x)− F(x)| a.s.

Therefore, by Lemma 2.4,

Yk,r ≤ r(2D)r sup
x∈R

|Fk(x)− F(x)| a.s.

and the assertion follows from the LIL for supx∈R |Fk(x)− F(x)|. �

REMARK. It would be of interest to know whether one can improve the
exponent in the entropy bound of Lemma 4.3 in case r > 1. This would give better
order bounds in Theorem 4.2 for r > 1.

The a.s. order of Zk,r for the uniform distribution on [0,1]d with d ≥ 3 can be
deduced from a result of Talagrand (1994).

THEOREM 4.4. Let P =U([0,1]d) and r ≥ 1.

(a) Let d ≥ 3. There exists constants C1,C2 ∈ (0,∞) depending on d and r

(and the underlying norm) such that

P(k1/dZk,r > C1)≤ C2k
−2

for every k ≥ 1. In particular

Zk,r =O(k−1/d) a.s., k → ∞.
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(b) Let d = 1. Then

Zk,r =O

((
log logk

k

)1/2)
a.s.

Part (a) of the preceding theorem gives the exact a.s order of convergence of
Zk,r for every r ≥ 1. This follows from Theorem 2.7. The case d = 2 remains
open. For r < 1 we have nothing to add beside the fact that the upper bounds on
the rate of Yk,r in Theorem 4.2 also provide upper bounds for Zk,r .

PROOF OF THEOREM 4.4. By (4.1),

Zk,r ≤ ρr(Pk,P )≤ K1ρr,l2(Pk,P ),

where ρr,l2 denotes the Lr -Wasserstein metric with respect to the l2-norm and K1

is a constant that depends on the underlying norm on R
d only. The assumptions of

Theorem 1.1 of Talagrand (1994) are fulfilled for the function ϕ : Rd → R, ϕ(x) =
K2‖x‖rl2 with a suitable constant K2 depending on r provided r ≥ log 4/ log(5/4).
It follows from this theorem that

P
(
ρr,l2(Pk,P ) >K3K

−1/r
2 k−1/d)≤ K3k

−2

for some constant K3 depending only on d . The above inequality holds for
r ≥ log 4/ log(5/4) and thus for all r ≥ 1. This proves (a).

(b) Let Fk denote the kth empirical distribution function and let the underlying
norm be the absolute value. Then

ρr(Pk,P )=
(∫ 1

0
|F−1

k (t)− t|r dt
)1/r

≤ sup
t∈(0,1)

|F−1
k (t)− t| = sup

x∈[0,1]
|Fk(x)− x|.

The assertion follows from (4.1) and Smirnov’s LIL for supx∈[0,1] |Fk(x)−x|. �

REMARK. Let

Ŷk,r = sup
n≥1

|ên,r,k(P )r − en,r(P )r |

and

Ẑk,r = sup
n≥1

|ên,r,k(P )− en,r(P )|.

Then Lemma 2.6 and the above proofs show that Theorems 4.2 and 4.4 remain
valid with Yk,r and Zk,r replaced by Ŷk,r and Ẑk,r , respectively.
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5. Concentration inequalities and asymptotics. Throughout let A = supp(P )

and suppose A is compact. By Lemma 2.5, we have for t ≥ 0 and m≥ 0,

P
(
en,r(Pk)

r − en+m,r(P )r <−t/
√
k
)≤ P(

√
k‖Pk − P ‖Gn,m,r > t).

Then a straightforward modification of the arguments for the case r = 1 in Rhee
and Talagrand (1989), Theorem A, gives the following inequalities. [Part (a) is an
immediate consequence of Hoeffding’s (1963) inequality.]

THEOREM 5.1. The constants occuring in the sequel depend on the support
A of P and r . Let k,n ∈ N and 0 ≤ m≤ n− 1.

(a) There exists a constant C1 ∈ (0,∞) such that, for all t ≥ 0,

P
(
en,r(Pk)

r − en−m,r(P )r > t/
√
k
)≤ exp

(−C1t
2(1 +m)2r/d).

(b) Let d/1 ∧ r > 2. There exist constants C2,C3 ∈ (0,∞) such that, for all
t ≥ C2n

1/2−1∧r/d ,

P
(
en,r(Pk)

r − en+m,r(P )r <−t/
√
k
)≤ 5 exp

(−C3t
2(1 +m)2r/d).

(c) Let d/1 ∧ r = 2. There exist constants C4,C5 ∈ (0,∞) such that, for all
t ≥ C4(1 + log(n/m∨ 1)),

P
(
en,r(Pk)

r − en+m,r(P )r <−t/
√
k
)≤ 5 exp

(−C5t
2(1 +m)2r/d).

(d) Let d/1 ∧ r < 2. There exist constants C6,C7 ∈ (0,∞) such that, for all
t ≥ C6(m∨ 1)1/2−1∧r/d ,

P
(
en,r(Pk)

r − en+m,r(P )r <−t/
√
k
)≤ 5 exp

(−C7t
2(1 +m)2r/d).

In the situation of Proposition 3.3 the preceding theorem can be improved
considerably.

THEOREM 5.2. Suppose P = hλd , A is a finite union of compact convex
sets and the density satisfies h ≥ u > 0 λd a.s. on A. Then there exist constants
C1,C2 ∈ (0,∞)-depending on u,A and r such that for all t ≥C1n

1/2−1∧r/d ,

P
(|en,r(Pk)

r − en,r(P )r | > t/
√
k
)≤ 6 exp

(−C2t
2n2r/d).

PROOF. Since the truncation problem for cn = Cn−1/d is solved for any
dimension d , any norm and any r > 0 (see Corollary 3.4) and thus by Lemma 3.5,

|en,r(Pk)
r − en,r(P )r | ≤ ‖Pk − P ‖

G(cn)
n,r

,

the assertion follows along the lines of Rhee and Talagrand (1989), Theorem B. �
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Let n = n(k) vary with k. For instance, in case where the hypotheses of
Theorem 5.2 are satisfied we obtain from the Borel–Cantelli lemma

|en,r(Pk)
r − en,r(P )r | = O

((
logk

k

)1/2)
a.s.

if d/1 ∧ r = 2 and n = n(k) is arbitrary and even

|en,r(Pk)
r − en,r(P )r | = O(k−1/2) a.s.

if d/1 ∧ r = 2 and n(k) = <((log k)1/1∨r), that is, lim infn(k)/(logk)1/1∨r > 0.
The choice n(k) = k shows that the first bound is sharp up to the (log k)1/2 term
and the second bound is sharp in case r ≤ 1 and Pa �= 0.

Now we deduce conditions for

|en(k),r(Pk)
r − en(k),r(P )r | = o

(
n(k)−r/d) a.s., k → ∞

to hold which in case n(k)→ ∞ is equivalent to

n(k)1/den(k),r(Pk)→Qr(P ) a.s.,

where

Qr(P )=Qr(d)

(∫
hd/(d+r) dλd

)(d+r)/dr

<∞(5.1)

and h= dPa/dλ
d (see Theorem 2.7). Recall that Qr(P ) > 0 if Pa �= 0.

THEOREM 5.3. Let n(k)→ ∞.

(a) We have

lim sup
k→∞

n(k)1/den(k),r(Pk)≤ Qr(P ) a.s.

(b) If n(k)= o(kd/(d+2(1∨r)−2)), then

n(k)1/den(k),r(Pk)→Qr(P ) a.s., k → ∞.

(c) Let P =U([0,1]d), d ≥ 3 and r ≥ 1. If n(k)= o(k), then

n(k)1/den(k),r(Pk)→ Qr(d) a.s., k → ∞.

PROOF. (a) Let 0 < δ < 1 and m= [δn]. We write

en,r(Pk)
r = en,r(Pk)

r − en−m,r(P )r + en−m,r(P )r .

By Theorem 2.7,

lim
n→∞nr/den−m,r(P )r = (1 − δ)−r/dQr(P )r .
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For ε > 0 and t = εk1/2n−r/d , one obtains by Theorem 5.1(a)

P
(
nr/d

(
en,r(Pk)

r − en−m,r(P )r
)
> ε

)= P
(
en,r(Pk)

r − en−m,r(P )r > t/
√
k
)

≤ exp(−C1ε
2δ2r/dk)

and so by the Borel–Cantelli lemma,

lim sup
k→∞

nr/d
(
en,r(Pk)

r − en−m,r(P )r
)≤ 0 a.s.

It follows that

lim sup
k→∞

nr/den,r(Pk)
r ≤ (1 − δ)−r/dQr(P )r a.s.

Letting δ tend to zero gives the assertion.
(b) For 0 < δ < 1 let m= [δn]. We write

en,r (Pk)
r = en,r(Pk)

r − en+m,r(P )r + en+m,r(P )r .

By Theorem 2.7, we have

lim
n→∞nr/den+m,r(P )r = (1 + δ)−r/dQr(P )r .

Let ε > 0 and let t = εk1/2n−r/d . We will apply Theorem 5.1. Since n =
o(kd/(d+2(1∨r)−2)) and 2(1 ∨ r)− 2 = 2r − 2(1 ∧ r), we have, given any constant
C < ∞, t ≥ Cn1/2−1∧r/d for k large enough. In case d/1 ∧ r = 2, this yields
t ≥ C4(1 + log(2/δ)) ≥ C4(1 + log(n/m ∨ 1)) and in case d/1 ∧ r < 2, we
obtain t ≥C6(δ/2)1/2−1∧r/dn1/2−1∧r/d ≥ C6(m∨ 1)1/2−1∧r/d for k large enough.
Therefore, by Theorem 5.1(b)–(d),

P
(
nr/d

(
en,r(Pk)

r − en+m,r(P )r
)
<−ε

)= P
(
en,r(Pk)

r − en+m,r(P )r < −t/
√
k
)

≤ 5 exp(−C8ε
2δ2r/dk),

where C8 = min{C3,C5,C7}. This implies

lim inf
k→∞ nr/d

(
en,r(Pk)

r − en+m,r(P )r
)≥ 0 a.s.

and hence

lim inf
k→∞ nr/den,r(Pk)

r ≥ (1 + δ)−r/dQr(P )r a.s.

Letting δ tend to zero gives the assertion in view of part (a).
(c) follows immediately from Theorem 4.4(a) and Theorem 2.7. �

REMARK. (a) For d = 2, r = 1, uniform distributions P on compact convex
sets and the l2-norm the limiting result of part (b) has been obtained by
Zemel (1985) under the restriction n(k) = o(k/ logk). For d = 1, r = 2 and
distributions P with compact support and smoth densities a weak (in-probability)
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version of the limiting result (b) is contained in Wong [(1984), Theorem 2] under
the restriction n(k) = o((k/ logk)1/3). Theorem 5.3 shows that the log k term can
be eliminated in both cases.

(b) Part (c) of Theorem 5.3 remains valid with en(k),r(Pk) replaced by ên,r,k(P ).
The same holds for the limiting result of part (b) but under stronger restrictions on
n(k). For instance, if d/1 ∧ r > 2 and n(k)= o(k1/1∧r), then

lim
k→∞n(k)1/d ên,r,k(P )= Qr(P ) a.s., k → ∞.

This can easily be deduced from the remark following the proof of Theorem 4.4.
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