The Annals of Probability
2002, Vol. 30, No. 2, 723-801

RANDOM WALKS ON DISCRETE GROUPS
OF POLYNOMIAL VOLUME GROWTH

BY GEORGIOS K. ALEXOPOULOS

Université de Paris-Sud

Let ¢ be a probability measure with finite support on a discrete group I'
of polynomial volume growth. The main purpose of this paper is to study the
asymptotic behavior of the convolution powers u*" of u. If u is centered,
then we prove upper and lower Gaussian estimates. We prove a central
limit theorem and we give a generalization of the Berry—Esseen theorem.
These results also extend to noncentered probability measures. We study the
associated Riesz transform operators. The main tool is a parabolic Harnack
inequality for centered probability measures which is proved by using ideas
from homogenization theory and by adapting the method of Krylov and
Safonov. This inequality implies that the positive p-harmonic functions are
constant. Finally we give a characterization of the p-harmonic functions
which grow polynomially.

1. Introduction and statement of the results. Let I" be a finitely generated
discrete group of polynomial volume growth, let i be a probability measure with
finite support on I" and let ™" = p * p * - - - %  be the nth convolution power of 1.

The main purpose of this paper is to study the asymptotic behavior of ©*". We
obtain generalizations of certain results concerning the lattice valued distributions
in R" (cf. [20, 34]). We shall also extend certain results of [2, 15, 23] to
nonsymmetric probability measures.

The measure p can be either centered or not centered. It turns out that if u is not
centered, then we can conjugate u by a multiplicative function and obtain another
centered measure u’. So it is enough to consider only centered measures.

According to a famous theorem of Gromov [22], I" is a finite extension
of a nilpotent subgroup I'y <« I'. By considering a subgroup of I' y if necessary we
can assume that 'y can be embedded as a lattice in a simply connected nilpotent
Lie group N. We can associate with p a centered left invariant sub-Laplacian
on N denoted by Ly ,. Ly, is defined by a formula similar to the one we have in
classical homogenization theory (cf. [13, 26]).

Let p,H Hix, y) be the heat kernel Ly, [i.e., of the fundametal solution of the
associated heat equation (% + L)u = 0]. Comparing p** with p,H H(x,y), we can
obtain information on the distribution of the mass of ©**. Using this information,
together with a result of Varopoulos [49] which gives a uniform upper bound
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724 G. K. ALEXOPOULOS

on u*", it is possible to adapt the method of Krylov and Safonov (cf. [29, 30,
41]) and obtain a parabolic Harnack inequality.

Applying this inequality we can obtain upper and lower Gaussian bounds
for u**. We can also prove, adapting some ideas of Bergstrom (cf. [14, 41]), that as
n — 00, the values of pu*" approach the values of p,H H(x, y) with uniform speed
1/n¥/%, for some y € (0, 1]. Of course by the classical Berry—Esseen theorem
(cf. [20, 34]), the optimal rate of convergence is 1/4/n. This is proved with the
same method a posteriori, once we have the appropriate estimate for the space
differences of ©*".

The Berry-Esseen estimate implies that, on large balls, the p-harmonic
functions look like L g,,-harmonic functions. Using this observation, we can adapt
some ideas of Avellaneda and Lin [3, 4, 8—10] and prove a Taylor formula for
the p-harmonic functions. This formula gives Harnack inequalities for the time
and space differences of ©*". It can also be used to obtain a caracterization of the
w-harmonic functions which grow polynomially.

Finally, we prove Berry—Esseen estimates for the time and space differences
of u*"*. We apply these estimates to study the associated Riesz transform operators.

1.1. Centered probability measures. The group I'/[I", I'] is finitely generated
and Abelian and hence it can be written as a direct product Z¥ x A, where A is finite
and Abelian. Let 77 be the canonical projection 7 : G — Z* and let H = Ker(r).

Let 1 be a probability measure on I whose support is finite and generates I".
We say that u is centered if the first order moments of its projection (i) on ZF
vanish, that is, if ), .7 (x);u(x) =0, 1 <i <k, where y; is the ith coordinate
of the element y = (v, ..., yx) € 7K, 1<i<k.

1.2. The passage from a noncentered to a centered probability measure. We
say that x :I" — R™ is multiplicative if x (xy) = x (x)x(y), x, y € I". Note that
then x can be written as

X=¢om with ¢ (x) = >,

where 7 is the quotient map 7 : G — Z* = G/H and where (b, x) = bijx; 4+ --- +
bkxk for b= (bl,...,bk),x = (xl,...,xk) ERk.

Let 1 be a probability measure on I whose support is finite and generates I".
We have the following well-known lemma.

LEMMA 1.1. If u is not centered, there are a multiplicative function Y,
a constant B, > 0 and another centered probability measure ' on T" such that

(1.1) px)=ePrp/(x)x(x), xel.
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Note that (1.1) implies that
(1.2) ) =e P M (x),  xel.

PROOF. Let (1) be the image of u under the quotient map 7 : T’ — ZF =
G/H and let us consider the function

Fla)= ) m(u)(x)e'™,

xeZk

where (a,x) =ajx1 +--- +agxy fora = (ay, ..., ar), x = (x1, ..., X¢) e RF.

We observe that F is a positive smooth function on R¥ and that F(a) — oo
as |a| — o0o. So F attains its minimum b, = min{F(a):a € R} at some point
ap € R¥. Also F(0) = 1 and, since ¢ is not centered, VF(0) # 0. Hence by =
F(ap) < 1 and ag # 0. The lemma follows by taking

a0, 7 (x))

Bu=—logh,,  x(x)=e
and

9,7 (x))

1
W () = —px)et . xel,
by
The fact that VF(ag) = 0 implies that u’ is indeed a centered probability
measure. [

1.3. The geometry of I and the sub-Laplacian Ly ,. Let us fix a subset U
of I" such that the following hold:

1. U is finite and generates [';
2. e € U (e is the identity element of I");
3. U is symmetric; that is, x € U if and only if x ! € U.

Let U" ={x1x2---x,:x; € U,1 <i <n} and set
|x|r =min{n:x € U"}.

Also, let |A| denote the number of elements of A CT'.

In this article we assume that I has polynomial volume growth, that is, that there
are constants ¢ > 0 and A € N such that |[U"| < cn4, for all n € N. By a theorem
of Gromov [22], this assumption implies that there is a nilpotent subgroup I'y < T"
such that |I'/T'y| < oco. Hence, by a theorem of Bass [11], there is an integer
D > 0 such that

1
(1.3) -nP <|U"| <cn®, neN.
C

We call D the homogeneous dimension of I'. Note that D does not depend on
the choice of U.
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Let 7 the quotient map 7 :I" — '/ 'y and let us choose elements gg = e,
g1, ..., 8k € I' such that

I'/Tn={m(g0),m(g1),...,m(gx)}

Every element g € I' can be written uniquely as g = yg;, with y € I'y,
0<j<k.Weset

g=gj and gy=y.

'y has a torsion-free subgroup 1"11\, < I'y of finite index, that is, such that
ITw/ Tl < 0o (cf. [35]). Let ' = Mo<i<x & T g |- Then I'%, is still nilpotent
and torsion free. Furthermore, 1"12\, <I" and |T'/ 1"]2\,| < 00. So by replacing 'y
with 1"12\,, if necessary, we assume that "y has the following properties:

1. T N r;
2. I[T'/Tn| < o0
3. I'y is finitely generated, nilpotent and torsion free.

Let Ur, € I'y be a finite and symmetric subset which generates I'y and set
(1.4) |x|ry =min{n e N:x € Up}, xely.

Then there is a ¢ > 1 such that

1
(L.5) ;IXIrN <|xgilr <clx|ry

for all x e I'y and 0 <i <k, or more generally

1 _ _ _
(1.6) —lx Yiry <lg7'hir <clx7'ylr,

forall g=xgi,h=yg;el', x,yel'y, 0<i,j <k.

Property 3 above implies that 'y is isomorphic to (and hence can be identified
with) a uniform lattice in a simply connected nilpotent Lie group N (cf.
[35]). Note that N/I'y is a compact neighborhood. Let us fix a fundamental
domain Q for I'y and let dg be the Haar measure on N which satisfies
dg-measure(2) = vol(N/I'y) = 1.

Let V be a compact neighborhood of the identity element e of N and set

(1.7) x|y =min{n e N:x € V" x € N}.

Then there is a ¢ > 1 such that
1
(1.8) ;|X|FN§|X|N§C|X|FN, xely.

The isomorphisms y — g;yg; ' 0 <k <k, can be extended to isomorphisms
of N (cf. [35]). So we can consider the group

G={yg, yeN, 0=<i <k}
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with multiplication law defined by
xgiyej =xgive; (8ig)Ngig, X% YEN,0<i, j<k

If T is nilpotent, then a better way to proceed is to consider the torsion subgroup
(") of T" (cf. [12]). T(I") is the set of elements of finite order in I', it is a normal
subgroup of I" and I' /7 (") is torsion free. So, we canset 'y ="/t (I").

Let n be the Lie algebra of N. We identify n with the left invariant vector fields
onN.

By a left invariant sub-Laplacian on N, we mean an operator

L=—(E{+- -+ E)) + Eo,

where Ey, Ey, ..., E, are left invariant vector fields on N and where the vector
fields Eq, ..., E, satisfy Hormander’s condition; that is, they generate together
with their successive Lie brackets [E; ,[E;,, [..., E;]...]]l,1 <i; < p,1 <
Jj <k, the Lie algebran of N.

We shall say that L is centered if Eg € [n, n].

Let us fix a discrete probability measure p on I', let supp(n) = {g € G:
u(g) > 0} and let us assume that the following hold:

L. [supp(p)| < oo;
2. U C supp(w);
3. u is centered.

Our goal is to associate with p a centered left invariant sub-Laplacian Ly,
on N, in such a way that the asymptotic behavior of the convolution powers ©*"
can be compared to the large-time behavior of the heat kernel p,H H(x,y) of Lyy.
If I' =T'y or G is nilpotent, then the definition of Ly, is rather straightforward
(cf. [19]). In this case we use the notation L, and pl(x,y) instead of L Hp and

ptH "(x,y), respectively. If T" is not nilpotent, then Ly, is defined by a method
inspired by the theory of the homogenization (cf. [13, 26]). We call Ly, the
homogenized sub-Laplacian (associated with ).

1.4. Notation. Given another measure v we define the convolution w * v by

ok v(x) =Y er u(NV(y~'x)dy, x €T.
Given a kernel K (x, y) we set

Kx,A)=) K(x,y) and Kf(x)=) K(x,y)f().

yeA yell

If S(x, y) is another kernel, then we denote by K S the kernel

KS(x,y) =Y K(x,2)S(z. ).

zel
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We also set

K1 = sup{lIl K (x, )1, IKC, )15 x,y €T},
IK lloo = sup{|K (x, y)|:x,y € T}.
To simplify the notation, we set £* =, n € N, and u® = 8., where 8, is the
Dirac mass at x. We also denote by " the kernel
Wy =u"aTly), xyel

For n = 1, we just write u(x, y) instead of 1! (x, y).
Note that ©"+! = pu”* and that

) =) W f) = ) f(xy).

yell yell

We say that a function u is p-harmonic in A C I' if pu(x) =u(x), x € A.

We say that a function u is a space—time p-harmonic functionin A C Z x I' if
(uu(n, )Nx)=umn+1,x), (n,x) € A.

We denote by 91 and 9;, z € I', respectively the difference operators

oju(n,x)=umn+1,x) —u(n,x) and du(n,x)=un,xz)—un,x).

Note that u is a space—time p-harmonic function if and only if (31 + (1 — w))u = 0.
We also set

O™ () = " (xz) — ' (x) and B (x) = Y (o) — ().
If A CT,then we set
Vau(n, x) =sup{|d;u(n,x)|; z€ U}.

We say that a function f is of type Pif f(xg) = f(g),x €'y, g€
If f is such a function, then we denote by ( f) its mean value

1
(f) = moﬁzﬂﬂg».

Note that if f is a function of type P, then wf is also a function of type P. If we
also have ( f) = 0, then the function

u=y u'f
n>0

is well defined and satisfies

(I —wu=f.

If I is nilpotent and we set 'y = I/t (I"), then the type P functions will just be
the constant functions.
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If K(x,y) is a kernel initially defined on N, then we use the same notation
K (x, y) to denote its restriction to Iy and its extension to I". The extension of
K (x,y) to I' is defined by

1
K(Xgi,ygj):—K(X,Y)a -xvyEN’OSl’]Sk

k+1
If T is nilpotent and we set 'y = I'/7 ("), then we extend K (x, y) to I by setting
1
K(zx, wy) = ——=K(x,y),
lz(D)]

where z,wet(IM) andx =xt ("), y=yt(), x,yeT.

In particular, we use this notation for the heat kernels p,H H(x,y), pl(x,y) and
their derivatives X ---X,,p,H“(x, v), X1- --X,,pt“(x, v), X1,..., X, en.

A function f on I'y will be extended to I" by setting

fxg) = fx), xely, 0<i<k.

If T' is nilpotent and we set I'y = '/t ("), then we extend f to I' by setting
fx)=f@x),forzer()and x =xt(T),x €.

We do this, in particular, when f is a harmonic function or a polynomial.

We denote by [[a, b]] the interval [a, b] N Z.

Given a nonempty subset A of I' we set A? = {e} and A” = A"l r > 0.

The different constants are always denoted by the same letter c. When their
dependence or independence is significant, it is clearly stated.

1.5. A parabolic Harnack inequality. The following Harnack inequality plays
a central role in this article.

THEOREM 1.2. Forall a,b>1 thereare B >a > 1,c > 1 and A > 0 such
that, for all r > 1 and all u > 0 satisfying

4+ —w)u=0 in[0,(B+bHr*Ix U,
we have

(1.9) sup{u; [ar?, (@ 4 a®)r?] x U} < rinf{u; [Br?, (B + b*)r?] x Ub’}.

For the case when u is symmetric [i.e., w(x~Y = pu(x), x € I'], the above
inequality was proved in [23] by a different method.

We prove this inequality by adapting the method of Krylov and Safonov [29].
This method uses certain information on the growth of the positive space—time
w-harmonic functions. To obtain this information we use the following three
results.
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The first two results concern the distribution of the mass of the convolution
powers u** as n — oo:

PROPOSITION 1.3. Forall a > 1 there are ro > 1 and 0 > 0 such that

(1.10) > uxy) > 9,

yeUr’

forall (n,x) € [a=2r2,a%r* x U, r > ry.

PROPOSITION 1.4. Forall 0 > O there is an a > 1 such that

(1.11) Y. wiey) <@,

y¢Uar
forall k e[[1,r?].

The third result is a theorem of Varopoulos [49] which asserts that the
convolution powers p*" decay with a certain uniform speed as n — oo:

THEOREM 1.5 [49]. Let it be a (not necessarily centered) probability measure
whose support generates I". Then there is a constant ¢ > 0 such that

(1.12) I oo <cn P2 neN.

If u is a function defined on B C Z x I, then let us set
Osc(u, B) = sup{lu(k, x) —u(m, y)|: (k, x), (m, y) € B}.

To prove Theorem 1.2, we proceed as follows. Using the above three results, we
prove an analogue of the first growth lemma of [29]. From this and arguing in the
same way as in [29] we obtain a second growth lemma.

A direct consequence of the second growth lemma is the following:

PROPOSITION 1.6. There are ¢ > 1 and y € (0, 1] such that, for all t € R,
r > 1 and all functions u satisfying (31 + (I — p)u =0 in [t — c*r?, 1] x U,
(1.13)  Osc(u, [t — 2, ¢t x U") < y Osc(u, [t — *r?, ¢ x U").

Theorem 1.2 follows from the second growth lemma and the above proposition
by a standard argument (see, e.g., [7, 30, 40, 44]). It can also be proved by arguing

in the same way as in [29] (but this is less obvious).
An immediate consequence of (1.9) and (1.13) is the following:

COROLLARY 1.7. Every positive p-harmonic function is constant.
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1.6. Gaussian estimates. Making use of the Harnack inequality (1.9) we prove
the following upper Gaussian estimate:

THEOREM 1.8. There is a constant ¢ > O such that

2
(1.14) u*"(x)fcn_D/zexp(—ﬁ), xel, neN.

Once we have the upper Gaussian estimate then, again by using the Harnack
inequality (1.9), we can obtain a lower Gaussian estimate (cf. [23] and [50],
pages 47-50):

COROLLARY 1.9. There is a constant ¢ > 0 such that
*n 1 -D)2 |x|12“
(1.15) w'rx)y=-n exp|l —c—
c n
foralln e Nand x €T satisfying |x|r <n/c.
Combining (1.2) and (1.14) we have the following:

COROLLARY 1.10.  Let us assume that  is not centered and let 8, and x be
as in Lemma 1.1. Then there is a ¢ > 0 such that

2
(1.16) W) < en” P exp(=Bum) x (x) exp(— &)
cn
forall x e andn € N.

1.7. A Taylor formula for the space—time p-harmonic functions. Using the
exponential coordinates we shall identify N, as a differential manifold, with RY.
So a monomial P(x) on N will be just a monomial on R?. A monomial P (x)
on 'y will be just the restriction to I'y of a monomial P (x) on N. We extend the
monomials P(x) to I' by setting P(xg;) = P(x), x €'y, 1 <i <k.

In the rest of this article, we do not make any distinction between the restriction
of a monomial P(x) to I'y and its extension to I".

For every monomial P (x), there are an integer d > 0 and a constant ¢ > 0 such
that

1 d n d
(1.17) —n® <sup{|P(x)|, x e U"} < cn®, neN.
C

We say then that P (x) has homogeneous degree degy P =d.

We say that P (¢, x) is amonomial on Z x I" (resp. R x G)if P(¢,x) =t" Q(x),
with Q(x) a monomial on I' (resp. G). We define the homogeneous degree
degy P(t,x) of P(t,x) by

degy P(t,x) =2m +degy O(x).
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By polynomials we of course mean linear combinations of monomials. The
homogeneous degree of a polynomial is therefore the maximum of the homo-
geneous degrees of its monomials.

To fix the notation, we use

PO(t,X), PZ(t’-x)’ ""Pvd(tv-x)

from now on to denote the monomials with homogeneous degree less than or equal
to d. With every such monomial P;(¢, x) we associate another, more convenient

“corrected” monomial Qﬁ, (t, x) written as

O (t.x)=P(t.x)+ Y Yi@)P;(t.x),

0<j=<vk—i

where k = degy P; and where the functions wj- are of type P.

Note that when I" is nilpotent the w; will just be constant functions.
The following result gives a Taylor formula for the space-time p-harmonic
functions.

THEOREM 1.11. For all n € N there is a constant ¢, > 0 such that, for all
R >r > 1 and all functions u satisfying

O+ —w)u=0  in[-R> R} x UR,

sup{u— Z AiR_degHPiQ}/ﬁi
(1.18) O=i<vn

R —(n+1)
=cnl— N4l oo,

where the constants A; satisfy

we have

72, 2] x Ur}

lAil < cnllulloos

forall 0 <i <vy,, and

(B + (I — m)( > AiQ‘,ﬁi) =0,

Vi—1<i<vq

foralll <d <n.

The proof of the above result is based on ideas of Avellaneda and Lin (cf. [9,
10]). These ideas have already been used in the context of Lie groups in [3, 4, 8].
The interest of the method lies in the fact that we do not make use of any a priori
control on the differences.
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1.8. w-harmonic functions of polynomial growth. We say that a function u
on I' grows polynomially if there is a ¢ > 0 such that
(1.19) sup{lul; U"} < cn®, neN.

The following result is a consequence of Theorem 1.11:

THEOREM 1.12. Every u-harmonic function u which grows polynomially is
equal to a linear combination of the monomials Q‘gi.

A result of this type was first proved by Avellaneda and Lin [10] in the case of
differential operators with periodic coefficients in R". It was generalized in [8] in
the context of connected Lie groups of polynomial volume growth, where it was
used to prove a Sobolev inequality. We state below the discrete analogue of that
inequality. The proof is similar and is omitted.

COROLLARY 1.13. Let f be a function, not necessarily with compact
support, such that Vy f € LP, 1 < p < D. Then there are a universal constant
¢ > 0 and a constant C s depending on f such that f —Cy € LPP/(D=P) " and

If = Crlipp/p—p) =cliVu fllp-

1.9. Harnack inequalities for the differences. A consequence of Theorem 1.11
is the following result:

THEOREM 1.14. Forall a,b> 1 and all k € N thereare B >a > 1,¢c > 1
and A > 0 such that, for all z € U, r > 1 and all u > 0 satisfying
4+ —w)u=0  in[0,cr’]x U,
we have
sup{|8{‘81u|; Tar?, (o« + a®)r?] x vy

(1.20) < 5 p—2k—1 inf{u; [[IB’,.Z, (8 +b2)r2]] X Uhr}'

If T is nilpotent, then we can also control higher order spacial differences:

THEOREM 1.15. IfI' =Ty, then for all a,b > 1 and all k,m € N there are

B>a>1,c>1and A > 0 such that, forall 7y, ...,z €U, r > 1 and all u >0
satisfying
(1 +T—w)u=0  in[0,cr’]x U,
we have
sup{[3%d., - -- 8, ul; [ar?, (@ +a®)r?] x U}
(1.21)

< ar==minflu; [Br2, (B + b2’ x UPTY.
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Note that if " is not nilpotent, then (1.21) is not necessarily true for m > 2.
ThlS is due to the existence of the functions W in the definition of the monomials
Q P [see Sections 1.7 and 19 as well as (1.30) below]

1.10. Berry—Esseen estimates. Let p,H M(x,y) be the heat kernel of the
homogenized sub-Laplacian Ly, associated with 1«. As mentioned in Section 1.4,

we extend ptH“ (x, y) to G, by setting
: pit(x, y) EN,0<i,j<k
-xv ’ -xa ) s, >K.
k1l Y Y /
We have the following analogue of the Berry—Esseen theorem (cf. [20, 26, 28,
34, 51]):

(1.22) 1 (xgi.ve)) =

THEOREM 1.16. There is a ¢ > 0 such that
(1.23) W (x,y) — piH(x, y)| < en(PTD/2

forall x,y €eT" andn € N.

The reader can observe that by a straightforward adaptation of the proof of the
above result we can also obtain a similar L! estimate, that is, that there is a ¢ > 0
such that

lu" — pHi|y <e//n,  neN.

It was proved in [2, 7] that there are constants ¢, Cy, > 0 such that
(1.24) P (e e) = Crpyt PP <™ V2 =1,

Combining (1.23) and (1.24) we have the following:

COROLLARY 1.17.  There are constants c, C;, > 0 such that

(1.25) | (e) — Cun P2 < cn=(PFD/2, neN.
Combining (1.2) and (1.25) we have the following:

COROLLARY 1.18. Let us assume that p is not centered and let B, be as in
Lemma 1.1. Then there are constants c, C,, > 0 such that

(1.26)  |u*(e) — Cyn=Pl2e™Pun| < cp=(PHD/2=Pun neN.

By interpolating (1.14) and (1.22) we can have the following:
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COROLLARY 1.19. Forall e € (0, 1) there is a ¢ > 0 such that

—1,,12
(1.27) " (x, y) — pfﬂ(x’ W < Cn—(D—i—s)/zeXp(—_lx )’|F)
cn

forall x,y eT" andn e N.
Concerning the space and time differences we have the following results:

THEOREM 1.20. There is a constant ¢ > 0 such that
(1.28) 011" (x, y) — 01 pp (x, y)| < en”PHI/2
forall x,y eT" andn e N.

THEOREM 1.21. IfT is nilpotent, then there is a constant ¢ > 0 such that, for
allzeUandallx,y el andn € N,

(1.29) 19, (x, y) — 3. pl(x, y)| < en=PTD/2,

If T is not nilpotent, then the situation is quite different. More precisely, if
X1,..., Xy is a convenient basis of n and if wl,...,wnl are the associated
first order correctors (see Section 14 for the exact definitions), then we have the
following result:

THEOREM 1.22. Thereis a c > 0 such that, forall z € U and all x,y € I" and
neN,

" (x,y) — pfre, vy — D (397 (0))X;pfH(x, )

1<j<n

(1.30)

Combining (1.14) and (1.30) we have the following:

COROLLARY 1.23. For all ¢ € (0, 1) there is a constant ¢ > 0 such that, for
allzeUandallx,y €T andn € N,

" (x,y) —dpi e ) — D> (39 ()X plH(x, )
(1.31) I<j=m

—-1,,2
— en- (D140 exp<_w>,
cn

Inequalities (1.27) and (1.31) above actually hold with ¢ = 1. This can be proved
by arguing in a similar way as in the proofs of Theorems 1.16 and 1.22. However,
the proofs become much more technical, while (1.27) and (1.31) are sufficient for
the application that we have in mind, namely the proof of Theorem 1.24.
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1.11. Riesz transforms. Let us denote by (I — 1)~ !/? the operator defined by
(-2 = > n>0dni", where the a,’s are as in (1 — Hn~12= 2 ns0ant".

THEOREM 1.24. For all z € I' the Riesz transform operators R, = 9,(1 —
w)~'? and R = — w)~ Y29, are bounded on L?, for 1 < p < oo and from L'
to weak-L".

If I is nilpotent, then we can also consider higher order Riesz transforms.

THEOREM 1.25. If T is nilpotent, then for all zi,...,zx € I' the Riesz
transform operators Ry = 0, -9, (I — w) K2 and Ri=(— M)_k/ZSZk <0z,
are bounded on LP, for 1 < p < 0o and from L' to weak-L" .

If I is not nilpotent then, as we can see from (1.31), the second order Riesz
transforms Ry = d;,d,,(I — u)~! and Ry = — w)~19,,d,, may be unbounded
even on L2 (cf. [3]).

2. Organization of the article. We have tried to give the proof of the results
in the simplest possible context. The proof of the parabolic Harnack inequality
(1.9) from Varopoulos’s theorem (Theorem 1.5) and by assuming Propositions 1.3
and 1.4, does not use any particular result from the structure of I" and so it is given
already in Section 3. The construction of the operator Lz, is much simpler when
I' =I'y. So those proofs that are essentially the same, whether I' = I' y or not, are
only given in the case I' = I'y. This is the case for the Gaussian estimate (1.14),
the Taylor formula (1.18) and the main part of the proof of Propositions 1.3 and
1.4.

The proof of the Berry—Esseen estimate (1.23) is much more complicated when
I" # I'y. So, to illustrate the ideas better, we also give the proofin the case I' =Ty .

3. The proof of the Harnack inequality from Varopoulos’s theorem and
Propositions 1.3 and 1.4. In this section we give the proof of Theorem 1.2 from
Varopoulos’s theorem (Theorem 1.5) and by assuming Propositions 1.3 and 1.4.
This has already been done in [7] in the context of left invariant sub-Laplacians on
connected Lie groups of polynomial volume growth. We give below an adaptation
of that proof in the context of discrete groups.

We first prove an analogue of the first growth lemma of [29] by using (1.10),
(1.11) and (1.12).

Next, we prove an analogue of the second growth lemma of [29]. To do this, we
follow closely [29] and we adapt in our context their covering lemmas.

The proof of Proposition 1.6 and of Theorem 1.2 from the second growth lemma
is standard in the literature (cf. [7, 30, 40, 44]; since it is also long, it will be
omitted. We point out again that the argument given in [29] can also be used.
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If ACZ x T, then we denote by |A| the number of its elements.
If ACR x I', then we set
|Al =" |Aql,

xel

where |A,| is the Lebesgue measure of A, = ANR x {x}.

3.1. The first growth lemma. If B CZ x ', AC B and (t,x) € B then,
adopting the notation of [29], we set

W((t,x), A, B) =influ(t,x):u >0, u(s,y) > 1for (s,y) € A
and (31 + (I — u))u =0in B}.
If A’ C B, then we set
W(A', A, B) =inf{W((t,x), A, B):(t,x) € A’}.

Note that if v > 0, u = v and a = min{u(x), x € U}, then
(3.1 u(x) > av(xy), yeU.

LEMMA 3.1 (First growth lemma). Forall a > 1, there are ro > 1, ¢ > a and
0,& € (0, 1) such that
(3.2) U([a=2r%, a®r? I x U, A, 0, a*r* x U) > 8
forall r > ro and every A C [[0, r2ﬂ x U" satisfying

Al > EI10, 7] x U").

An immediate consequence of (3.1) and (3.2) is the following:

COROLLARY 3.2. Forall a > 1 thereare c >a,rg>1,meNand 9 >0
such that for all r > rg and all u > 0 satisfying

B+ —D))u=0  in[0,a**] x U
we have
(3.3) inf{u; [a=2r%, a®r 1 x U} > su(1, e)r ™.
Moreover, if for some 1 < R <r,
inf{u; [0, R*] x UR} > 1,

then

R m
(3.4) inf{u; Ta 22, a%r?] x v} > 8(—) )
r
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3.2. Proof of Lemma 3.1. The following lemma is an immediate consequence
of Theorem 1.5 and Proposition 1.3.

LEMMA 3.3. Foralla > 1 thereareryg> 1,0 > 0and & € (0, 1) such that
(3.5) Z w'(x,y)>8

yeA
forallr >ry, (n,x) € Mla=2r2,a?r2 | x UY and AC U" satisfying

|Al > &|U"].

Let Z, be the random walk with transition probabilities
PlZpy1 =y1Zy =x] = p(x, ).
Let us also denote by Py, x € G, the probability measures satisfying
PiZo=x]=1 and Py[Z,=y]=pu"(x,y).
If r > 0 and x € I', then we denote by 7;* the first exit time
7y =min{n eN:Z, ¢ xU"}.
LEMMA 3.4. Forall ¢ > 0 there is a constant ¢ = c(¢) > 0 such that, for all
r>1,

(3.6) Pt} <r’l<e.

PROOF. By Proposition 1.3, there is a 6 > 0 such that, for all » > 1,

You'ey=d,  l=ns<r’

yeUr’
Let us fix ¢ > 0. Then, by Proposition 1.4, there is a ¢ > 1 such that, for all

r>1,
2
> (e, y) <ed.
y¢UL‘V

By choosing a larger constant ¢ if necessary we can also assume that xU” N U<"
=®f0rx§éU2”,r21.
We have

2
e8> Y u(x,y)

ygxUer
= Py[Z,2 ¢ xU“]

2_.x
> EP [0 e (Zy ,G\U); 13, <77
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> EPx [Mrz_tf(r (erw , focr Ur); Téccr < r2]
= EP[u e e, U 1, < 7]
> 8 Py[13,, <1’
and hence
P13, <r’] <e,

which proves the lemma. [

PROOF OF LEMMA 3.1. Let fg € [0, $a~%r?]] and let
AZO :Aﬂ{t()} X Ur.

Let ¢ > a and let u > O satisfy u(s, y) > 1, for (s, y) € A and (91 + (I — p))
u =01in [0, a*>r?] x U%". Then, for all (¢, x) € [a~%r%, a’r?] x U*",

u(t,x) > EP[u(ty, Z,—4); 1 > t — 1]
(3.7) > EP 14, (Zi—yy); T8 > 1 — 10]

= n'70(x, Ayy) — Pxlt, <t —10].
Now, by Lemma 3.3, there are d > 0, ro > 1 and &y € (0, 1) such that
W' T0(x, Ay > 28
forall (¢, x) € [a"2r2, ar?] x UY,if r > ry and Ay, satisfies
(3.8) |Ag| > &0lU"|.

If we assume that |A| > £|[[0, 7] x U"|, with & € [&y, 1) close enough to 1,
then A will always have a section A, with 1y € [[0, %a‘zrz]] and satisfying (3.8).

Also, by Lemma 3.4, if the constant c is large enough, then there is a § > 0 such
that

Pyt <t —1g] <§, t e fla”?r?, a%r?,
and hence, for all (¢, x) € [a—2r2, a%r] x U,

u(t,x) > pn' =0, Ay) — Pxltl <t —19]

>25 -6 =94,

which proves the lemma. [
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3.3. The second growth lemma.

LEMMA 3.5 (Second growth lemma). For all b > 1, there are B > 1, ¢ > 1,
6 > 0and m € N such that

W([Br?, (B+b>)r? x U, A, [0, (B + bH)r?] x UT)

(3.9 |A| m
>8<—)
1, r2] x U7 |

forallr > 1 and every A C [[1, Pl x U,
The above lemma will actually be a consequence of the following:

LEMMA 3.6. Forallb> 1,therearec, B> 0,6 >0,8 >0,0 >0andm €N
such that for all r > 1 and every A C [[1, r2ﬂ x U" either

W([Br?, (B+b>)r? x U, A, [0, (B + bH)r?] x UCT)

(3.10) |A| m
> 8(—)
[, r2 x U"|
or there is an Ao C [[1,r%]] x U" such that
(3.11) |Ag| > (1 +6)|A|
and
(3.12) W(Ag, A, [[0, T x U) > 8.

3.4. Proof of Lemma 3.6. We use the notation
O(s,t,x) =t — %SZ, r+ %sz]] x xU?’.

By Lemma 3.1, there are s > 1, §1,& € (0, 1) and c¢; > 4 such that
(3.13) ([ s, 1657 x U*, V, [0, 1652] x U*) > 6
for all s > 5o and every measurable subset V C [0, s2]] x U* satisfying

VI =100, 571 x U°).

Let us fix rg > 3sg. Then by (3.1) there are k > rg, c2 > 1 and §, > 0 such that
(3.14) W(Q(ro, 2k, x), {(k, x)}, [[0, 2k + 3rg]] x xU2") > §,.
Let us assume that 2 > 6k, ¢ > ¢| + ¢, and consider the sets

Al=AN[Bk,r? =3k xU" and Ar=A\A|.

Note that for 2 < 6k the lemma follows from (3.1).
Let n € (0, 1) be determined later.
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Casel (JA1]| <nl|Al]). Then|A,| > (1 —n)|A| and hence
|A] ! |A2]
L, 20 x U7 =~ 1=n|[1,r2] x U

1 |[1, 3k x U |+ |[r? = 3k, r2] x U"|

Rt/ 1, r2] x U”|
6k +2

<—.

T (L=mr?

If A # o, then there is a (¢, x) € [[1, r2]] x U" such that (¢, x) > 1 and so (3.10)
follows from (3.3).

Case Il (|JA1] > n]Al]). Let
Ap={(t,x):(t —k,x) € A1}.
Then
Ar C 4k, r> =2k x U™ and |Ax| = |A1] > n]Al.
We set

As, = U O(ro, t,x) N[, P2 x U".
(t.x)€AL

Then of course Ay C A;, and, by (3.14),
(3.15) W(As,, A, 0, 72T x U) > 6,.

We consider the set of balls
Q={llt,t + 5T x xU* C[1,r2] x U" :s > 50,
IxIr +|ylr <r,y € U* and |Q N As,| = £]Q|}.

With every ball Q = [[7,t + 5] x xU* € @ we associate a ball Q° as follows:

If s+ |x|p < r, then we set Q' =[[t, + (s + D> x xUSTL If s + |x|p > r,
then we consider yi, ..., yx. € U such that x = y; ...y, and we set x’ =
Y1 Yixp—t and Q' =1, 1 4 (s + D’ x X'USTL I Q' = Q' N Ay, | < £[Q,
then we take Q° = Q’. If not, then we repeat the same proceedure.

We set

@’ ={0%0ec@ and W'= |J 0°
QOG(QO

Note that A € WO,
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LEMMA 3.7. Thereis a 61 =01(£) > 0 such that

(3.16) WO > (1+6))| Al
and hence
(3.17) WO > (146)n|Al.

The proof of the above lemma is given later.
By using (3.13) repeatedly, we can see that there are §3 > 0, §3 < min(51, &3)
and m € N such that, for all o > 1 and s > s,

W ([s2, 1602s2] x U*, [s2, 16s%] x U™, [[s2, 1602s%] x U%)

> 830,

(3.18)

Let us fix o > 2 such that

(3.19) (1+91)16(6_—1)2_1>1+@.
16(0 — 1)? 2
If Q0 =1It,t + s2] x xU* € @Y, then we set
O' =t t +160%°1 x xU*,  @'=(0', 0°c@%
and
wi= |J o
0le@!
We also set
Ok = (t,1 +16(c — 1)*s?) x xU*

and define (,‘2%K and WI}K similarly.

If Q' =[It,t + 160252 x xU* € @', then we set

0% =t +s°,t +160°s*] x xU°, Q> ={0%* 0'ealy
and
wi= |J o~
02e@?
We also set
Q% =(t + 52,1 +16(c — 1)%5?) x xU*

and define (,‘2%& and Wé similarly.

It follows from (3.15) and (3.18) that if 64 = 8,630 ~™, then
(3.20) W(W2 A0, 22T x U) > 84.
Let

[[L, 727 x U"|

and let w € (0, 1) be determined later.
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CaseIla (|(W?\ [1,72]] x U"| > w|A]). This assumption implies that
W2\ L, 72T x U"| > wy|[1, 721 x U"|.
So there is a ball
0% =t + s>t +160%s%] x xU* € @>
such that
16025 > wyr?.

Now, by Corollary 3.2, for all a; > 0, there are ¢ > ay, 65 > 0 and m € N such that
if 59 is chosen large enough and R > 4o's,

W[t + Rt + (1 +a]) R x xUR, Q2 [It,t + (1 +a})R?]| x xUR)

4os\™
(3.21) Z‘*(T)

m
-
- (stmp(_) 2.
- R

The lemma follows from (3.21) above, by taking a; large enough and by replacing
R by an appropriate multiple of r.

Case IIb (|W? \[[1,1 + 72 x U"| <w|Al|). Let us first observe that

(3.22) WOl < Wi
and that
(3.23) |Wgl < W2,

The following lemma is the analogue of Lemma 2.3 in [29], page 158.
LEMMA 3.8.

16(c — 1)2 )
3.24 Wh<—n 2
(-24) | R|_16(a—1)2—1

The proof of the above lemma is given in Section 3.6.
Combining (3.19), (3.22), (3.23) and (3.24) we have

16(c—-1*-1_,
W2>—
W= 16(0—1)2| |
16(c —1)> —1
Zw(l-l-el)?ﬂi“

Y

01
14+ — Al.
( +2)n| |
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We set
Ag=W2N[1, 2] xU".
Then
|Agl = W2 N1, r2] x U"|
=|W?| = W\ [, x U"|
> |W?| — o] Al

0
> (1+3)n|A|—w|A|

[

It follows that if we chose n € (0, 1) so that

<1+91) 1+
—_— > —_—
2 )" 4

and

then we would have

0
Aol > (1+§1)|A|,

which proves (3.11).

3.5. Proofof Lemma3.7. If Q= Q(s,t,x) =t — %SZ, t+ %sz]] x xU?, then
we denote by Q* the ball

Q*(s,t,x) =t — %sz, t+ %SZ]] x xU>*.

Using a standard Vitalli type of argument (cf., e.g., [7, 27, 39]) we can prove that
there is a finite sequence of balls Q(l), Q(z), Qg, cee Qg € Q0 such that the following
hold:
1. 0%e@® 1<i<n;
2.00nQY=@,i#j 1<i,j<n
3. whcUr, o

By (1.3) there is a constant ¢ > 1 such that

1<|Q*(s,t,X)I<C
c” 106G, t,x)|
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forall s > 1.
So
(WO Al + WO\ Ay _, WO\ Al
Akl | Akl | Ak|
0 0
L \0A31|Zl N4 \A%.I
|WO| U, 0%
(3.25) 0 0
WONAs | WO A |
B ?:1|Q?*| B CZ 1|Q0
Uk QO\A51|:1+ i1 107\ As)|
- Y109 Y109

Since |Q' N As | < SlQ?l, we have
100\ As | = 1071 — 107 N Ay, |
> 071 - €100 = (1 - §)|Q7I.
Combining (3.25) and (3.26) we have that

0 n 0
WOl Zia (=910
| Akl Y107

(3.26)

which proves the lemma.

3.6. Proof of Lemma 3.8. If x € U, then we set
Wi, =WENRx {x} and WZ =WZNR x {x}

forxeU’.
It is enough to prove that

(3.27) Wl < WWM
This follows from Lemma 2.2 in [29], page 157, by taking
16(c — 1)%n?

T 1600 — D22 — 1
and by setting

g((11, ) = (r —k(tr — 11), 1o).
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4. A first difference estimate. Repeated use of Proposition 1.6 yields the
following:

THEOREM 4.1. There are y € (0,1] and ¢ > 0 such that, for all r > 1,
z,x € U and every function u satisfying (31 + (I — pn))u =0in [—r2, 01 x U",

4.1 10:u(0, x)| < eV flulloo-

Combining this result with Varopoulos’s theorem (Theorem 1.5) we have the
following:

COROLLARY 4.2. There are y € (0, 1] and ¢ > 0 such that, for all n € N,
zeU,

4.2) 8,0 [|oo < cn™(PHY)/2

5. Results on the algebraic structure of N. In this section we recall certain
well-known results on the algebraic structure of N (cf. [19, 21, 33, 45, 46, 50]).

5.1. The filtration of the Lie algebra. Letn be the Lie algebra of N, which we
identify with the left invariant vector fields on N.

We set n =n and n; 1 = [ng,n;],i > 1. Since n is nilpotent, we have the
filtration

n=n12n 2 - Dy 2Nyt = {0}, ny, # {0},
We consider linear subspaces ay, ..., a,, of n such that
n=a;D - Da,, 1<i<m.
We set
no =0, n; =dim(a; & --- P q;), 1 <i<m,
o(j)=1i, forni_y < j <nj,

qg = n, =dim(n).
Notice that the homogeneous dimension D of N is given by
D=o()+-+0(g).

We consider a basis {X1, ..., X,} of n such that {X,,, ,+1,..., X,,} is a basis
ofq;, 1 <i<m.
On the linear space n, we define the Lie bracket [-, -]Jp by setting

[Xi, Xjlo= Pla,iyi0() [Xi, X1

We denote by ng the Lie algebra ng = (n, [, -]g). Note that ng is nilpotent.
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5.2. Dilations and the exponential coordinates. Using the exponential coordi-
nates of the second kind (or Malcev coordinates)

¢:R?T— N, dix=(xg,...,X1) = expxy Xy ---expx; X

we identify N, as a differential manifold, with RY.
Let z¢, ¢ > 0, be the family of dilations of N defined by

Te: (Xg, ..., X1) > (s"(")xq, e W),
Also, let *, € > 0, be the family of group products defined by
X ke Y = Te[(T-1x)(T-19)]
and let
Xk0y = lim x % y.
e—0

Then Nog = (N, %) is a stratified nilpotent Lie group whose Lie algebra is
isomorphic to ng. We identify ng with the xo-left invariant vector fields.

If X € nis a left invariant vector field on N, then we denote by X the *q-left
invariant vector field satisfying Xo(e) = X (e).

In particular we denote by Xg; the xq-left invariant vector fields satisfying
X0i(0)=X;(0),1 <i <q.

Note that
5.1 Xor = lim o dn(X),  1=i=q
and that
(5.2) Oi:mdfg(XOi)» 1<i=<gq.

We now give an expression of the left invariant vectors fields of N as vector
fields on RY.
IfX=a1X;+---+a,X,, thenwe setpr;(X) =a;,i =1,...,q.
We also denote by adX; the linear transformations of n defined by
_ 0, fori > j,
ad(X i)X j=
ad(X;)X;, fori < j.

LEMMA 5.1 (cf. [4]). Let X be a left invariant vector field on N. Then
X(x) =aq(x)% + .- +al(x)aixl with

a;(x) = pr; [exi—lﬁXi—l . 'exlﬁXl (X)]
! LS Aioi
=Pl'i|: Z _ . ) _xl “"xi—l
o ro(D)+-+ri_jo(i—D=<o()—1 Ap! Ai—q!

x (adX;_1)*i-1 "'(ﬁxl)kl(x)]
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Note that if X is the associated *q-left invariant vector field satisfying Xo(e) =
X (e), then Xo(x) = aogy (x)% +---+ao (x)% with

1 (T
aOi(x):pri|: > PRV xpteex Dy
(5.4) hio (Do (i=D=0()—1 -

x (adX;_1)*! ---(ﬁxl)“m]

Let us set, for f € C® and £ € N,

viim= ¥ |

a<t
o(ip)++o(ia)=t

Vif@ = Y Xy X f@).

a<t
o(ip)++o(ia)=t

0
ax;, ox;,

Then it follows from (5.3) that there are ¢ > 0 and k € N such that, for all x € N
and f € C*°,

(5.5) VEF(x) < Vi F(x) < e+ xDFVEF (x).

c(1+|xk

5.3. Taylor expansions.

LEMMA 5.2. Let f € C*®. Then

(5.6) L ro=xif0), 1<i<q,
0x;
5.7) %—f@ XiX;fO), 1<j<i<n
and
0

a—a—f(o) XiX;jf©)
> (e [Xi, X;D X £(0), 1<i<j<n.

ni<i<q

(5.8)

PROOF. Equation (5.6) follows immediately from (5.3). Equation (5.7)
follows also from (5.3), since

XiX;f0)= aXf(O) i—f(O) l<j<i<n.
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Finally, to prove (5.8) we observe that

0 d

a—a—f()—a—f()

and hence, by (5.6) and (5.7),

0

a—a—f(O) X;Xif()

= (X;X; —[X;, X;1) £ (0)
=X X;fO)— Y (pr[Xi, X;1) X5 f(0). 0

ni<i<q

Let us now assume that V is a compact neighborhood of the identity element e
of N which, viewed as subset of R, is also convex. Also, let us denote by P; the
monomial p; (x) =x;, x = (x1,...,x5) €RY, 1 <i <q.

LEMMA 5.3.  Let V be as above. Then there is a constant ¢ > 0 such that, for
all f e C*®(N)andallxe N,yeV,

(5.9) fay)=f@)+F(y)  with[Fx()] = cllVx fllLewyy,

(5.10) Fay=r@+ Y. Pi)Xif(x)+ Fe(y)

1<i<m

with |Fe(y)| < c||V% f Lo vy and

fa=f@+ Y, POXif@®+5 Y. POMPMXiX;f(x)

I<i<n, I=<i,j<n

(5.11) + Z (Pi(y)_% Z P)L(y)PM(y)pri[X)\,XM])Xif(X)

ni<i<np 1<A<u<ny

+F(y)

with |Fx(y)| < c|V3 fllL vy

PROOF. We only give the proof of (5.11). The proofs of (5.9) and (5.10) are
similar. Let f/(y) = f(xy).If y € V, then by the Taylor formula (in R?)

foO=ro+ > P(y)—f(O)
1<i<q

1

+5 > Py ,(y)——f<0>+F<y>

1<i,j=<q
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, Y, 1 8 a
=0+ Y Pl(y)a—yif(o)+§ > Pl(y)P](y)ayiayjf(O)

1<i<ny 1<i,j<m
+ Y Pi<y>aiyf’<0>+F’/<y>,
ni<i<ny !
where
|’ <clV2 Il vy
and hence also
|F" D] < clIV? £l v).

So, by Lemma 5.2,
FO=r O+ Y POMXfO+5 Y. PO»Pi»)XiX;f0)

I<i<n, I=<i,j<n

+ 3 (P,(y)—% 3 Px<y>PM<y>pri[Xx,Xu])xif%m

ni<i<q 1<i<u<n
+F"(y).
If we set

F)=F'(D)+ Y, (Pi(y)—% > Px(y)PM(y)pri[Xx,XM]>Xif/(0)

ny<i<q I<A<u<n
then, by (5.5),
IFOD)I < el Vi flloe ).
Also,

FO=rO+ > PWXif'O+5 Y, PP(MWXiX;f(0)

I<i<n, l=i,j=m

+ ¥ (Pi(y)—% 3 Px(y)Pu(y)Pri[XA,XM])Xif/(O)

ny<i<np 1<A<u<ny

+F(y).

Given the left invariance of the vector fields X;, this implies (5.11). [

COROLLARY 5.4. There is a constant ¢ > 0 such that, for all f € C®°(N)
andall x € N, y € V, the following hold:
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(1) if 1 <v <ny, then

(5.12) X, fxy) =X, f()+ Y, PiMXiX,f(x)+ Fe(y)

1<i<m

with |Fx(0)| < el V3 flleo vy
(i) ifny <v <ny,

(5.13) Xy f(xy) =Xo f() + Fe(y)  with |[Fe()] <c| V3 fllewv).

6. Centered sub-Laplacianson N. Let L = —(E{+--+ E3)+ Eg be aleft
invariant sub-Laplacian on N and let us assume that it is centered, that is, that
Ep en,n].

Let {X1,..., Xy} be the basis of n introduced in Section 5. Since the vector
fields E; are linear combinations of the vector fields X;, the sub-Laplacian L can
also be written as

(6.1) L=— Z ainin— Z a,'X,'.
I<i,j=q ni<i<q

Note that a;; = aj;, 1 <i, j < g. Also the assumption that the vector fields
Ey, ..., E, satisfy Hormander’s condition implies that the (n; x n;) matrix
B = (b;j) with entries b;; = a;j, 1 <i, j <ny, is positive definite.

We associate with L the limit (at co) sub-Laplacian

o1
Lo = hl’r(l)—zd‘tg(L)z— Z aijXoiXoj — Z a; Xo;.
eoheE 1<i,j<ny np<i<np

Note that L is dilation invariant; that is, it satisfies

1
(62) LO = ) d‘[g(LO), e>0.
&

6.1. Polynomials. Since we have identified N, as a differential manifold,
with R? using the exponential coordinates of the second kind, the monomials on
R x N will just be monomials on R x RY.

Let P(t,x) = t"‘))cil . ~x;" be such a monomial. Then the homogeneous degree
degy P of P is also given by

degy P =2ig+i10(1) + - +ig0(q).
By (5.3),

(6.3) degH<£ + L)P(x) <degy P(t,x) —2.

Also, by (5.4),

6.4) <%+L)P(t,x)=(%—FLO)P(I,X)-FQ(I,X),



752 G. K. ALEXOPOULOS
where Q(¢, x) is a polynomial satisfying
degy O <degy P — 3.

Using induction on the dimension g of the Lie algebra n of N and the homo-
geneous degree degy P of P we can prove that there is a polynomial Q(z, x)
satisfying

(% + L0>Q(t,x) = P(t,x),

degy O(t,x) =degy P(t,x) 4 2.
Combining (6.3), (6.4) and (6.5) we have the following:

(6.5)

LEMMA 6.1. With every monomial P(t,x) as above we can associate
a polynomial

Op(t,x)=P(t,x)+ W(t, x)

satisfying
degy W <degy P — 1,

(6.6) ( 9

9
o +L0)P(t,x) = (E +L>Qp(t,x).

Note that the polynomial Qp(f,x) in the above lemma, is not necessarily
unique.
From now on, for all d € N, we denote by

PO(t,X), PZ(t’-x)’ ""Pvd(tv-x)

the monomials with homogeneous degree less than or equal to d. Given a centered
left invariant sub-Laplacian L on N (in this article, this is either L, or Ly, ), we
associate with those monomials, polynomials

Opy(t,x), Op,(t,x),...,Qp, (1, X)

satisfying (6.6).

Note that, for 0 <i < v, we can take Qp, = P;. Note also that vy = 0,
vy =n1 and vy < ny < v2. So, we assume that Py(f,x) = Qp,(¢,x) = 1, that
Pi(t,x) =Qp(t,x) =x;,for 1 <i <njy,andthat P; = Qp,, for vy <i <.

6.2. A Taylor formula for the heat functions. The following Taylor formula
for the heat functions is proved in [7].
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THEOREM 6.2. For all n € N there is a ¢, > 0 such that for all r, R € N,
R >r > 1, and all functions u satisfying

we have

9
(— —I—L)u =0 in(—R*> R>)»x VR
U — Z Al.R_degH P; Op.

0<i<v,

at
sup{
R —(n+1)
< cn(7) lutlloo,

where the constants A; satisfy

S (r?,r?) x Vr}

(6.7)

[Ai| < cpllulloo

(%JFL)( > AiQpi> =0

V-1 <i<vg

forall 0 <i <v, and

foralll <k <n.
6.3. A Harnack inequality.
THEOREM 6.3 [7]. Let V be a compact connected neighborhood of the

identity element e of N, let a,a,B,be N, 1 <a <a+a < B, and let k, ¢ € N.
Then there is a ¢ € N such that for all r e N, r > 1, and all u > 0 satisfying

0
(5 + L)u =0  in(0,(B*+b>r}) x Ve,
we have

: (arz, (o +a2)r2) X V‘"}

ak
6.8) sup”aWX,-1 e Xiu

< cr2k—o i) == i) inf{u; (,Brz, B+ bz)rz) X Vh’}.

6.4. Estimates for the heat kernel. 'The heat kernel p;(x, y) of L satisfies the
following Gaussian estimate (cf. [7]).

THEOREM 6.4. There is a constant ¢ > 0 such that, forallx,y € N andt > 1,

—1,,12
|x Y|N)
ct

—1,,2
|x y|N

1
(6.9) - 1~ P2 exp(—c ) < pi(x,y) < e A exp(—



754 G. K. ALEXOPOULOS

Combining (6.9) with (6.8) we have the following:

COROLLARY 6.5. Forallk,f € N there is a constant ¢ > 0 such that
5k

—1,,2
(6.10) Xy - X, pi(x, y)| < ct‘“’”"*"“l”"'*"“m/zexP<_w>,

otk ct

forallt>1, x,ye Nandforall1<i; <q,1=<j<n.

Let p?(x, y) be the heat kernel of Lg. Then we have the following analogue of
the classical Berry—Esseen estimate (cf. [7, 20]):

THEOREM 6.6. There is a constant ¢ > 0 such that, forallt > 1 and x € N,

(6.11) |pi(x,e) — pP(x, e)| < ct~PFTD/2,

It follows from (6.2) that
Py, y) =ePpd (tex, Tey),  &>0,
and hence there is a Cr, > 0 such that
(6.12) e, e)=Cr,t P2
Combining (6.11) with (6.12) we have the following:

COROLLARY 6.7. There are constants Cy, > 0 and ¢ > 0 such that

(6.13) |pi(x,e) — Cpt PRl <= PHD2 >,

7. A smooth substitute for |x|y. The following proposition furnishes a pos-
itive smooth function p(x) on a simply connected nilpotent Lie group N, which
will replace | x|y in the proof of the Gaussian estimate (1.14). This function will be
a convenient power of the Green function of a symmetric sub-Laplacian L on N.

We use the notation of the previous section.

PROPOSITION 7.1. There is a function p(x) € C*°(N) with the following
properties: For all n € N there is a constant ¢ > 1 such that, for all x € N and
all1<ij<q,1<j<n,

p(x) >0, xXeN,
1
(7.1 - lxIv <p(x) < clxly  forlx[=2,

C
oG+ Fo =1
|x|N !

| Xiy - Xi, p(X)] < for |x| > 2.
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PROOF. If the homogeneous dimension D of N is D < 2, then N is
isomorphic either to R or to R? and then we can take as p the Euclidean norm.
So let us assume that D > 2. Let L be a symmetric left invariant sub-Laplacian
on N and let p;(x, y) be its heat kernel. The Green function of L is given by

Gr(x,y) =/0 pe(x, y)dt.

Let Gp(x) = Gr(x,e). Then it follows from (6.9) that there is a ¢ > 0 such that

1 1

- — =<GL(x) Sc—5—,

clxly~? xly >
Since LG (x) =0,in N \ {e} it follows from (6.10) that for all n € N there is a

¢ > 0 such that

(7.2) x|y > 2.

c

D—2+0 (i1)++0 (in)
|x |N

(7.3)  |Xi, Xi, - Xi,GL(x)| < x|y >2, 0<e<1.

The function
—1/(D-2
p(x) = (Grx) PP

satisfies (7.1). O

8. Construction of the sub-Laplacian L, when I is nilpotent. In this
section we give the definition of the operator Ly, when I' is nilpotent. If T’
is not nilpotent, then the action of I'/I"'y on 'y gives rise to phenomena of
homogenization and this makes the definition of L g, more complicated. To make
this distinction, in the nilpotent case, we use the notation L, instead of Lg,.

We assume that I' = I'y. If I is nilpotent and the torsion subgroup 7 (I") is not
trivial, then we define L, to be the same as the operator L, associated with the
image 7 () of u under the quotient map 7 :I' — 'y =T/ ().

We use the notation of Sections 5 and 6.

The operator L, will be a centered sub-Laplcian which can be written as

Ly=— ) a;XiXj— ) aXi.
1<i,j=<n ny<i<np

The coefficients a;; and a; are defined as follows.
The coefficients g;; are given by

aij =3 Pi(x)Pj(x)u(x), 1 <i,j<ni.
xel
Let
b = Z P;(x)(x), 1 <i=<ns.

xel
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Note that since u is centered b; =0, 1 <i <nj.
The coefficients a; of L, are given by

1 .
ai=bi—5 Y. auprlXi X, ny <i<nj.

1<Ai<u<ny

Let V be as in in Section 5.3 and let us assume that V is large enough that
suppu S V.

The following lemma explains the relation between wu and L,. It is an
immediate consequence of Lemma 5.3.

LEMMA 8.1. There is a constant ¢ > 0 such that, for all functions f €
C®(N)andall x € N,

(8.1) (I — ) f )| < el VE fllz@y)
and
(8.2) (I =) f(x) =Ly f(x)+ F(x),
with

|F(x)| < clVy fllLeev)-

COROLLARY 8.2. There is a constant ¢ > 0 such that, for all functions
u,x) e C*°MR x N)andall x € N,

u(t+1,x) — pu(t,x) = (0; + (I — w)u(r, x)
(8.3) 0
_ (E + Lu)u(t,x) ¥ F(t %),
where F(t, x) satisfies

2

|F(t,x)| <c +|Vyul

@M ; .
([t t+1]1xxV)

The following lemma asserts that L, is indeed a sub-Laplacian.
LEMMA 8.3. The ny x ny matrix (a;;) is positive definite.

PROOF. It is enough to prove that

(8.4) Z a;j§i§; >0

I<i,j<n

forall § = (&1, ...,&,) € RM, & 0.
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To this end, let us fix § = (&1, ..., &,,) # 0 and consider the function

u(x) = (E1PL(X) + - + &gy Poy (X))
= Z SZSJPZ()C)PJ()C)

1<i,j<ni
By (8.2),
I — /L)(P,'(X)Pj(x)) = LM(Pi(x)Pj(x)) = —(a;j +aj;)
and hence
(1 —M)M(X)=21 Z a;j&i&;.
<i,j<n
If we had
> aij&is; =0,

1<i,j<m

then we would have (I — p)u = 0, that is, Zyer‘ u(xy)u(y) =u(x), x € N. Since
u(x) = 0, this would imply that u(x) = 0 for all x € 'y, which is false. Hence,
(8.4) holds and the lemma follows. [l

9. Proof of Propositions 1.3 and 1.4 when T is nilpotent. The goal of this
section is to prove Propositions 1.3 and 1.4 when I" is nilpotent. Note that there
is no loss of generality if we assume that the torsion subgroup 7 (I') is trivial and
hence that I' =Ty .

We use the same notation p!(x, y) to denote both the heat kernel of the sub-
Laplacian L, and its restriction to I'y.

The proofs are based on the following lemma.

LEMMA 9.1. There is a constant ¢ > O such that, foralln e N, T > 1,

9.1 1Py — 1" Plloc < c T-PHV2,

PROOF. We have
Phor — W'y =Py — ' plr + 0l —

= Z Mi(Prlf—i+T_MP5—i—1+T)~

0<i<n—1

9.2)

On the other hand, it follows from (8.3) that

)
Py — mpp = (5 +Lu)pzM+Vl:Vz



758 G. K. ALEXOPOULOS

with V; satisfying
2

0
P y)‘ V3P )

So, by (6.10) there is a ¢ > 0 such that

[Viix, y)| <ci

Loo([t t+1]xxV)

9.3) Pl — mpllloo < ct=PHI2 0 > 1,

Combining (9.2) and (9.3) we have

1Py = Prlloc < D M lillpy_ iy r ) = w2y yrlloo

0<i<n—1

<c Y (m—i—14T)" PP

0<i<n—1

<c T_(D+1)/2,

which proves the lemma. [

9.1. Proof of Proposition 1.3.  'We have
1
ot y) = —— > p ) ph (e

w
yeU”r ”pT”OO yeU’r

1
=T(M”p¥(x,e)— > M”(x,y)ﬁ(y,e))
I P7lloo

{y¢U"}

> T(p,,””(x, e) — 1" pf — Phirlloo
Il P lloo

- > M"(x,y)p’}‘(y,e))

{y¢U"}

Let us fix a > 1. Then, by (6.9), there is a ¢ > 1 such that, forall », T > 1,
1
inf{p,’:_T(x, e):xeUY a r?<t< a2r2} > —(a*r* 4+ T)"P?
c

and
2
sup{py(x,e):x ¢ U} < cT_D/Zexp<——T>.
c
Also, by (9.1) there is a constant ¢’ > 0 such that, forall ¢, T > 1,

" Py — Pl glloe < ¢/ T~ PHD/2,
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It follows that, for all (n, x) € [[a—2r2, a?r?] x U,

> wx,y)

yeUr’

2
> lTD/z(l(azrz +T) P2 _p—D+h/2 _ p=D/2 exp<_r_>>,
c c cT

If T = er?2, for some ¢ € (0, 1), then we have

Z w(x,y) > lgD/Z(l(az 4 e) D2 e (D21 CE—D/zexp(_i»
yeUr ¢ ¢ ce

> 180/2(1(612 +1)-Dr
C C

1
—ce~(PHD/2,-1 —ca_D/zexp<——)>. (]
ce

The proposition follows by choosing first ¢ small enough and next r large enough.

9.2. Proof of Proposition 1.4. Define V as in Section 5.3, leta; > a» > 1 and
set

M=Sup{/wzr Ph(y,2)dz:y ¢ U“”}.
We have, for r e N,

> ouenz= Y fvazrurz(e,y)pﬁ‘z(y,Z)dz

yeU4”r yeur
2 2
= | uphlendz— Y] / e, )Py (v 2 dz
ve guary”
2
9.4) z/ woplhle,2)dz—M
yazr r

2
= /V“Y pgrz(e, 2)dz+ /VW (n” pi‘z - pgrz)(e, 2)dz—M

2
= [ Phatendz = 0 s = plallcl VT = M.

Now, by (9.1) there is a ¢y > 0 such that, for all r € N,

2 —D—
9.5) " pls = Phallo <1 r= P71

Also, there is a ¢p > 0 such that

(9.6) V| <carP, reN.
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Combining (9.4), (9.5) and (9.6) we have

2
9.7) Z Mr (e,y) = /Vazr pgrz(e,Z) dz — C1C2aé)r_1 — M.
yeUalr‘

Now let us fix § > 0 and let us chose a; > 1 such that, for all » > 1,

K dz>1 )
[ Photendzz1-5,

Let us choose a; > a; so that M < 9/3 and rg > 1 so that

=2

2. D 1 _ 9
cictayry < 3
Then it follows from (9.7) that

Y wien=1-38

yEUalr

and the proposition follows. [J

10. The proof of the Gaussian estimate when I is nilpotent. In this section
we give the proof of the Gaussian estimate (1.14) when the group I' is nilpotent.
Note that there is no loss of generality if we assume that the torsion subgroup 7 (I")

is trivial and hence that I’ =Ty

10.1. The functions py, k > 1. Let p(x) be as in Section 7 and let the family

of dilations ., € > 0, be as in Section 5.2.

Let V be a compact neighborhood of the identity element e of N, as in
Section 5.3, and let | - | be defined as in (1.7). Then there is a C > 1 such that

(10.1) tyeVECV, kel
Let 0 < ¢ € C*°(N), such that
_ o, for |x|y <1,

¢“”‘L, for |x|y >4,

and set
¢k(x)=¢(71/c\/];x)a k>1.

Then
(10.2) o) =0,  |x|y <k,

and there is a constant ¢ > 0 such that

(10.3) d(x)=1,  |x|y = ¢vk
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Also, if {X1,..., X} is the basis of n introduced in Section 5.1, then for every
n € N there is a constant ¢ > 0 such that

(10.4) | X, Xi, -+ Xi, o (x)] < ck— @@ ++0(n))/2
forallxe Nand1 <i; <g,1<j=<n.
We set
Pr(x) = Pr(x) p(x).

In the next lemma we gather the properties of the functions pi(x) that we
need in the proof of Gaussian estimate (1.14). These properties are immediate
consequences of (7.1).

LEMMA 10.1. For all n € N there is a constant ¢ > 1 such that, for all k > 1
andall1 <ij <gq,1<j<n,

Pr(x) >0, xeN,
pe(x) =0 for|x|y <k,

1
(10.5) Sy Sa) S clrly forlxl 2 ¢k,

C
| Xiy - X, pr(x)] < [T ren.
XN

10.2. The functions Hy, k > 1. For fixed constants A > 0 and B > 0 we
consider the family of functions Hg, k > 1, defined by

(o) + Bmz)

t>0, xeN.
Ak +1)

H (t, x) =exp<

LEMMA 10.2. There are constants A > 0 and B > 0 such that
(10.6) Hi(t +1,x) > uwHi(t, x)
forall (t,x)€[0,k] x N and k > 1.

PROOF. We observe that
Hi(t +1,x) — pHi (¢, x) = Hi(t + 1, x) — H (¢, x) + (I — u) Hi (¢, x)
and that

d
(10.7) Hi(t+1,x)— Hi(t,x) > inf —Hi(s,x).

t<s<t+1 0s

Let V be a compact neighborhood of e, as in Section 5.3, and let us assume that
suppu € V. Then, by Lemma 8.1,

(10.8) |(I — ) Hi (¢, x)| < ¢ sup |V Hi(t, y)|.
yexV
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We have

4y _ 1 1 () +BVE)?
(10.9) EHW’X) RV 1 Hi(t, x).

Also, for all X, Y e€n,

1 1
YH(t,x) = =2 == 2(p) + BVk)Y pi(x) Hi (1, x),

1 1
XY H(t =———"22X Y H; (¢
k(t, x) Akt Pk (X)Y pr (x) Hy (2, x)

(10.10)

L1 2(ox (x) + BVE) XY pr(x) Hi(t, x)

VR GS pr(x) Hi(t, x

1 2
TR e+ BVk) Xpr(x)Yp(x) H(t, x).

Casel (|x|y <~k —1and t € [0, k]). By construction, for all x|y < Vk,

Bk
Hk(t, .X) = exp(—m)

Hence, for all |x|y < vk — 1,
Hi(t + 1,x) > Hi(t, x) = (WHp41 (2, ) (x).

Casell (Wk—1<|x|y <¢vk+1and0 <t <k). By (10.7)and (10.9) there
is a ¢1 > 0 such that
1 Bk
Hk(t,x)Z—
Ak+t+1k+1t+1
1 BZH(t )
S VET R

Also, by (10.8) and (10.10) there is a constant ¢ > 0 such that

Hy(t+1,x)—

H (t,x)

1 1 1
(I — W) Hi(t, )] < Zk—ﬂ[@wh BB+ o

1

k+ BVk)—

+ (e + f)\/];
+%%(cz\/lz+ B\/%)Z] Hi(t,x)
1 1
Ak+t

=

[cm +B)+er+ (24 B)

1
+ Z(cz + B)Z} Hi (1, x).
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Hence
Hk(t + l’x) - I'LHk(t7x)

11 B?
|: 1——C2(02+B)—Q—(Cz-f—B)——(Cz-f—B) i| H; (1, x).

A k+1t 2
So, by choosing B large enough that
BZ
i >at c2(c2 + B) +c2(c2 + B)

and A large enough that
2

C > cy+ B
1 { A 2

we have
Hi(t +1,x) > uHi(t, x).
Case III (|x|y > ;\/% 4+ 1and 0 <ft <k). By (10.7) and (10.9), there is
a c; > 0 such that

1 1 (cilxly + BVk)?
Hy(t+1,x)— Hy(t,x) > — Hi (¢, x).
(@ +1,x) (2, x) Ak+1 % (2, x)

Also, by (10.8) and (10.10) there is a co > 0 such that
|(I — ) Hy (2, x)|

[cz<cz|x|N + BVE —— 4 cr + ex(ealxly + BVI)——

S_
Ak+t lx| v x| v

11
+ cr(ealxly + Bx/z)z] Hi(t, x)

Vk

2+c2 +cB——

lx|n x|

o, Lelxiy + BVk)?
*A k

= — c5+cpB——
+t|:2 2

i| H (t, x)

1 1
<
T Ak+t
Hence
Hi(t+1,x) — nHi(t, x)

11 BVk)?
Ak+t|:(C1|X|N2—It vE —c%—c%B—c%—czB

1 (calx|y + BVk)?
A k

|:CZ+CZB +C2+CZB+ i| Hi (2, x).

2
_ 021<cz|x|N+Bw€> }Hk(t,x).

A k
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So, by choosing B large enough that

(c1lx|y + BVk)?

7 >cy+c3+ca+ Bl + B

and A large enough that

1 1
(v + BVk)? > er(ealxln + BV)?
we have
Hi(t +1,x) > uH (¢, x). ]

10.3. Proof of Theorem 1.8. It is enough to prove that there is a ¢ > 0 such
that

2
(10.11) M”(x,e)fcn_D/zexp<—%>, n>1, xeN.
cn
Let us fix constants A > 0 and B > 0 such that the family of functions
2
_@+BVERY
Ak +1)

Hi(t,x) = exp(

satisfy (10.6).
Let us consider the function

u(n,x)= Z wt(x,y), xely, neN.
yeU‘/E

Let us also fix a constant C > 0 such that
CH(0,x)>1, x|y <3k,
and consider the function
F(n,x)=CH(n,x) —u(, x).
Then F (n, x) satisfies
Fn+1,x)>uF(n,x), xely, nel0,k]
F(0,x) >0, x eIy,
and hence

(10.12) F(t,x) >0, tel0,k], xeT'yn.
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It follows that, for all x e 'y and k > 1,

(px(x) + BVK)?
Z Mk(x,y)SCexp(— )
s 2Ak

On the other hand, it follows from (1.9) that there are 8 € N and A > 0 such that,
forallx eI'y andn e N,

W' (x,e) < A inf{uf(x, ),y e UV

Since |U"| < cnP, n e N, we have that

1
n Bn
n (x,e)fx\lUﬁ| > wxy)
yeUﬁ
2
< 2en P Cexp (_ (ppn(x) + B/Bn) )
2ABn

for all x € 'y and n > 1. This proves (10.11) and the theorem follows. [J

11. The proof of the Berry—Esseen estimate when I' is nilpotent. In this
section we assume that I' = I'y. If I" is nilpotent and the torsion subgroup 7 (I") is
not trivial, then we can just extend the different kernels from I'y ="'/t (") to I,
as explained in Section 1.4, and then the proofs remain exactly the same.

Let L, be the centered left invariant sub-Laplacian associated with p and let
p/ (x, y) be its heat kernel L.

By (4.2) there are y € (0, 1] and ¢ > 0 such that

(I1.1) IVyu"loo <cn™PH2 0 neN.

In this section we prove the following Berry—Esseen estimate (cf. [20, 34]):

THEOREM 11.1. Thereis a c > 1 such that, forall x,y € 'y andn € N,

(11.2) 11" (x, y) — pH(x, y)| < ecn=PTV/2,

Once we have proved Theorem 1.14, then (11.1) and hence (11.2) will hold with
y=1.

For the case when u is symmetric, the above result was proved for y =1 in [2].
We give below an adaptation of that proof.

Let 2 be a fundametal domain for I'y (see Section 1.3) and let

Si(x,y) =/Qp#(xh,y)dh, x,yely.

The proof of (11.2) is based on the following two lemmas, which are inspired
by [14] (see also [7, 41]).
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LEMMA 11.2. There are constants a, b > 1 such that,forall T > 1 andn € N,

(113) 1" = plllse <all (" — p)Stlloo + bVTn=PH1/2,

LEMMA 11.3. There is a constant ¢ > 1 such that if, for some n € N,

(11.4) Ik = pllloe < AK~PII2 forall 1 <k <n—1,
then
(11.5) H(M"__pM)ST”“,<C<14__é_>n—(n+yv;

n — ﬁ

PROOF OF THEOREM 11.1. If
Ik — pllloe < AKTPTN2 Y <k <n—1,

then by (11.3) and (11.5),

AN ipiorn e
||M"—Pﬁlloo§a0<l+ﬁ>n BN 4 p TP/
A —(D+y)/2
<(ac+ac—=+bVT |n V2
JT

So (11.2) can be proved by induction provided that for all A large enough there
isa T > 1 such that

A
11.6 ac+ac—+bﬁ§A.
(10 NG

To this end, let us consider the function
1
¢(x)=ac+acA—+bx
X

(note that a, b, c > 1) and take

A
A>9202* and T:%%.

Then we have
w(ﬁ ) < A.

This proves (11.6) and the theorem follows. [
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11.1. Proof of Lemma 11.2. Let us set
Hy(x,y) =p"(x,y) — py (x, )
and assume that
—[Hylloo =min{Hy(x, y), x,y € 'y}

(the case ||Hy|lco = max{H,(x,y), x,y € 'y} can be treated in the same way).
There are xq, yo € I'y such that

Hy, (x0, yo) = — | Hy |l -
Then
_”HnST”oo =< Z H, (xo, Z)ST(Z7 yO)

zel'y

= H, (xg, yo) Z St(z, y0)
Ivg 'zlry <ev/T

+ > [Hu(x0,2) — Hy(x0, y0)1ST (2. Y0)
lyg ' 2lry <ev/T

+ Y Hu(x0,2)S7(z, y0)
Iy(;lz\rNZC«/T

<—[Hullo Y.  Sr(z.y0)
vg 'zlry <eVT

+eVTIIVyHy(x0. )lloo Y. S7(z.30)
Ivg 'zlry <ev/T

HlHalloo Y. S7(zy0)-
vg '2lry =T
Hence, if
A= > Sr(o),
vg '2lry <eVT
then
~ N HuStlloo < =1 Hnllooh + cV/TAn™ P2 4 || Hy o (1 = 1),
or
QA = D[ Hylloo < |Hy St lloo + cANTan™PH0/2,
By choosing ¢ large enough, so that A > 1/2, we get

| Hylloo < || Hy ST lloo + VTn=P+r)/2,

¢
20 —1 2a—1
which proves the lemma. [
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11.2. Proof of Lemma 11.3. It follows from (6.10) that there is a ¢ > 0 such
that, forall x,ye 'y and r > 1,

Pty r (s ) = piSr (e, )| < et PHD,
So, it is enough to prove that
(11.7) |1 St _P5+T||oo §C<1+i>n_(D+y)/2.
JT
We have
Py — 1St =phr — 1l " Pl — Sy

= Y WPhiir — Py i) (P — 1ST)

0<i<n-—-2
= Z ! (pZL—i+T - I’Lptlb—i—l-i-T)
0<i<n/2
(11.8) + > (W =P P — Pyt

n/2<i<n—2

+(u" ' - Prlf—l)(PﬁT — 1St)

+ Z P#(PZL—HT - I’LprI;L—i—l-i-T)
n/2<i<n—2

+ Py (P17 — 1ST).
Now, by (6.10) and (8.3),

S Pk — mph il

0<i<n/2
<c Y (—i—1+T)" P2
0<i<n/2
(11.9) n —(D+1)/2
<clz+T
=(5+7)
SC”—(D-H)/Z'

By the induction hypothesis (11.4),

> M =Pl Py — Py iirlh
n/2<i<n—2
(11.10) = 2 A Sl D

n/2<i<n—2

AL~



RANDOM WALKS ON GROUPS 769

To estimate the term p’l“L+T — uSt, letus consider the function ¢ =3, u(g) X
1gq. Then

uSr(x, y) =/<p<h>p¥<xh, Wdh,  x,yeTly.

Since ||l¢||; = 1, it follows from (6.10) that

c
luSr — prlh < —, T=>1.
Since we also have
c
IIP¥+1—P#II1§?, T>1,

we conclude that

("= = P ) (Pr — ST oo < !

_'ps;1”aanp?+T'_/LST”1

(111D cep L~

To estimate the remaining term in (11.8) we observe that

Z PiM(PZL—iJrT - MPZL—i—1+T) + Prlf—l(l’ﬁT — St)

n/2<i<n—2

w I I
(11.12) = Pln/2+1Pn—[n/2— 14T — P i ST
© [N’
+ Z (Pi = Piit) Pu—ic1ir-
n/2<i<n—2

By (6.10) and (8.3),
Yoot — el P il Y i PEIR
(11.13) n/2<i=n-2 n/2<i<n—2
< en~(DHD/2,

Also, by (6.10), for all x, y € T'y,

Pryr () = 3 Pl (6 Py _jjy-147@ )| < en”PHD2
zely
and
Py = Y P (6, (ST (z, )| < en”PHD,
zely
Hence
(11.14) | Pfu /2141 P2 147 = Pr—tiST lloo < en™PFD2,

The lemma follows by summing (11.9)-(11.14). O
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12. Proof of the Taylor formula. In this section we give the proof of the
Taylor formula (1.18) under the assumption that the Berry—Esseen estimate (11.2)
holds.

We assume that 'y = I'. The proof in the general case under a similar
assumption (cf. Section 17) is exactly the same.

If I is nilpotent and the torsion subgroup t(I") is not trivial, then we can just
extend the different kernels and functions from I'y = I"/7(I") to I', as explained
in Section 1.4, and then the proofs remain exactly the same.

12.1. Polynomials on T'y. We use the notation of Sections 5 and 6.
Let us fix a monomial P(¢, x) = tioxll' .- -x;". Then, by Corollary 8.3,

]
@1+ —w)P@,x)= <§ + LM>P(t,x) + 0(t, x),
where Q(¢, x) is a polynomial satisfying
(12.1) degy O <degy P — 3.
On the other hand, it follows from (6.5) and (6.6) that, given any monomial P (z, x)

as above, there is a polynomial W (¢, x) such that

0
<a + LM>W(t,x) =P(t,x)

and
(12.2) degy W(t, x) =degy P(t,x) + 2.

The following proposition is a consequence of the above observations.

PROPOSITION 12.1.  Given any monomial P(t, x) on N, there is a polynomial
PH(t, x) satisfying
a
(5 + LM)P = (01 + (I — ) P,
Pr=P+ W,
degy W <degy P — 1.

(12.3)

Let the polynomials P;, i = 0,1,2,..., be as in Section 6.1 and let us
associate with those monomials and the sub-Laplacian L,, polynomials Qp,,
i =0,1,2,..., satisfying (6.6). We associate with the polynomials Qp,, i =
0,1,2,..., and fix, polynomials Q”i, i=0,1,2,...,satisfying (12.3) above.

Note that for 0 <i < v, we can take Qﬁi = P;. Note also that vy =0, v; =n;
and n; < ny < vy. So we assume that Py(¢, x) = ’;,O(t,x) =1, that P;(t,x) =
Q’;,i (t,x) =x;,for 1 <i <vy, and that P, = Q’;,i, forv; <i <.
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12.2. A uniform approximation of a space—time (-harmonic function by an
L,,-heat function. In this section we use the Berry—Esseen estimate (11.2) to
prove the following lemma:

LEMMA 12.2. Let V be as in Section 53 and let us assume that
suppu € V. Then there is a constant ¢ > 0 and B € (0,1) such that for all
O >40,, ©r > 2, r > 1 and all functions u satisfying

B+ —wu=0  in[-03r%, 072 x U

we can associate a function u** satisfying

9 .
(E + Lﬂ>u“ =0  in(—03r%, 035r%) x VO

as well as || u"||oo < ||t]loo and
(12.4)  supllu—wl; [, 20 x U7} < c@3 7P 4 coH/e€3,

As in Section 3.2, we use Z, to denote the right random walk with transition
kernel u(x, y) and by 7 the stopping time

tr =inf{n:Z, ¢ xU"}.

Using the Gaussian estimate (1.14), we can obtain the following improvement
of Lemma 3.4.

LEMMA 12.3. There is a constant ¢ > 0 such that, forallr,n € N,

2
(12.5) Pyt <n] §cexp(—r—>.
cn

PROOF. The proof follows the same lines as the proof of Lemma 3.4.
Leta > 1 suchthat xU" N yU" = & when y ¢ xU?". We have

Y 1, y) = PilZ, ¢xU"]

y¢xU”r .
> D[ (Zgy Ty \ xU"); 75, < ]
> EP [ (Zey,, Zey U 7 <)
> EP W% (e, UT); 7, < n).

Now, we observe that (12.5) is interesting only for 72 > n and that in that case,
by (1.14), there is a § > O such that

W' (e, U") > 8.
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So

3 put(x,y) = 8Pl < 7.
yéxu”r

Since, by (1.14), there is a constant ¢ > 0 such that, forall r,n € N,
2
r
> owixy) < ceXp(——>,
yexu”r cn

we conclude that

. 1 r2
Pz, <n] < gcexp — )

which proves the lemma. [

LEMMA 12.4. Letr,n € N and let u be a function satisfying
B+ —w))u=0  in[—2n,2n] x xU>.
Then

(12.6) u(n,x) — > " (x, ))u(0, y)| < 2lulloo Pl <nl.
yexU"

PROOF. We have
u(n, x) = E™[u(0, Z,); 1% > nl + EP[u(t}, Z): 1f <n]

= Y (W) — EP [T (Zer )i T < n])u(0, y)
yexU"

+ EPu(ty, Zey); Tf < nl.
Hence
u(n,x)— Y p"@x, yu,y)
yexU"
< ulloo(EP* [0~ (Zer, xU"); T < 0] + Pyt < n))
< 2lulloo Pxlr;) <n]

and the lemma follows. [

PROOF OF LEMMA 12.2. Let u satisfy

B +UT-wu=0 in[[-6}r? 61 xxU®"
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and let us define, for n > —®%r2 and x € I'y,

mmx) =Y @O, yu(—632, y)
yeU("‘)lr/z
and for r > —@%rZ, X EN,
2.2
Wt = ) Pt (=037 y).
yeUgl’/z
Now by (12.5) and (12.6),
(127 sup{lu — u1]; [ — ©3r%, @3] x U} <2|jullco P[5, /o < ©377]

2 2
< cllullooe®1/02,

Also, by interpolating the Berry—Esseen estimate (11.2) and the Gaussian
estimates (1.14) and (6.9), we have that there is a § € (0, 1/2) such that

Iu" — plil < cen”P, neN.
It follows that
(12.8) sup{|u; — u”|; -2, 2] x U'} < C||M||oo@2_ﬁr_’3.
The lemma follows by summing (12.7) and (12.8). U

12.3. The iteration argument. The following lemmas are inspired by Avel-
laneda and Lin [9, 10].

LEMMA 12.5. Foralln e Nandn € (0, 1) therearery > 1,0 > 1l andc, >0
such that, for all r > ro and all functions u satisfying
(12.9) 4+ T —wW)u=0 in[-0%*% 0% xU%,
we have

u— Y Ai©r) e tigh

0<i<vy,

(12.10) sup{

| e | U’} <O |1y o

where the constants A; satisfy
|Ai] < ca(log ©)“EH M jul o,
forall 0 <i <v,, and

@1+ —M))( Z AiQﬁ) =0,

Vg—1=<i<vg

foralll <d<n.
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PROOF. Letus fix n e N, u € (0,1), ® > 16 and a function u satisfying
(12.9).

Then, by Lemma 12.2 and by taking ®; = ® and ®; = ©/log®, there is
a function u* satisfying

0 ® 2 ® 2
<— + LM>MM =0 in |:_< ) }"2, ( ) r2i| > V@r/log@)’
at log® log®

as well as

[ lloo < llutlloo

and

sup{lu — utf; [=r2, 72 x U"}
(12.11) 2
< cllulloo(© P (log ©)Pr—F 4 ¢=(102®)7/c),

Also, by Theorem 6.2,

® —degy P;
" B; .
supi u Z <log®r> Op,
(12.12)

0<i<v,

(—® )_(nﬂ)n a
< I
cn log® 1 e

where the constants B; satisfy

[—r2, 13 x Vr}

|Bi| < cnllu’ |l oo,
forall0 <i <v,, and
d
(8_+L“ Z BiQp (t,x) ]| =0,
f Vi—1<i<vq

foralll <d <n.
Now let us observe that there is a constant ¢ > 0 such that

sup{|Qp, — Ol | [—r?. r*] x V'} < crdeen Fil

and hence
® —degy P;
(12.13) © \ degn Pi
§c< ) rL
log®
Let us take

A; = B;(log@)%enti 0<i<y,
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Then, combining (12.11), (12.12) and (12.13), we have that

sup {

u— Yy Aj©r)ytentigh

0<i<v,

[=r2, r2] x U’}

ut — Z B;(log @)degH P; (@r)—degy P; Op

0<i<v,

fsup{ ;[I—rz,rz]]XUr}

+ sup{|u — u*|; [—r2, 2] x U}
+ Y |Bi|(log®)%n Fi(@r)~%tn Fisup{|Qp, — O I [r*, r*1 x U"}

0<i<v,
< ;0 "D (log ©)" ! oo + cllulo((log ©)F ©Fr~F 4 ¢~ (02O V)
+c(log®)"@~'r~1 3" |By|

0<i<v,
< cn® D (10g ©)" ! oo + ¢t oo((log ©)F ©Fr =P 4 ¢~ (02O /c)
+c(log ®)"O 7 r e, v, llull o
The lemma follows by taking ® and rg large enough. [
LEMMA 12.6. Let i, ® and ro be as in the previous lemma. Then there is

a constant c, > 0 such that, for all m e N, all r > @m_lro and all functions u
satisfying

(1214) @G+ -wu=0  in[-0™"r ™" x U,

we have

sup{u— > A;"(@mr)_degHPi .
(12.15) ’

0<i<v,

<@ |1y o,

S=r?, 21 x Ur}

where the constants A} satisfy
d P;
|AY" < cn(log ©) 81 M |u| oo,
forall 0 <i <v,, and

(al+<1—u>)< > A:-”Qﬁ)zo,

Va—1<i<vg

foralll <d<n.
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PROOF. We prove the lemma by induction on m. For m = 1 we are in the case
of the previous lemma. So let us assume that (12.15) is true for some m € N. To
prove that it is also true for m + 1, let us assume, for simplicity, that ||u|.c < 1.
By the induction hypothesis

sup{

‘We consider the function

w =@t = <u — Y Ar@mty)deen P Q%)-

0<i<v,

u— Z Alm(®m+1r)—degﬁ P; Ql;)l

0<i<vy,

: [[_@2,.2’ @2’,2]] % U@f} < ®_m(n+77)‘

Then
@+ —w)w=0  in[-0°* 67 x U
and
sup{|wl; [—©%r2, ©%r?] x U®’} <1.

So, by Lemma 12.5, we have that

sup{

where the constants B; satisfy

w— Y Bj(©r)yentigh

0<i<v,

; [[—rz, r2]] X U’} <@t

|Bi| < cp(log @) ~4een Fi,
forall0 <i <v,, and
(01 + I — m)( 3 B,-Qﬁ,.) —0,
Vi—1<i<vg

forall 1 <d <n.
So, if we set

A;”“ = A"+ @ mintn—degy Pi) p.

then we have

sup{

which proves the inductive step and the lemma follows. [J

1 1_\—d P;
u— Y Arti et high

0<i<v,

;[[_rz’rz]] « Ur} < @-(m-&-l)(n-i-n)’
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12.4. The Taylor formula. The following result is the analogue of Theo-
rem 1.11 when I' =T'y.

THEOREM 12.7. For all n € N there is a constant ¢, > 0 such that, for all
R >r > 1 and all functions u satisfying

4+ T —w)u=0 in[-R* R x UK,

sup{u— Z AiR_degHPiQ’;,i
(12.16) 0=i=vn

R —(n+1)
< cn(7) lulloo,

where the constants A; satisfy

we have

=72, r2] x Ur}

|Ail < enllulloo,

forall 0 <i <v,, and

(01 + —M))( Z AiQ’é) =0,

Va—1<i<vg

forall1 <d <n.

PROOE. If R > r > rg, then "1y < R < ®"r for some m € N and hence
(12.16) follows from Lemma 12.6.

If R>rg>r>1,then R/r <rgR/rg and hence (12.16) follows in the same
way from Lemma 12.6.

If ro>R>r>1,then (12.16) is trivial. [

13. Harmonic functions of polynomial growth. In this section we give the
proof of Theorem 1.12. We assume that 'y = I". The proof in the general case
is exactly the same. If I" is nilpotent and we have set 'y = I'/t(I"), then we can
just extend the different polynomials from I'y to I" (see Section 1.4) and then the
proof below also works as is.

PROOF OF THEOREM 1.12. Let u be a p-harmonic function on G which
grows polynomially; that is, there are ¢ > 0 and n € N such that

(13.1) sup{lul; U} <cr", r>1.

Let the polynomials Q’;,i (t, x) be as in section 12.1 and let us denote by Q%‘ (x)
their restrictions to NV, that is, Q’;,i (x)= Q’;,i 0,x),x e N.
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By (12.16), there is a ¢ > 0 such that, for all r > k

L r —(n+1)
.U }“(E) ull 2o oy

< ck"+1r_1,

u— 3 Arlentigh

0<i<v,

(13.2) SUP{

where the constants Af are such that

(1—u)< > Afr_degHPiQ(fai>=0.

0<i<v,

For each k € N, let us choose r; € N such that

ck"“rk_1 < l
k
We set C; =0, for Q’“Li =0 and
Cri = Al 8 P
otherwise. Then (13.1) and (13.2) imply that there is a ¢ > 0 such that, for all
keN,
1

(13.3) sup{ u— Z Ck,iQ’“Li ;Uk} < =

0<i<vy,
with
(13.4) (I - u)( > ck,,-Qgi) =0.

0<i<vy,

Now, there are a subsequence ij, ; and constants C; such that
(13.5) ij,,- — C; as j — 00

forall0 <i <v,.
To see this, let us observe that if this were not the case, then we would have that

My =max{|Ci i|l, 0 <i <v,} = 00 as k — oo.
Since IC"’i |/ M} < 1, there are a subsequence Cket and constants B; such that
Ckz,i

My,

— B; ask — o0

for all 0 <i < v,. Note that the subsequence C*! can be chosen is such a way
that some of the constants B; are equal to 1 (and hence not all of them vanish). Let

R(x)= ) BiQ% (x).

0<i<v,
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By (13.3)

i(u(x)— Z Ck”Q%(x)> —-0 ask — oo

¢ 0<i<v,

forall x € I'y. So, R(x) =0 for all x € I'y.
Since

> BiPi(x)

Vn—1<i<vp

sup{|R(x)|; U"} ~ sup:

;U’} as r — 00,

we have that

Y BiPi(x)=0, xely,

Vn—1<i<vp

and hence B; =0, v, <i <v,.

Arguing in the same way, we can prove successively that, for all k =n —
1,...,1, B =0,vk_1 <i < v, and that By = 0. This is absurd because, by
construction, not all of the coefficients B; vanish. We conclude therefore that (13.5)
holds.

By letting j — oo, it follows from (13.3) and (13.4) that

u@)= Y CiQpx)

0<i<vy,

for all x € I'y and the theorem follows. [

14. The homogenized sub-Laplacian Ly ,. The goal of this section is to
define the homogenized operator Ly, associated with the centered probability
measure i on I', when I # I'y. Ly, is a centered left invariant sub-Laplacian on
N which, with the notation of Section 6, we write as

Lyy=— Y qijXiXj— Y 4¢iX;.
1<i,j<m ny<i<np
The coefficients g;; and g; is are constant [and the ny x n; matrix (g;;) is
symmetric and positive definite].
The way Ly, and p are related is illustrated by (14.9) below.

14.1. The coefficients a;j and a;. Let f € C°(N) and let us extend f to I" by
setting f(xg;) = f(x),x €'y, 0<i <k.

Let the monomials P; be as in Section 6.1. We extend these monomials to I" by
setting P;(r, xg;) = P;(t,x), x € N,0 <i < k. We set P;(x) = P;(0, x).
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Let
bi(g) =Y Pi(gehyu(h),  1<i=<ny,
hel
aij(g) =Y _ Pi(geh)Pj(geh)u(h),  1<i,j<ni,
(14.1) her
a;(ge) =bi(ge), 1 <i<ny,
ai(@)=bi(g)—5 Y. an(@)pIXo. Xy,  ni<i<n.

1<i<u<n
Note that, by setting a;(xg¢) = a;(g¢) and a;j(xg¢) = a;j(ge), x € I'y, these
coefficients become functions of type P (cf. Section 1.4).

LEMMA 14.1. We have

(14.2) Y ai(g)=0, 1<i=<ni.
0<l<k

PROOF. If g =xg, with x € 'y and 0 < £ < k, then, using the notation of
Section 1.3, we set gy = x and g = g¢. Let

G(g) =Y Piwg), 1<i=<ni.

Clearly, to prove (14.2) it is enough to prove that

(14.3)  G(@u(g =0, 1<i<n.
gel

We have

¢i(gh) = Z P;(wgh) = Z Pi((wg)nvwgh)
= Z Pi((wg)n) + Z Pi(wgh) = Z Pi(wg) + Z P;(wh)

= {i(g) + ¢i(h).

This shows that the functions ¢;, 1 <i < ny, are additive, and hence (14.3) follows
from the definition of a centered probability measure. [J

Let V be as in Section 6.5 and let us also assume that (g¢h)y € V for all
hesuppuand 0 <i <k.

The following lemma is a consequence of Lemma 5.3 and (14.1) and (14.2)
above.

LEMMA 14.2. Let f be as above. Also, let \r be a function of type P. Then
there is a ¢ > 0 independent of f such that, for all x € 'y and 0 < £ <k, the
following hold.
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@)
I-wfgd=— Y a@)Xifx)—% > aj@)XiX;fx)
(14.4) 1<i<n 1<i,j<n
— > ai(@)Xif(x)+ F(xge)
with

|F(xgo)l < clIVx fllLwwvy;
(i) forall1 <v <ny,
(I — )Xy f)(xge)
45 (=) EOX f) — Y R PY@OXi Xa f () + F(xge)

1<i<nm;
with
|F(xgo)| < cllVy fllLoqv)-

14.2. The correctors and the homogenized operator Ly,. The definition of
the correctors ¥/, j=1,...,n1, is motivated by (14.4).

DEFINITION. We define the (first order) correctors wj, 1 <j<ng(ct [13,
26)), as functions of type P satisfying

(14.6) (I —wy! =a; and (') =0.

Note that the correctors ¥/ are well defined and they are given by ¥/ =
Y nsom'aj, 1 < j <nj(cf. Section 1.4).
Let
bij(ge) = > v/ (geh) Pi(gehyu(h),  1<i,j<n.
hel

If f is as in Lemma 14.2, then combining (14.4), (14.5) and (14.6) we have that,
forallx eI'y and 0 < ¢ <k,

(I - m(f + ) ‘/ijjf>(x8€)

1<j<n

(14.7) =— Y (3aij(ge) + bij(8)) Xi X, f (x)

1<i,j<m

— > ai(@)Xi f(x) + F(xge)

ny<i<np
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with
|F(xge)| < cllVy fllLoavy-

The following definitions are motivated by the expression (14.7) above.

DEFINITION.  The homogenized sub-Laplacian Ly, associated with ( is
defined with be the operator

Lup=— ) aXiXj— ) aiXi

1<i,j<ni ny<i<np
with coefficients defined by
qij = (3aij + bij), 1 <i,j<ni,
gi = (bi), ny <i<nj.
DEFINITION. We define the (second order) correctors Wj , 1 <i,j<ny(cf.
[13, 26)), as functions of type P satisfying
(I — ¥ = 3aij + bij — qij, (y) =0.

We also define the (second order) correctors wj, ny < j < nj, as continuous
functions on M satisfying

U —wy/=aj—q;,  (W)=0.

The following lemma is a direct consequence of (14.7) and the above
definitions.

LEMMA 14.3. Thereis a c > 0 such that, for all functions f asin Lemma 14.2
andall x ey and 0 <€ <ny,

(14.8) < Vi fllLewy),

(I—M)<f(Xge)+ > W(ge)Xjf(X)>

1<j<ny

(14.9) (I—u)<f+ oowixif+ Y w"ijf>=LH¢f+F

1<j<n; 1<i,j<n

with the function F satisfying

|F(xge)| < cl|Vy f(X) oy
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COROLLARY 14.4. Let u € C®°(R x N) and let us extend u to R x I' by
setting u(t,xge) =u(t,x),x €'y, 0<¥€ <nj.Also, let

Ut xgo) =ult,xg)+ Y ¥ ()X u(t, xge)

I<j=<ny
+ Z W (g0) Xi X jult, xgp).
1<i,j<n;

Then there is a constant ¢ > 0 independent of u such that, forallt e R, x € N and
0<{<k,

0
(1410) UG+ 1xgo) = wU g0 = (5 + L UG + V(1. xg0)
with

IV (t, xge)| < c1 + + |Vyu(t, x)|

0
Vx—u(s,x)
os

82
‘@u(s,x)

L°°([t,t+1]xxV)'

14.3. Ly, is a centered sub-Laplacian on N. The following lemma asserts
that Ly, is indeed a sub-Laplacian on N.

LEMMA 14.5. Forall§ = (§1,...,&,) e R", E #0,
(14.11) > qij&igj > 0.

1<i,j<m;
PROOF. Letus fix§ = (&1, ...,&,,) # 0 and consider the function
u= Y EPi+y).
1<i<m

Since by construction (I — w)(P; + wi) =0, 1<1i <ny, we have that (I — u)
x u = 0; that is, u is w-harmonic. Since the function f(¢) = 12 is convex, we have
that (I — pw)u? <0.

We have

W= Y &EPHYIP +Y)

1<i,j<m;

= Y EEPP+PY + Py YY),

1<i,j<m;
By Lemma 14.2, for 1 <i, j <ny,
(I —w)(PiPj) = —Piaj — Pja; — ajj,
(I —w)(Piy)) = Piaj — bij,
(I —w)(Pjy') = Pja; — bji.
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Hence
(I = (P + )P + Y] = —aij = bij — bji + (I = W Y.
It follows that (I — p)u? is a function of type P. Since ((1 — M)(Wiﬂj)) =0, we
have
(I = W (P + ¥ (P + ¥ 7)) = —2435.
Hence
=’y ==2 3 qi§'€’.
I<i,j=<n
Now, if we had Y"1 j<,, gij&i§j = 0, then we would have (I — p)u? = 0.

Since the function f(r) = 12 is strictly convex, this would imply that u =const,
which is absurd. [J

15. Proof of Propositions 1.3 and 1.4 in the general case. The proof of
Propositions 1.3 and 1.4 in the general case is similar to the proof in the case
I' = I'y (see Section 9). The only difference is that instead of Lemma 9.1 we must
use the following generalization:

LEMMA 15.1. There is a constant ¢ > 0 such that, foralln e N, T > 1,

H H _
(15.1) |puis = 1" pp ¥l < c T-PHD2,
PROOF. Let
H i H j H
U =p, " Z lpJijz *— Z WUXinp, -
I<j=<ny I<i,j<n

By (6.10), there is a ¢ > 0 such that, forall 7 > 1 and t > 0,
Xl s G120 XX p g < € (64 TP

So to prove (15.1) it is enough to prove that there is a ¢ > 0 such that, forall 7 > 1
and r > 0,

(15.2) 1Ups1 — 0" Urlloo < e T~PHD/2,
By (14.10) and (6.10) there is a ¢ > 0 such that, for all # > 1,
(15.3) U1 — pUilloo < et~ PHI/2,

We have

Untr — WUt = Upsr — "' Uty + 1" 'Urir — 0"Ur
= > W (Un-itr — mUn—i-147).

0<i<n—1
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So, by (15.3),
1Unsr — ' Urlloo < D I il Unzier — #Un—i—147lloo
0<i<n—1
<c Z (n—i—1+41T)"P+I/2
0<i<n—1

and the lemma follows. [

16. Proof of the Gaussian estimate in the general case. The of proof of
(1.14) follows the same lines as in the case 'y = I (see Section 10). The only
change is that we must replace the functions Hy by their modifications Uy, k > 1.

16.1. The functions Uy. Let the family of functions p; be as in Section 10.1,
letus fix A > 0and B > 0 and let

(o (x) + Bﬁ)z)
Ak +1) ’
We extend the functions p; and Hy to I' by setting px(xg¢) = pr(x) and
Hi(t,xg¢) = Hi(t,x), x €Ty, 0< € <k.
We do the same for the derivatives XY ---ZH, X, Y,...,Z en.
We consider the functions

U = Hy(t,x) + Z v X j Hy.

1<j<n;

Hk(t,x)zexp<— t>0, xeN.

LEMMA 16.1. There are constants A > 0 and B > 0 such that, for all k > 1,
t €[0,k] and all |x|r < ak,

(16.1) 0< %Hk(t,x) < Ur(t,x) < 2Hi(t, x)
and
(16.2) Uit +1,x) > nUg(t, x).

PROOF. Forall X € n, we have

1 1
(16.3) X Hy(t, x) = AT 2(p(x) + BVk) X (x) Hi(t, x).
It follows that there is a ¢ > 0 such that, for all |x|r < ak,
1 B
| X Hi (2, x)| < CK<a + —)Hk(t, X),

N

which proves (16.1).
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The proof of (16.2) is similar to the proof of (10.6) in the case I' = I'y. We
observe again that

Ut +1,x) —pUr(t,x) =Ur(t+1,x) — Up(t,x) + (I — n)U(2, x).

Since the correctors ¥/ are functions defined on I'/ I"y, which is finite, there is
a ¢ > 0 such that

d
Ue(t+1,x)— Ui(t,x) > inf{a—Hk(s,x); selt,t+ 1]}
s

0
Vx —H(s,y)
as

—csup{ ;se[t,t+1],yexV}.
Also, by (14.8),
(I — WUx (2, )| < csup{ VR Hi (¢, y); y € xV}.
It follows that
Ut + 1, x) — nUi(t, x)

> inf{in(s,x); selt,t+ 1]}
(16.4) ds

0
- CSUP{ ‘VX$H1¢(S, y)

;se[t,t—i—l],yexV}

— csup{ Vi H(r, y); y e xV}.
As in the proof of (10.6) we observe that

a _ 1 1 (@) +BVk?
(16.5) EHW’X)_quLt " Hi (2, x)

and that, for all X, Y en,

0 1
—XH(t,x) =

1 ok(x) + Bk
ot Zk+tP PRPREREACY
(ok(x)+BVE)?1 1
B k+t Xk+t2(pk(x)
(16.6) +BVE) Xpe ()| Hit. )

11 (x) + BVk

= [2” k Xpi(x)
Ak+t k—+1t

1

1
A(k+1)2

(i) + BV Xpu o) | Hi )



RANDOM WALKS ON GROUPS 787

and
XY H(t,x)

— L L Ly 2( BVk)XY
(16.7) __Zk—th[ Pk ()Y pr(x) — 2(px (x) + )XY pr (x)

+1 1
Ak+1)

Case1(|x|r <~k —1andt €[0,k]). By construction, for all |x|r < vk,

4pe0) + BV Xpr (o) | 1. ).

B’k
Ur(t,x) = Hi(t,x) = exp(—m).

Hence, for all |x|p < vk — 1,
Ut 4+ 1,x) > Ui(t, x) = (wUk41(t, ) (x).

Case 11 (\/I;—lflxlrié\//;+land0§t§k). Then by (16.5)—(16.7)
there is a ¢ > 0O such that
Uk(t+17x)_MUk(t’x)

1 1 [ Bk cvk + BVk

— —c

T Ak+rt+1Lk+k+1 k

—c%k—IZ(c«/E+ BVk)Y —c—c(evk + B\/E)%
—c%%(cx/z—i- BVk)? — c(cvk + BVk)

1 1 [32 c+B 11

> - | T e B)?
= Akriril s Tk Cagmet®

—c—c(c+ B) —c%(c—i— B)> —c(c + B)]Hk(t,x).

i}H(tx)
N k(7

So, by choosing B large enough that
B2
3 >+4c(c+ B)+c+c(c+ B)+c(c+ B)

and then A large enough that

B2 1
— >

1
5 CK(C+B)3+CK(C+B)2’

we have

Ur(t + 1, x) > pUr(2, x).
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Case Il ((k+1 < |x|r <akand0 <t <k). Then by (16.5)-(16.7) there is
a ¢ > 0 such that

Uk(t + 17x) _/*'LUk(t’x)

11 [<|x|r+Bﬁ>2 _clrlr+ BVE
Ak+r+1 k+t+1 k+t

A%

1
c——(xIr + BVk)? — ¢ — c(|x|r + BVk) —
Ak |x|r

11
e L e+ BV — e + BJBL]Hk(r,x)
Ak |x|r

v

1 1 + B + BVk
[ |x|r+B\/_)|x|F \/_ |x|r vk

Ak+1+1 3k k
—cl<3ﬁ¥t§1E)uﬂr+3v%y—c—c<L+Bv%)
A k lx|r

So, by choosing B large enough that
B BVk BVk Bk
elr + \/_ |x|r+ \/_+c+c<1+ \/_)+c<1+ f)
6k k lx|r IxIr

and A large enough that

(Ix|r + BVk)

B B
lelﬂ_}_Bf)w A(M) (Jx |F+B\/_)
1 |x|r + BVk
ATU x|r + BVk),

we have
Ur(t + 1, x) > nU (¢, x),

which ends the proof of the lemma. [

17. The proof of the Berry—Esseen estimate in the general case. In this
section, we give the proof of Theorem 11.1 in the case when I"  I"y. The general
strategy is the same.

Let Ly, be the homogenized sub-Laplacian associated with p and let

p,H H(x, y) be its heat kernel. We extend ptH H(x,y) to T by setting

1
H H ..
Mw@&JQQZEITM¢UMW, x,yeN, 0<i,j<k.
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Let us also recall that by (4.2) there are y € (0, 1] and ¢ > 0 such that
(17.1) IVui"lloo <cn™ P2 neN.
The following result is a generalization of Theorem 11.1.
THEOREM 17.1. Thereis a ¢ > 1 such that, forall x,y € ' andn € N,
(17.2) 1" (x, ) = (e, ) < cn”PH2,
We point out again that, once we have proved Theorem 1.14, the above

inequality will hold with y = 1.
Let the kernel S;(x, y) be as in Section 11 and let us extend it to I' by setting

1 ..
SI(Xgi,ygj):mSt(x»)’), x’yENvoflvjfk-

Theorem 17.1 is proved in exactly the same way as Theorem (11.1), once we
have the following analogues of Lemmas 11.2 and 11.3.

LEMMA 17.2. There are constants a, b > 1 suchthat, forall T > 1 andn € N,

(17.3) " = pHMloo < all(w" = pHM) St lloo + bV T~ PH1/2,
The proof of the above lemma is exactly the same as the proof of Lemma 11.2.

LEMMA 17.3. There is a constant ¢ > 1 such that if, for some n € N,

(17.4) Ik = p oo < AK=PH2 0 p<k<n—1,
then
(17.5) 1 = pHIYS 7o < c<1 n i)n—ww)/z_

n - ﬁ

The proof of the above lemma, although similar in spirit to the proof of
Lemma 11.3, is technically more complicated. For the case when p is symmetric,
a proof of the above lemma is given in [2]. We give below an adaptation of that
proof.

17.1. Proof of Lemma 17.3. Let u'"(x,y) = u"(y,x), x,y € I', and let
Ly, be the homogenized sub-Laplacian associated with 1V, Note that L,

is just the formal adjoint of Ly, and that its heat kernel p, Hu (x,y) satisfies
H H
p ) =p (y.x), x.yEN.
Finally, let ¥/, 1 < j <np,and ¥, 1 <i, j < ny, be respectively the first
and second order correctors associated with p".
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We set
Wi, )= Y w@Xip "o+ Y v X X e (x,y)
1§j§n2 lfi,jfnl
and
. u y u
WY,y = D vmXip e+ Y v XX p (),
l<j<ny l<j<n

where the superscripts x and y denote differentiation with respect to the x and y
variables respectively.
Let

U = PZHM + Wi,
uY =pl"+wy.
Let us also fix a T > 1. Then, to prove (17.5), it is enough to prove that
AN\ _
(17.6) 1" ST — Upy7lloo < c(l T ﬁ)n D412,
We have
Uit — 'St = Upsr — " 'Urpr + 1" U — 1" St
= > WUpivr — M Upsicior) + 0" 'Urer — 'St

0<i<n-2

= > W Un—ist — WUn—i—147) + 0" Uiy — 1" St
0<i<n-2

= Z 1 Un—ivt — kUp—i-147)
0<i<n/2

+ > W Un—itr — WUn—i—147)

n/2<i<n—2

(17.7) +u" N Ursr — uST)
= Z W (Un—isr — tUp—i—14T)
0<i<n/2

+ > W= U Unzigr — nUn—i—141)

n/2<i<n—2

+ Y. UYUni— pUn—izis1)

n/2<i<n—2

+ " = U ) (Ursr — uSt)
+ U (Uryr — uSr).
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In the rest of the proof, we make repeated use of (14.10) and (6.10). We have

Z ”Mi(Un—i—‘rT — Un—i—147) loo

0<i<n/2
< >0 I il Un=i = wUn=i—Dllo
(17.8) O<i<n/2
< > cln—i—14T)" P
0<i<n/2
< en—(DHD/2

By the inductive hypothesis (17.4),

Yo I = U Unzier = WUn—i—141)llos

n/2<i<n—2
< Y MW =UNeollWnzizr — nUn—i—141)1

n/2<i<n—2

< Y ATPTPe(—i—1+T)7?

n/2<i<n—2

(17.9)

<AL m D2,

We have (arguing as in the proof of Lemma 11.3) that

C
ISt — pitihy < = Tzl
Also, by (6.10),
C
lpyty — pytlh < T Tzl
Hence
("~ = UY_ DUrsr — 157) oo
(17.10)

_ 1
<Iw" ' = U loollUtpr — pStlln < CAﬁn (DF+1)/2,

To estimate the remaining term in (17.7), we observe that

> UYUneisr — WUn—ici41) + Uy (Uit — 1St)

n/2<i<n—-2

= U[\r/l/2]+1U"—[ﬂ/2]—1+T —U,_ 1St

+ ) W U mWUn—iciyr.

n/2<i<n—-2

791
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Now
> UL = U i Un—i—147 ]l

n/2<i<n—-2
< > U = U plloollUn—i—147l
(17.11) n/2<i<n—-2
< Z ci—(D+3)/2

n/2<i<n—1

S Cn_(D+1)/2.

Also
U[>/,/2]+1Un—[n/2]—1+T - U, uSt

Hu Hu
= (P[n/2]+1 + W[Z/Z]—i—l)(pn—[n/Z]—l-}—T + Wn—[n/Z]—l+T)
H
- (pn—ul + Wr:/—l)MST
= Upn 2141 Wa—tn/21-147 + Wi 2151 Un—(n/21-147

Hup Hu Hu
+ W, L1 ST + Pa)ogst Potinja)—147 — Pnti ST
By (6.10), forall x, y € T,

H H H B
Par (%.3) = Z p[n72]+1(x, Z)pn—kin/Z]—1+T(Z7 V| <enPHL/2
zel
and
. Hy —(D+1)/2
Patr (e, 3) = Y Pl (2, 2)(mST)(2, ¥)| < ¢ .
zel
Hence

Hu Hu Hu —(D+1)/2
I Plnj2141Pn—[n/21—14T — Pn_1 ST ”oo <cnPHD2,
It follows that
||U[\,/l/2]+1Un—[n/2]—1+T - U,Y_ll'LST”oo
= ||U[\,/l/2]+1”1||Wn—[n/2]—1+T||oo
+ 1Wh 2151 loo 1 Un—tn /21147 1+ W,y oo ST 111

H H H
(17.12) 1 Pp)211Pntnj21-147 = Pt 11T lloo

<cn—[n/2]—-1+ T)—(D+1)/2 +c([n/2]1+ 1)—(D+1)/2
b — 1)-PHD/2 4 o= (D+D/2

< en—(DHD/2,
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Summing (17.8)-(17.12), we obtain (17.6) and the lemma follows.

18. The corrected monomials Q'f,i. The goal of this section is to construct

the corrected monomials Q'ﬁi appearing in Theorem 1.11.

Let the monomials P;,i =0, 1,2, ..., be as in Section 6.1 and let us associate
with these monomials and the sub-Laplacian L, polynomials Qp, satisfying
(6.6).

Note that, by (6.5) and (6.6), we can associate with every polynomial P (z, x)
on R x N another polynomial Q(z, x) satisfying

(% + LHM>Q(t, x)=P(,x),

degy O(t,x) =degy P(t,x) + 2.

(18.1)

Then the corrected monomials Q%’ will be furnished by the following:

PROPOSITION 18.1.  With every monomial Q p,(t, g) with degy Qp, =d, as
above, we can associate a polynomial

(18.2) Oh(t.x)=Pi(t,x)+ Y. Yi@)Pit.x)
0<j<vg—1
satisfying
d v
(18.3) (3;+LMJQH:%&+%I—MDQH

and where the functions 1//5 are of type P.

Before we continue with the proof of Proposition 18.1, let us observe that by
(14.10) we can take (1) for 1 <i < vy (note that vi =ny),

(18.4) Qp =P+

and (2) for v; <i <y,

(18.5) Q‘I”,i =P+ Y Y X P+ > v ()Xo X Pr.
1<j<n, 1<¢,j<n

PROOF OF PROPOSITION 18.1. By (18.4) and (18.5) we can assume that
k > 3. Then as a first approximation to Qﬁ, we take

o' '=0n+ Y ¥X;0n+ Y. VYXX;Q0p.

1<j<n, 1<, j<ny
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By (14.10),

0 .
(18.6) (al+<1—u>)Q}€;1=(—+LHM)QP,.+ Y i,

o1 0<j<vg-3

where the functions f ;1 are of type P.
Making use of (18.1), for every vy_4 < £ < vgz_3, we consider a polynomial R,
satisfying

ad
— 4+ Ly, |Re=—Py,
<8t H,u) 0 4

degy Q¢ =degy Pr+2=d — 1.

(18.7)

Arguing in the same way as for the definition of the correctors, we consider
functions qb/’il which are of type P and which satisfy

(18.8) I—woi' ==+ () and (@) =0.
Let

R[:(fg’l)<Rg+ > wIXjRe+ Y WJ'XAXJ-RE)JF%’IP@.

1<j<n, 1=k, j=m
As a second approximation to Q}/ﬁi we consider the corrected polynomial
2 ,1
oyl=0y'+ > R
Vg—4<€=<vg-3
This polynomial satisfies
2_ (9 2
G+ =)0 = (5 +Lma)en+ X 1P,
0<j<ng_a
where the functions f ;2 are again of type P.

We repeat the same procedure another d — 2 times. The polynomial Qﬁl_’k that
we obtain in the end will satisfy (18.2) and (18.3). [

19. Harnack inequalities for higher order spatial differences. If I" is not
nilpotent, then the analogue of (1.21) for higher order spatial differences is in
general false. To see this, let us assume for simplicity that there is a finite subgroup
M <T such that ' =T'yM and ' " M = {e} (i.e., " is isomorphic to the
semidirect product Iy X\ M) and let us consider the function

u=P;j+y’,
where k1 < j <nj. This function grows linearly; that is, there is a ¢ > 0 such that

sup{lul; U"} <cr, r>1,
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and it satisfies (I — w)u = 0. Also, 0,0,u = azaww for all z, w € M. So, if
0,0y, W’ # 0, then the inequality

sup{[d:duuls M} < cr ?sup(lul; UN),  r=1,
is false.
20. Berry-Esseen estimates for the differences. The goal of this section is

to prove the Berry—Esseen estimates (1.28) and (1.30).
We use the notation of Section 17. We set

Wy = Y w@XipMan+ Y v X xip e, y)

1<j<ny 1<i,j<nm;
and
Ur(x,y) = pi(x, y) + Wi (x, ).
Then, by (1.23),
(20.1) I = Uplloo < cn™PHD/2,

20.1. Proof of Theorem 1.21. It is enough to prove that there is a constant
¢ > O such that, forall z e U,

(20.2) 194" = 9:Uplloo < en™PF2/2,
We have
Up—p" = Z Hvi Un—i — Mi—HUn—i—l + M[n/z]Un_[n/z] —u"
0<i<[n/2]
= Z Mi (Un—i — nUp—i-1) + M[n/z](Un_[n/z] — Mn—[n/Z])
0<i<[n/2]

Hence, by (14.10) and (6.10),

10:14" — 9, Uplloc = D N0t/ 11 Un—i — Un—i-1lloo
0<i<[n/2]
A N0 N U2y — 1" o

< Z Ci—l/Z(n —i— 1)—(D+3)/2 + Cn—l/zn_(D_H)/z
O<i<[n/2]

S cn _(D+2)2’

which proves (20.2) and the theorem follows. [
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20.2. Proof of Theorem 1.22. It is enough to prove that there is a constant
¢ > 0 such that

(20.3) 181" — 81Uplloo < cn™PFI/2 peN,
We have
Uy — o p" = Z WU, — Uiy
0<i<[n/2]

1209, Up g2y — By /2 =1/

= Z [Li(alUn_i _MalUn—i—l)
0<i<[n/2]

+ 12 (@) 4+ (I = 10)Un—nja) — WU = 10Uy
— (9l gt/

= Y W@ +T—w)hUnsia
0<i<[n/2]

+ 201 + (I = 10) Unpnjzy + 011" (U gy — " 072).
Hence, by (14.10) and (6.10),

101" = 01Unlloo < D I (31 4+ (I — 1))31 Un—i—1 ] o
0<i<[n/2]

2 @+ - 10)Un 121 o
192 | U2y = w0

< Y cm—i—1nPHR2
0<i<[n/2]
+en~ N2 4 =1, —(D+D/2
< cn~ (P2,

which proves the theorem. [
21. Riesz transforms.

21.1. Proof of Theorem 1.25. The kernel K} of the operator Ry is given by

Ki(x,y) =Y and; - 0" (x, y),

n>0

where the a,,’s are as in the series (1 —7)~1/2 = > n>0ant".
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By (1.14) and (1.21), K¢ (x, y) satisfies the standard estimates

(21.1) |Ki(x, y)| <
ly~1xIR,
and
212) V?]Kk(an)+vl)}Kk(x’y)§7| D
Y Xy

where the superindices x and y denote differences with respect to the variables x
and y respectively.

So by the Calderon—Zygmund theory (cf. [17, 42]), to prove Theorem 1.25, it
is enough to prove that the operator Ry, is bounded on L. This can be done by an
almost orthogonality argument (cf. [43], Chapter 7).

Let us denote by 7, j € N, the operators with kernel K ; given by

K]()C,y): Z a"aZl'”aZkun'

2i—l<p<2i
Then Ry =9, -+ 9y + 2_;51 7. Also the kernels K (x, y) satisfy
(21.3) Y Kjx,y) =) Kj(x,y)=0.
yGFN xGFN

Furthermore, there is a ¢ > 0 such that, for all j € N,
IKilh < D" lanlllog -9, u" 1 <c

2i-l<p<2i
Hence,
(21.4) sup | Tjll 2 2 < 00.
jeN

Finally, by a straightforward calculation we can see that there is a ¢ > 0 such that,
forall j e Nand x € I'y,

Z IxIry 1K (x, ¥)] < 2772,

XGFN
> IylrylKj(x, y)| < c27/2,
(21.5) yely in
K, y) — Kj(e, )| <2792 |x|py,
yel'n
D IKj(x,e) — Kj(x,y)| <272 |y|p,.
xel'y

It follows from (21.3), (21.4) and (21.5) that there is a ¢ > 0 such that
T T N 22 + 1T Tl g2 2 < 271712,
and from this we conclude that Ry, is bounded on L> (for details we refer the reader

to [43], pages 623—-625).
The same arguments also apply to the operator R;'. [J
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21.2. Proof of Theorem 1.24. 1f T is not nilpotent, then the kernel K, of the
Riesz transform R, does not necessarily satisfy the estimate (21.2). So to prove
theorem 1.24 we use (1.22) and Theorem 1.25.

More precisely, let us consider the kernels

K, y) =Y ano.pl*(x,y),  x,yeTl,

n>0

H .
K", ) =Y aXjpi*(x,y), 1<j<n, x,yeT,

n>0

and let us denote by Rf ¢ and RJH“ respectively the associated operators.
Arguing as in the proof of Theorem 1.25 in the previous section, we can prove

that the operators R]I.{” are bounded on L?(I"), 1 < p < 0o, and from LY() to
weak-L1(I).
Also,if x,y,hel'y,0<1i,j,£ <kandz=hge, then
H H H
O.p; " (xgi ygj) = pi " (xgihge, yg;) — pr " (xgi, y&))
H H
=p; " (x(gih)n. y) — pr H(x, y)
H
= a(gih)Npt M(x’ y).
So, if w € N, then

H H
dwd-pr " (x8i, &) = dwdigmnPr | (X, )
and hence there is a ¢ > O such that, forallw € V and ¢ > 1,
Hp —(D+2))2 IR
[0wp; ~ (xgi, ygj)| < ct exp\——— |-
It follows that

Hup . . _
[0, K (xgi, yg i)l < ey PFT

So the operator RZH“ is also bounded on L?(T"), 1 < p < oo, and from L (") to
weak-L!(I").
Let us consider the kernel K ZH M (x, y) that satisfies the estimate
S.(x.y)=K.(x,y) — Kt y) = Y @9/ )k M (x.y).  x.yel.
I<j=m

Then it follows from (1.31) that for all ¢ € (0, 1) there is a ¢ > 0 such that

[S(x, y)| < x,y € G;

_ D+¢”’
|x 1)’|r ¢
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that is, the kernel S(x, y) is integrable and hence the operator

S=R.—RI— 3> (.y)) R

1<j<n;

is bounded on LP(I"), 1 < p < o0.
Hence R, is bounded on L”, 1 < p < 00, and from L) to weak-L'(I").
The same arguments also apply to the operator R}. []
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