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We show that for the symmetric simple exclusion process on Z
d the

self-diffusion coefficient of a tagged particle is stable when approximated by
simple exclusion processes on large periodic lattices. The proof depends on a
similar stability property of the asymptotic variance of additive functionals of
mean 0. This requires establishing a property for the Dirichlet space known
as the Liouville-D property.

1. Introduction. In the early 1980s, Kipnis and Varadhan proved an invari-
ance principle for the position of a tagged particle in a symmetric simple exclusion
process in equilibrium (cf. [6]). Their proof relied on a general central limit theo-
rem for additive functionals of a reversible Markov process that they established.
Time reversibility and translation invariance of the system are the basic ingredients
of this method, and, in principle, it can be applied to any system with these two
symmetries. Later it was extended to nonreversible processes that satisfy a strong
sector condition (cf. [10] and [13]).

The (effective) diffusion matrix of the limiting Brownian motion is a function
D(α) of the density α of the particles, and in the reversible case it is given by
a variational formula.

This method works directly in infinite systems, and it raises the natural
question of the stability of the effective diffusion matrix under finite-dimensional
approximations. More precisely, consider a finite-dimensional version of the same
process on the torus {−N, . . . ,0, . . . ,N}d (i.e., with periodic boundary conditions,
preserving in this manner the translation symmetry). Since we want to work with
an ergodic process, we also fix the total number K of particles. Consider now
a tagged particle in this finite system. If N is much larger than the size of a single
jump, the motion of the tagged particle has a unique canonical lifting to Z

d . We
get in this manner a process XN(t) with values in Z

d . Let us denote by D[N,K]
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the variance of the Brownian motion which is the limit of the scaled process
εXN(ε

−2t) as ε→ 0. We expect that

lim
N→∞

K/(2N)d→α

D[N,K] =D(α).(1.1)

Related questions arise in other contexts, for example, the effective conductivity in
percolation regime (cf. [1] and [4]) and fluctuations in massless interface models
(cf. [2]).

In general, it is easy to prove that

lim sup
N→∞

K/(2N)d→α

D[N,K] ≤D(α).

In this paper we prove equality (1.1) for symmetric simple exclusion processes
on Z

d .
A related problem that is somewhat easier to handle is the scaling behavior of

an additive functional A(t)= ∫ t
0 V (η(s)) ds, where V is a suitable local function

that depends on the configuration at a few sites. There is again a limiting Brownian
motion for εA(ε−2t) with variance σ 2

N,K . The problem is to show that

lim
N→∞

K/(2N)d→α

σ 2
N,K = σ 2(α),(1.2)

where σ 2(α) is the corresponding variance in the infinite-volume situation where
the central limit theorem can be established directly. In this context the nontrivial
part is the inequality

lim sup
N→∞

K/(2N)d→α

σ 2
N,K ≤ σ 2(α).

The proofs depend on approximating the solutions of the infinite-dimensional
variational problem for the limiting variance by solutions of the corresponding
finite-dimensional problem.

A basic step in this approximation is to prove a certain regularity property of the
Dirichlet form associated with the simple exclusion process. Let us describe this
regularity property in a more general context.

Suppose we have a collection of invertible measure-preserving transformations
{Tz} on some probability space (�, F, µ). Then we can define a Dirichlet form

D(u)= 1
2

∫
�

∑
z

[u(Tzω)− u(ω)]2 dµ

corresponding to the generator

Lu=∑
z

[u(Tzω)− u(ω)]
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of a process consisting of random stirrings. If we define vz(ω) = (∇zu)(ω) =
u(Tzω)− u(ω), there is natural map

u→ δu= {
vz(ω)

} ∈⊕
z

L2(µ).

The problem is to characterize the closure of the range of this map by relations
that remain stable under suitable approximations done with finitely supported
functions.

In Section 3 we prove this regularity property for the symmetric simple
exclusion processes, and in Section 4 for the version with a tagged particle. The
main tool in the proof is duality, which allows us to reduce the problem to a finite-
dimensional situation (cf. [8] and [11]).

A similar question arises in the context of a hydrodynamic limit for nongradient
models (cf. [5], Appendix 3, and [14]). But there the approximation is needed in
a different norm and the proof relies usually on a suitable estimate of the spectral
gap for the corresponding dynamics in a finite volume.

2. Notation and results. Let us fix a symmetric, finite-range probability
measure p(·) on Z

d : p(0) = 0, p(z) = p(−z) and p(z) = 0 for |z| large. Let us
assume that the random walk with transition probability p(·) is irreducible; that
is, the finite set {z :p(z) > 0} generates the group Z

d . Consider the symmetric
simple exclusion process associated with p(·). This is the Markov process on
X= {0,1}Zd

whose generator L acting on cylinder functions f is given by

(Lf )(η)= ∑
x,y∈Zd

p(y − x)η(x)[1− η(y)][f (σ x,yη)− f (η)]

= 1
2

∑
x,y∈Zd

p(y − x)[f (σ x,yη)− f (η)].
(2.1)

Here and below, a configuration of particles in Z
d , that is, a point in X, will be

denoted by η. In particular, for x in Z
d , η(x) is equal to 1 if the site x is occupied

and 0 otherwise. Moreover, for a configuration η and x, y in Z
d , σx,y η is the

configuration obtained from η by exchanging the occupation variables η(x) and
η(y):

(σ x,yη)(z)=

η(y), if z= x,

η(x), if z= y,

η(z), otherwise.
(2.2)

Note that σx,y = σy,x and we can think of either one as being σ e, where e is
an edge or a bond connecting x and y. Fix 0 ≤ α ≤ 1 and denote by να the
Bernoulli product measure on X. This is the probability measure on X obtained by
placing a particle with probability α at each site x, and independently for different
sites. It is easy to check that the one-parameter family of probability measures
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{να, 0≤ α ≤ 1} are reversible invariant measures for the process with generator L
on X. The Dirichlet form is given by

D(f )= 1
4

∫
X

∑
x,y∈Zd

p(y − x)[f (σ x,yη)− f (η)]2 dνα.

We will think of Z
d as a connected graph with an edge e connecting x, y being

present whenever p(y − x) > 0. Since p(·) is symmetric, one can view p(y − x)

as defined on edges with p(e) = p(y − x). Denote by E the set of such edges.
For each local function f , denote by δf the gradient obtained from f . This is the
collection {(∇ef )(η)} of functions on X defined for e = (x, y) ∈ E by

(∇ef )(η)= f (σ x,yη)− f (η).

Since σx,y = σy,x we can define σ e for e ∈ E. If e1, . . . , en are n edges in E such
that σ e1 · · ·σ en is the identity permutation, then

0= f (σ e1 · · ·σ en η)− f (η)

=
n∑

j=1

[f (σ ej · · ·σ en η)− f (σ ej+1 · · ·σ en η)]

=
n∑

j=1

(∇ej f )(σ
ej+1 · · ·σ en η)

=
n∑

j=1

σ ej+1 · · ·σ en (∇ej f )(η).

It is understood here that for j = n the expression is just (∇enf )(η). The above
conditions are called the compatibility conditions for a gradient and they permit
us to recognize when an arbitrary collection %= {%e, e ∈ E} of L2(να) functions
could be a gradient. We say that such a collection is a formal gradient if each %e

is square integrable and whenever e1, . . . , en is a finite set of edges in E such that
σ e1 · · ·σ en is equal to the identity permutation, we have

n∑
j=1

σ ej+1 · · ·σ en%ej = 0.(2.3)

As before, for j = n this expression is %en . We associate a Hilbert space with norm
defined by

‖%‖2
α =

∑
e∈E

p(e)〈%2
e〉να .(2.4)

Any % for which the norm is finite will be called a square-integrable formal gradi-
ent. Although we have defined ∇ef only for edges e = (x, y) with p(y − x) > 0,
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if the random walk with transition probability p(·) is irreducible then knowing ∇e

for edges in E determines it uniquely for all edges (x, y). The Dirichlet forms cor-
responding to different irreducible finitely supported probabilities p(·) are equiva-
lent. For qualitative statements we could take as a Dirichlet form simply

1
4

∫ ∑
x,y

y−x∈F

|f (σ x,yη)− f (η)|2 dνα,

where F is any symmetric set that generates Z
d as a group. The natural question in

this context is whether any square-integrable formal gradient can be approximated
by actual gradients in the L2 sense. That is, for each % = {%e}, does there exist
a sequence of local functions fn such that

lim
n→∞‖%− δfn‖α = 0?(2.5)

The next result states that this is indeed possible.

THEOREM 2.1. For the symmetric exclusion process on Z
d , any square-

integrable formal gradient can be approximated by gradients of local functions
in the sense of (2.5).

COROLLARY 2.2. For a symmetric simple exclusion process on Z
d , the limit

(1.2) is valid for any local function V which has mean 0 with respect to every να .

To study the evolution of a tagged particle, we must consider simple exclusion
on the lattice Z

d∗ = Z
d − {0}. We have analogous results in that case. Of course,

in dealing with simple exclusion on Z
d∗ , E contains only edges (x, y) such that

y − x ∈ F and x, y ∈ Z
d∗ and the Dirichlet form is now given by

D(f )= 1
4

∫
X

∑
x,y∈Z

d∗
y−x∈F

p(y − x)[f (σ x,yη)− f (η)]2 dνα.

THEOREM 2.3. For the symmetric exclusion process (other than the one-
dimensional nearest neighbor walk) on Z

d∗ , any square-integrable formal gradient
can be approximated by gradients of local functions in the sense of (2.5).

COROLLARY 2.4. For a symmetric simple exclusion process (other than the
one-dimensional nearest neighbor walk) on Z

d∗ , the limit (1.2) is valid for any local
function V which has mean 0 with respect to every να .

We will apply Theorem 2.3 in order to study the evolution of a tagged particle
in the symmetric simple exclusion process. Let η be an initial configuration with
a particle at the origin: η(0) = 1. Tag this particle and denote by ηt and Xt the
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state of the process and the position of the tagged particle, respectively, at time t .
We shall refer to ηt as the environment. Let ξt be the state of the environment as
seen from the tagged particle: ξt = τXt ηt . Here, for x in Z

d and a configuration
η, τx stands for the translation of η by x units: (τxη)(y) = η(x + y). Notice that
the origin is always occupied (by the tagged particle) for the environment as seen
from the tagged particle. For this reason, we shall consider the process ξt as taking
values in {0,1}Zd∗ .

While Xt is not a Markov process due to the presence of the environment,
(Xt , ηt ) and ξt are Markov processes. A simple computation shows that the
generator L of the Markov process ξt is given by L=L0 +Lτ , where

(L0f )(ξ)=
∑

x,y∈Zd∗

p(y − x)ξ(x)[1− ξ(y)][f (σ x,yξ)− f (ξ)]

= 1
2

∑
x,y∈Zd∗

p(y − x)[f (σ x,yξ)− f (ξ)],

(Lτ f )(ξ)=
∑
z∈Zd∗

p(z)[1− ξ(z)][f (τzξ)− f (ξ)].

The first part of the generator takes into account the jumps of the environment,
while the second one corresponds to jumps of the tagged particle. In the above
formula, τz ξ stands for the configuration where the tagged particle, sitting at the
origin, is first transferred to site z and then the entire configuration is translated
by −z; that is, for x �= 0,

(τz ξ)(x)=
{

0, if x =−z,
ξ(x + z), for x �= −z.

For 0 ≤ α ≤ 1, denote by µα the Bernoulli product measure on X∗ = {0,1}Zd∗ .
A simple computation shows that µα is reversible for the Markov process ξt .

Kipnis and Varadhan [6] proved a central limit theorem for the position of the
tagged particle when the environment process is in equilibrium with marginal
distribution µα . They showed that εXtε−2 converges, as ε ↓ 0, to a Brownian
motion with self-diffusion coefficient D(α) that can be described as follows. Fix
λ in R

d . Then the quadratic form 〈λ,D(α)λ〉 is given by the variational formula

〈λ,D(α)λ〉 = inf
f

{ ∑
z∈Zd∗

p(z)〈[1− ξ(z)]{λz− Tzf }2〉α

+ ∑
x,y∈Zd∗

p(y − x)〈{Tx,yf }2〉α
}
.

(2.6)

In this formula the infimum is taken over all cylinder functions f , 〈·〉α stands for
the expectation with respect to the measure µα , Tz, Tx,y , x, y, z in Z

d∗ , are the
operators defined by
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(Tzf )(ξ)= [1− ξ(z)]{f (τzξ)− f (ξ)},
(Tx,yf )(ξ)= {f (σ x,yξ)− f (ξ)}

and the second summation is performed over all bonds of Z
d∗ .

The diffusion coefficient D(α) can also be written as

〈λ ·D(α)λ〉 = (1− α)
∑
z∈Zd∗

(z · λ)2p(z)− 2‖ψλ‖2−1,α,(2.7)

where ψλ is the cylinder function given by

ψλ(ξ)=
∑
z∈Zd∗

p(z)(z · λ)[1− ξ(z)](2.8)

and ‖ψλ‖2−1,α is the H−1 norm of ψλ, which is given by

‖ψ‖2−1,α = sup
f

{
2〈f,ψλ〉α − 〈f, (−L)f 〉α}

.(2.9)

In this formula the supremum is carried over all cylinder functions f in X∗ and
〈·, ·〉α stands for the inner product in L2(µα).

Fix a positive integer N and denote by T
d
N = {−N, . . . ,N}d the discrete

d-dimensional torus with N and−N identified, consisting of (2N)d points. For the
same transition probability p(·), one can consider the symmetric simple exclusion
process evolving on T

d
N . The state space is now XN = {0,1}Td

N and the generator
LN acting on any function f is given by

(LNf )(η)=
∑

x,y∈T
d
N

p(y − x)η(x)[1− η(y)][f (σ x,yη)− f (η)].

In a similar way, we can examine the evolution of a tagged particle on the
torus T

d
N . The environment as seen from the tagged particle is a Markov process

with generator LN =L0,N +Lτ,N , where

(L0,Nf )(ξ)=
∑

x,y∈T
d
N,∗

p(y − x)ξ(x)[1− ξ(y)][f (σ x,yξ)− f (ξ)],

(Lτ,Nf )(ξ)=
∑

z∈T
d
N,∗

p(z)[1− ξ(z)][f (τzξ)− f (ξ)].(2.10)

Let the total number K of particles be fixed and, of course, 1 ≤ K ≤ (2N)d .
A simple computation shows that the measure µN,K , which is uniform over the

configurations of XN,∗ = {0,1}Td
N,∗ with K−1 particles, is reversible with respect

to LN . Since we are in a finite state space, it is not hard to prove an invariance
principle for the motion XN

t of the tagged particle lifted to Z
d in this context:
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εXN
tε−2 converges as ε ↓ 0 to a Brownian motion with diffusion coefficient DN,K

given by

〈λ,DN,K λ〉 =
(

1− K − 1

(2N)d − 1

) ∑
z∈Zd∗

(z · λ)2p(z)− 2‖ψλ‖2−1,N,K,(2.11)

where ‖ψλ‖2−1,N,K stands for the H−1 norm of ψλ in L2(µN,K), given by the
variational formula

‖ψλ‖2−1,N,K = sup
f

{
2〈ψλ,f 〉N,K − 〈f, (−LN)f 〉N,K

}
.(2.12)

Here the supremum is carried over all functions in L2(µN,K).
The main result of this article concerns the behavior of the finite-volume

diffusion coefficient DN,K as N ↑∞:

THEOREM 2.5. Fix α in (0,1) and a sequence KN such that KN/(2N)d

converges to α as N ↑∞. Then

lim
N→∞DN,KN

=D(α).

We conclude this section with a sketch of the proof of Theorem 2.5. In view of
formulas (2.7) and (2.11), Theorem 2.5 follows from the convergence of the H−1
norms of ψλ. It is enough to show that

lim
N↑∞

KN/(2N)d→α

〈ψλ, (−LN)
−1ψλ〉N,KN

= 〈ψλ, (−L)−1ψλ〉α.(2.13)

Here, to emphasize the dependence of the H−1 norm on the generators, we have de-
noted the H−1 norms ‖ · ‖2−1,N,K and ‖ · ‖2−1,α , respectively, by 〈·, (−LN)

−1 ·〉N,K

and 〈·, (−L)−1 ·〉α .
The generator L has two pieces. The first one, L0, corresponds to jumps of the

environment and the second one, Lτ , corresponds to jumps of the tagged particle.
From Corollary 2.4 we conclude that

lim
N↑∞

KN/(2N)d→α

〈ψλ, (−L0,N )
−1ψλ〉N,KN

= 〈ψλ, (−L0)
−1ψλ〉α.(2.14)

In Section 4 we prove, in addition, that for each ε > 0, we may express the local
function ψλ as the sum of Lgε+uε, where gε , uε are local functions, uε has mean
zero with respect to all invariant measures and ‖uε‖2

0,−1 = 〈uε, (−L0)
−1uε〉α

≤ ε2. Since ‖ · ‖−1 ≤ ‖ · ‖0,−1 and (2.13) is obvious if we replace ψλ by a local
function of the form Lf , (2.13) follows from the previous decomposition and
(2.14). Details are given in Section 4.
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3. Formal gradients of the symmetric exclusion process. We prove in this
section Theorems 2.1 and 2.3 and Corollaries 2.2 and 2.4. The proofs rely on
the duality properties of the symmetric exclusion process that we now explain.
Let X be a countable set. For us it will be either Z

d or Z
d − {0}. We denote by

X = {0,1}X the set of configurations η on X. For 0 ≤ α ≤ 1, να is the Bernoulli
product measure on X with P [η(x) = 1] = α for each x ∈ X. Averages or norms
with respect to να will be denoted by the subscript α. Let E be a collection of
edges e = (x, y) connecting some pairs of points in X. Assume that the resulting
graph is connected and that every vertex in it has a finite degree. There will also be
given transition rates {p(x, y): X× X→ [0,∞)} that are symmetric and satisfy∑

y∈Xp(x , y) ≤ 1 for every x ∈ X. Moreover, E = {e = (x, y) :p(x, y) > 0}. In
our context p(x , y)= p(y− x) for x, y ∈ Z

d or x, y ∈ Z
d∗ as the case may be. We

have a simple exclusion process on X with generator

(Lf )(η)= ∑
x,y∈X

p(x, y)η(x)
(
1− η(y)

)[f (σ x,yη)− f (η)]

and Dirichlet form

D(f )= 1
4

∑
x,y∈X

p(x , y)‖f (σ x,yη)− f (η)‖2
α.

For each n≥ 0, denote by En the subsets of X with n points. For each A in En,
let .A be the local function

.A =
∏
x∈A

η(x)− α√
α(1− α)

.(3.1)

By convention, .φ = 1. It is easy to check that {.A, A ⊂ X} is an orthonormal
basis of L2(να). For each n ≥ 0, denote by Hn the subspace of L2(να) generated
by {.A,A ∈ En}, so that L2(να) =⊕

n≥0 Hn. Functions of Hn are said to have
degree n.

For n ≥ 0, denote by πn the projection of L2(να) on Hn. It follows from
definition (2.3) of formal gradients that {πn%e, e ∈ E} is a formal gradient if
{%e, e ∈ E} is one:

LEMMA 3.1. Let {%e, e ∈ E} be a formal gradient. Then, for every n ≥ 0,
{πn%e, e ∈ E} is also a formal gradient.

PROOF. The proof is elementary. We verify that the projection πn commutes
with the exchanges σ e, which follows from a direct computation. �

This lemma allows us to decompose a formal gradient into components of
different degrees. We shall say that a formal gradient {%e, e ∈ E} has degree n

if each function %e has degree n. The proofs of Theorems 2.1 and 2.3 are thus
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reduced to proving that a square-integrable formal gradient of degree n can be
approximated by gradients of local functions of degree n.

Let us compute σ e.A. If e = (x, y), σ e.A = 0 unless e connects A and Ac.
If x ∈ A and y /∈ A, then σ e.A = .(A\{x})∪{y}, and if y ∈ A and x /∈ A, then
σ e.A =.(A\{y})∪{x}. In other words, σ e.A =.σeA, with the obvious definition
of σ eA = (A\{x}) ∪ {y} or (A\{y}) ∪ {x}. This suggests that we should turn
the space Xn of subsets A of cardinality n in X into a graph with edges En by
connecting two vertices A and B (i.e., subsets of X of cardinality n) in Xn with
an edge if B = (A\{x}) ∪ {y} for some x ∈ A and y /∈ A that are connected by
an edge in X. The transition probabilities pn(A,B) on Xn are given by p(x, y) if
B = (A\{x})∪ {y} for some x ∈A and y /∈A and 0 otherwise.

Any local function f of degree n has a representation as

f (η)=∑
A

f (A).A(η)

and

(σ ef )(η)= f (σ eη)=∑
A

f (A)σ e.A =
∑
A

f (σ eA).A.

The Dirichlet form D(f ) for a function of degree n reduces to

1
2

∑
e∈E

A∈Xn

p(e)|f (σ eA)− f (A)|2.

The factor 1/2 is explained by the sum over the unoriented edges. The total
Dirichlet form of f can be written as the sum

1
2

∑
n≥1

∑
e∈E

A∈Xn

p(e)|πnf (σ
eA)− πnf (A)|2,

where

πnf =
∑
A∈Xn

f (A).A.

The approximation of any square-integrable formal gradient in X by gradients of
local functions reduces to a similar property for each of the graphs Xn. Note that
for the purpose of the approximation result we can replace the Dirichlet form by
any equivalent one.

Let G be a connected graph with vertices V = {x} and edges E = {e}. We as-
sume that the graph is countable and that there is an upper bound D on the de-
gree of all of its vertices. Let us pick for each edge an arbitrary orientation as
the positive direction but keep the edges in both directions so we have the set Ê

of oriented edges. Given a function f : V → R, we can define g = δf : Ê→ R
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by (δf )(e) = f (y) − f (x), where (x, y) = e is an oriented edge. It is clear that
g: Ê→R satisfies ∑

e∈3
g(e)= 0(3.2)

for any loop 3 of oriented edges. We can turn the set of g’s satisfying (3.2) into
a Hilbert space H1 by defining

|||g|||2 =∑
e∈E

|g(e)|2 = 1
2

∑
e∈Ê

|g(e)|2.(3.3)

Given any g satisfying (3.2), we can construct an f , unique up to an additive
constant, such that g = δf . However, in general, we have no control on the growth
of f at ∞. We say that the graph has property LD, if, for any given g ∈H1, we
can find a sequence of functions fn, each of which vanishes outside a finite set of
vertices, such that

lim
n→∞|||g − δfn||| = 0

(cf. [3]). Not every graph has this property: a counterexample is given by the
homogeneous tree of degree 3 (cf. [12], example (3.19), page 37).

The following lemma will allow us to deduce property LD for a graph from
a closely related one.

LEMMA 3.2. Let G be a graph with the degree of its vertices bounded by D.
Let G1 be obtained from G by deleting a set of vertices and retaining all the edges of
G that are contained in G1. Assume that there are finite constants c(k), depending
only on (k,G1), such that any two vertices in G1 that are connected by a path of k
edges in G are connected by a path of at most c(k) edges contained in G1. Assume
also that there is a bound 3 such that any deleted vertex of G is connected to an
undeleted vertex in G1 by a path of edges in G of length at most 3. Then if G has
property LD so does G1.

PROOF. The proof proceeds along the following lines. Given a g defined on
the oriented edges of G1 that satisfies (3.2), we can find f on the vertices of G1
such that g(e) = (δf )(e). Assume that we can extend f as a function h defined
on the vertices of G in such a way that |||δh|||2G ≤ C|||g|||2G1

. Because G has property
LD, we can find a sequence of functions hn defined on the vertices of G, each
hn having finite support such that |||δhn − δh|||2G → 0 as n→∞. It follows that

the restriction fn of hn to G1 satisfies |||δfn − g|||2G1
→ 0, proving that G1 has the

property LD as well.
This shows that all we need to do is to construct such an extension h of f . In

order to do this, let us proceed as follows. For any x that is a deleted vertex, there is
at least one vertex x′ of G1 within a distance 3. Pick any one. Define h(x)= f (x′).
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If e = (x, y) is a deleted edge, then (δh)(e) = f (x′) − f (y′), where x′, y′, are
vertices in G1. The graph distance between x′ and y′ can be at most 23+1 in G and
therefore at most c(23+ 1) in G1. It is clear that there is a constant K =K(3, c(·))
such that all the edges involved in the path from x′ to y′ through the vertices of G1
are within a distance K from x and y. For any edge e let us define

SK(e)=
∑

e′: d(e,e′ )≤K
e′∈G1

|(δf )(e′)|2 ,

where the sum extends only over the edges of G1 within a distance K of e. We can
define the distance between two edges as the largest of the four possible distances
between the two pairs of vertices. They differ from one another by at most 2. By
an application of Schwarz’s inequality and the crudest upper bound,

|(δh)(e)|2 ≤ c(23+ 1)SK(e)

and

|||δh|||2G ≤ c(23+ 1)
∑
e

SK(e)=Cc(23+ 1)|||δf |||2G1
,

where

C = sup
e

{|e′ :d(e, e′)≤K|}.
Clearly, C ≤ C(K,D)= (D+D2+· · ·+DK), where D is a bound on the degree
of any vertex. �

LEMMA 3.3. Any symmetric random walk on Z
d has property LD.

PROOF. We can assume without loss of generality that the walk is the nearest
neighbor one. On any graph, if δf with f having finite support is not dense in the
Hilbert space H1, there will be a g ∈H1 that is orthogonal to δf for all finitely
supported f . In other words, if we represent g = δh, after a summation by parts∑

e

(δh)(e)(δf )(e)=∑
e

(δ∗δh)(e)f (e)= 0 for all f.

For the operator

L= δ∗δ,

we have a solution of Lh≡ 0 with δh ∈H1. We will show that this is impossible
for the simple random walk on any Z

d (except for the trivial solution h = 0).
Define hi(x) = h(x + zi)− h(x) where zi : 1 ≤ i ≤ d are the unit vectors in the
coordinate directions. Then (3.2) implies (eiθj − 1)ĥk(θ) = (eiθk − 1)ĥj (θ) a.e.
for 1 ≤ j < k ≤ d , where ĥj is the Fourier transform of the 32 function hj(x).
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Therefore there exists a function u(θ) on the d-torus such that, for 1 ≤ j ≤ d ,
ĥj (θ) = (eiθj − 1)u(θ). It is easy to see that Lh = 0 now implies k(θ)u(θ) = 0,
where k(θ)=∑

j (1− cosθj ) > 0 for θ �= 0. Thus ĥj ≡ 0. �

Clearly, the proof only depends on the property∑
x

p(x)ei θ ·x =∑
x

p(x) cos(θ · x) < 1

for θ �= 0 which is the same as irreducibility.

LEMMA 3.4. Any symmetric exclusion process involving a finite number k of
particles on Z

d∗ has property LD.

PROOF. Without exclusion and allowing 0, we have essentially a symmetric
random walk on Z

kd which has property LD. (We only have to deal with symmetric
functions of the k positions x1, . . . , xk .) We now delete the set of vertices A =
{(x1, . . . , xk)}, where either some xi = 0 or xi = xj for some pair i, j . It is easy
to verify that A satisfies the conditions of Lemma 3.2 except when d = 1 and the
walk is the nearest neighbor one. �

REMARK 3.5. Tom Liggett pointed out to us that this result can also be
obtained by using coupling techniques due to Spitzer and Liggett, as presented
in [9], Chapter 8, Section 1.

We have thus proved Theorems 2.1 and 2.3. We shall now prove Corollaries 2.2
and 2.4. Since the proofs are identical we will only deal with Corollary 2.2.

PROOF OF COROLLARY 2.2. Consider a local function h such that 〈h〉α ≡ 0
for any α ∈ [0,1]. This is equivalent to 〈h〉N,K ≡ 0 for any K and N sufficiently
large. We define for such a function

‖h‖2−1,α = sup
f

{
2〈h,f 〉α − 〈f, (−L)f 〉α}

,

‖h‖2−1,N,K = sup
f

{
2〈h,f 〉N,K − 〈f, (−LN)f 〉N,K

}
.

In the first formula one uses only local functions f . The second formula is in a
finite-dimensional space and we are free to use arbitrary functions f . We need to
prove

lim
N→∞

KN/(2N)d→α

‖h‖2−1,N,KN
= ‖h‖2−1,α.(3.4)
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It is easy to see that

‖h‖2−1,α ≤ lim inf
N→∞

KN/(2N)d→α

‖h‖2−1,N,KN
.(3.5)

Indeed, by definition, for every ε > 0, there exists a local function fε such that

‖h‖2−1,α ≤ 2〈h,fε〉α − 〈fε, (−L)fε〉α + ε.

Since h and fε are local functions, the right-hand side is equal to

lim
N→∞

KN/(2N)d→α

{
2〈h,fε〉N,K − 〈fε, (−L)fε〉N,K

}+ ε

= lim
N→∞

KN/(2N)d→α

{
2〈h,fε〉N,K − 〈fε, (−LN)fε〉N,K

}+ ε

≤ lim inf
N→∞

KN/(2N)d→α

‖h‖2−1,N,K + ε.

The reverse inequality is more demanding. Our goal is to prove that

lim sup
N→∞

KN/(2N)d→α

‖h‖−1,N,KN
≤ ‖h‖−1,α.(3.6)

It is more convenient to express the norms ‖h‖−1,N,K and ‖h‖−1,α as

‖h‖−1,α = sup
{〈h,f 〉α : 〈f,−Lf 〉α ≤ 1

}
,(3.7)

‖h‖−1,N,K = sup
{〈h,f 〉α : 〈f,−LNf 〉N,K ≤ 1

}
,(3.8)

where the suprema are taken over f from the unit balls in the corresponding
Dirichlet spaces.

It is easy to see that the following lemma is equivalent to (3.6). In fact, we
can choose fN as the solution of the variational problem (3.8) and applying the
Lemma 3.6 we obtain (3.6). �

LEMMA 3.6. Let KN/(2N)d → α. Assume that for some A ≥ 0 we have a
sequence of functions fN in L2(µN,KN

) that satisfies

sup
N

〈fN,−LNfN 〉N,KN
≤ 1,

lim
N→∞〈h,fN〉N,KN

=A.
(3.9)

Then, for any ε > 0, there is a local function fε such that

〈fε,h〉α ≥A− ε and 〈fε,−Lfε〉α ≤ 1.(3.10)
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PROOF. Fix a positive integer 3 large enough so that <3 = {−3, . . . , 3}d
contains the support of h. Since h has mean 0 with respect to all the canonical
measures µ3,K , from linear algebra, H = L−1

<3
h is a well-defined cylinder

function. Here L<3
is the generator of the exclusion process restricted to <3.

Notice the difference between L<3
and L3. While the first generator stands for the

exclusion process on the cube <3, the second generator stands for the exclusion
process on <3 with periodic boundary conditions, that is, on T

d
3 . Since h=L<3

H ,
for any N > 3,

〈h,fN 〉N,KN
=−1

2

∑
x,y∈<3

p(y − x)〈Tx,yfN ,Tx,yH 〉N,KN
.(3.11)

The summation in the above formula is carried over all sites in the cube <3

(without periodic boundary condition). Fix a cube <L with L ≥ 3. Denote by
fN,L the conditional expectation of fN given F<L

= σ(η(x), x ∈<L). A simple
computation shows that E[Tx,yfN |F<L

] = Tx,yE[fN |F<L
] = Tx,yfN,L for all

bonds {x, y} in <3. Therefore, since H is F<L
-measurable, taking conditional

expectations with respect to F<L
, we obtain that the right-hand side of (3.11) is

equal to

−1
2

∑
x,y∈<3

p(y − x)〈Tx,yfN,L, Tx,yH 〉N,KN
.(3.12)

On the other hand, by Jensen’s inequality and (3.9),

1
2

∑
x,y∈<L

p(x − y)〈(Tx,yfN,L)
2〉N,KN

≤ 1
2

∑
x,y∈<L

p(x − y)〈(Tx,yfN)2〉N,KN

= 〈fN,−LNfN 〉N,KN

≤ 1.

(3.13)

Since fN,L is a cylinder function, the state space {0,1}<L is finite and we have
a uniform bound on the L2(µN,KN

) norms of the gradients of fN,L, there exists
a subsequence N ′ and a cylinder function gL such that the gradients of fN ′,L
converge to the gradients of gL pointwise. On the other hand, by the equivalence
of ensembles, as N ↑ ∞ and KN/(2N)d → α, the finite-dimensional marginals
of the canonical measure µN,KN

converge to the corresponding marginals of µα .
Therefore, as N ′ ↑∞ and as KN/(2N ′)d → α, the expression in (3.12) converges
to

−1
2

∑
x,y∈<3

p(y − x)〈Tx,yH,Tx,ygL〉α.(3.14)

Moreover, since Tx,yfN,L converges to Tx,ygL, by (3.13),
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1
2

∑
x,y∈<L

p(x − y)〈{Tx,ygL}2〉α = 1
4

∑
x,y∈<L

p(x − y)〈{∇x,ygL}2〉α
≤ 1

(3.15)

uniformly in L.
For each x, y in Z

d such that y − x ∈ F where F = {z :p(z) > 0}, Tx,ygL
is a bounded sequence in L2(µα). There exists, therefore, a subsequence L′ for
which Tx,ygL′ converges weakly for each x, y in Z

d such that y − x ∈ F . Denote
by %x,y the weak L2(µα) limit. By construction, as L′ ↑ ∞, (3.14) converges to

−1
2

∑
x,y∈<3

p(x − y)〈Tx,yH ,%x,y〉α.

Moreover, the collection of L2(µα) functions %x,y satisfy conditions (2.3) of
a formal gradient.

At this point we have proved that

−1
2

∑
x,y∈<3

p(x − y)〈Tx,yH,%x,y〉α ≥A(3.16)

and from (3.15) it follows that

1
4

∑
x,y∈Zd

p(x − y)〈%2
x,y〉α ≤ 1.(3.17)

We can now apply Theorem 2.1 and approximate {%x,y} by δfε, thereby
establishing (3.10). �

4. Approximations for the tagged particle. Given 1 ≤ K ≤ (2N)d , denote
by XN,K the space of configurations of XN with K − 1 particles: XN,K =
{ξ ∈XN,

∑
x∈T

d
N,∗

ξ(x) = K − 1}. Recall from Section 2 that µN,K stands for

the uniform measure on XN,K and that 〈·〉N,K represents the expectation with
respect to µN,K .

Denote by C (resp. C0) the space of local functions (resp. local functions that
have mean 0 with respect to all canonical measures). Thus a local function h

belongs to C0 provided 〈h〉N,K = 0 for all large enough N and all 1≤K ≤ (2N)d .
Examples of subspaces of C0 are L0C = {L0h, h ∈ C}, LτC = {Lτh, h ∈ C}.
Also {ψλ,λ ∈R

d} defined by (2.8) are functions in C0.
On the space of local functions C, consider the inner product 〈·, ·〉0,α,1 defined

by

〈f,g〉0,1,α = 〈−L0f,g〉α.
Here the index 0 signifies that only the jump part of the generator enters in the
definition. Denote by H0

1,α the Hilbert space obtained by completing the space of
local functions endowed with the above inner product and by D0,α the Dirichlet
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form associated with the generator L0 and the probability measure να , that is,
D0,α(f )= 〈−L0f,f 〉α . For a local function f , let

‖f ‖2
0,−1,α = sup

g∈C
{2〈f,g〉α −D0,α(g)}

be the dual H−1 norm.

REMARK 4.1. We could have defined the H−1 norm as

‖f ‖0,−1,α = sup{〈f,g〉α :D0,α(g)≤ 1},
where the supremum is taken over either local functions or functions in L2(να)

with Dirichlet norm bounded by 1.

We denote by ‖f ‖0,−1,α the H0−1,α norm of f . It is known that every local
function in C0 has finite H0−1,α norm (cf. [5], Section 7.2). On the other hand,
constants have infinite H0−1,α norm. For two local functions f , g with finite
H0−1,α norm, define by polarization the H0−1,α inner product of f , g, denoted
by 〈f,g〉0,−1,α. Let H0−1,α be the Hilbert space induced by the local functions
endowed with the inner product 〈f,g〉0,−1,α.

In a similar way, for each N ≥ 1 and 1 ≤ K ≤ (2N)d , we define the spaces
H0

1,N,K and H0−1,N,K and the norms ‖ · ‖0,1,N,K and ‖ · ‖0,−1,N,K . According to
Corollary 2.4, for any local function in h ∈ C0,

lim
N→∞

KN/(2N)d→α

‖h‖2
0,−1,N,KN

= ‖h‖2
0,−1,α.(4.1)

Since the density α is fixed throughout this section, to keep the notation simple,
for n=−1, 1, we denote the norms ‖ · ‖0,n,α and ‖ · ‖n,α by ‖ · ‖0,n and ‖ · ‖n and
we denote the inner product 〈·, ·〉α simply by 〈·, ·〉. The main result of this section
states that any h ∈ C0 can be approximated in ‖ · ‖0,−1 norm by Lf with a local
function f . Notice that while the H−1 norm corresponds to the generator L0, the
generator that appears in front of f is the full generator L=L0 +Lτ .

THEOREM 4.2. Let h be a local function in C0. For every ε > 0, there exist
local functions uε, fε such that h=Lfε + uε and ‖uε‖0,−1 ≤ ε.

Notice that uε belongs to C0 because Lfε belongs automatically to C0.
Theorem 4.2 is based on the following two results. Fix a local function h in C0.
For each λ > 0, let uλ be the solution of the resolvent equation

λuλ −Luλ =−h.(4.2)

PROPOSITION 4.3. For every ε > 0, there exists λ0 > 0 such that
‖Luλ − h‖0,−1 ≤ ε for all λ < λ0. That is,

lim
λ→0

‖Luλ − h‖0,−1 = 0.(4.3)
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PROPOSITION 4.4. Fix a local function h in C0 and let uλ be the solution of
the resolvent equation (4.2). For every ε > 0 and every λ > 0, there exists a local
function gλ,ε such that ‖L(uλ − gλ,ε)‖0,−1 ≤ ε.

PROOF OF THEOREM 4.2. Since

h=Lgλ,ε +L(uλ− gλ,ε)+ (h−Luλ)

and we can make

‖L(uλ − gλ,ε)‖0,−1 + ‖(h−Luλ)‖0,−1 < ε

by first picking a small λ according to Proposition 4.3 to make the second term
small and then by picking ε small according to Proposition 4.4 so that the first
term is small, Theorem 4.2 follows from Propositions 4.3 and 4.4. �

We now turn to the proofs of Propositions 4.3 and 4.4, which are based on
the duality properties of the symmetric exclusion process explained in Section 3.
Denote by D0(·) the Dirichlet form associated with the jump part of the generator,
by Dτ(·) the Dirichlet form associated with the translation part of the generator
and by D(·) the full Dirichlet form:

D0(f )= 〈f, (−L0)f 〉,
Dτ (f )= 〈f, (−Lτ )f 〉,
D(f )=D0(f )+Dτ (f ).

Recall the definition of the set Ax,y given in Section 3 and notice that σx,y.A =
.Ax,y . In particular, if f =∑

n≥1
∑

A∈En f (A).A,

D0(f )= 1
4

∑
x,y∈Zd∗

p(y − x)

∫
[f (σ x,yξ)− f (ξ)]2 dνα

= 1
4

∑
n≥1

∑
x,y∈Zd∗

p(y − x)
∑
A∈En

{f (Ax,y)− f (A)}2.

Actually, if F is any symmetric finite set that generates Z
d , D0(f ) is seen to be

equivalent to the form

D̂0(f )= 1
2

∑
x,y∈Z

d∗
y−x∈F

∫
[f (σ x,yξ)− f (ξ)]2 dνα

= 1
2

∑
n≥1

∑
x,z∈Z

d∗
y−x∈F

∑
A∈En

{f (Ax,y)− f (A)}2(4.4)

=∑
n≥1

∑
e∈En

∑
A∈En

{f (σ eA)− f (A)}2,
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where En is the set of edges in En with an edge e connecting A and B present
if A = σx,yB for some x, y ∈ Z

d∗ such that y − x ∈ F . A consequence of the
equivalence of the two Dirichlet forms is their equivalence on all of the spaces Hn

with constants that are independent of n.
On the other hand, for a set A of En, denote by τzA the set defined by

(τzA)=
{
A+ z, if −z /∈A,

(A+ z) \ {0} ∪ {z}, if −z ∈A,

where B + z is the set {x + z; x ∈ B}. Therefore, in the case where −z belongs
to A, we first translate A by z (obtaining a new set that contains the origin) and then
we remove the origin and we add the site z. Of course, τz: En→ En is a one-to-one
function. We denote its inverse by τ−1

z , which is seen to be τ−z. A straightforward
computation shows that τz.A =.τzA.

We now use the results in the Appendix to prove Proposition 4.3 along the lines
of the proofs of Lemma 2.5 of [8] or Theorem 5.1 of [11].

PROOF OF PROPOSITION 4.3. From the results in [6], one can show that

lim
λ→0

‖Luλ − h‖−1 = 0.(4.5)

Our goal is to prove that

lim
λ→0

‖Luλ − h‖0,−1 = 0.

To this end, we write uλ = ∑
n un,λ, where un,λ = πnuλ is the projection of

uλ into Hn, the space functions of degree n and a similar decomposition for
Luλ = vλ =∑

n vn,λ as well as h = ∑
hn. Since h is local, the decomposition

for h is only a finite sum, and since the decomposition is orthogonal in H0−1,α ,

‖Luλ − h‖2
0,−1 =

∑
n≤n0

‖vn,λ − hn‖2
0,−1 +

∑
n>n0

‖vn,λ‖2
0,−1.

From (4.5) and Lemma A.1,

‖f ‖2
1 ≤ Cn‖f ‖2

0,1,

valid for f ∈Hn, it follows that, for each fixed n and any function u ∈ L2,

‖πnu‖0,−1 = sup
f∈Hn‖f ‖0,1≤1

|〈u,f 〉| ≤ sup
‖f ‖1≤

√
C n

|〈u,f 〉|

≤ √Cn‖u‖−1.

(4.6)

Then we have

‖vn,λ − hn‖0,−1 ≤
√
Cn‖Luλ − h‖−1

→ 0 as λ→ 0.
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It is therefore sufficient to control∑
n

sup
λ

‖vn,λ‖0,−1 <∞.

On the other hand, by the tridiagonal property of L and using Lemma A.1 and
(4.6), we have

‖vn,λ‖0,−1 = ‖πnL(un−1,λ+ un,λ+ un+1,λ)‖0,−1

≤√Cn‖L(un−1,λ + un,λ+ un+1,λ)‖−1

=√Cn‖un−1,λ + un,λ+ un+1,λ‖1

≤ C′n
{‖un−1,λ‖0,1 + ‖un,λ‖0,1 + ‖un+1,λ‖0,1

}
.

In view of estimate (A.5), the proof of the proposition is complete. �

PROOF OF PROPOSITION 4.4. Let uλ be the solution of the resolvent
equation. In the proof of Proposition 4.3, we saw that

Luλ =L

[ ∑
n≥1

uλ,n

]
=∑

n≥1

Luλ,n

can be evaluated term by term and the second sum converges rapidly in H0,−1. It is
therefore enough to show that, if g =∑n

j=1 uλ,j , we can find for any given ε a local
function gε such that ‖L(g − gε)‖0,−1 ≤ ε. If u ∈⊕n

j=1 Hj , with components
{uj },

‖Lu‖0,−1 ≤
n∑

j=1

‖Luj‖0,−1 ≤ C

n∑
j=1

j‖uj‖1 ≤ Cn‖u‖0,1.

All we need to do now is to find a local function gε ∈⊕n
j=1 Hj , such that

‖g − gε‖0,1 < ε.

Note that g is in L2(να) and the approximation can be done in each Hj . �

We now prove the main result of the article.

PROOF OF THEOREM 2.5. In view of (3.5), which holds with ‖ · ‖−1,α in
place of ‖ · ‖0,−1,α , to prove Theorem 2.5, it is enough to show that

lim sup
N→∞

KN/(2N)d→α

‖h‖2−1,N,KN
≤ ‖h‖2−1,α(4.7)

for every local function h in C0. Notice first that this statement is elementary if
h=Lh0 for some local function h0.
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Fix ε > 0. By Theorem 4.2, there exist local functions fε and uε such that
h=Lfε+uε and ‖uε‖0,−1,α ≤ ε. Let N be larger than the supports of Lfε and uε.
In this case,

‖h‖−1,N,K = ‖Lfε + uε‖−1,N,K ≤ ‖Lfε‖−1,N,K + ‖uε‖−1,N,K .

Since (4.7) is elementary for functions of type Lg, as N ↑∞ andKN/(2N)d → α,
the first term on the right-hand side converges to ‖Lfε‖2−1,α . By Corollary 2.4,
since uε belongs to C0, as N ↑∞ and KN/(2N)d → α, the second term converges
to ‖uε‖0,−1,α , which is at most ε. Therefore,

lim sup
N→∞

KN/(2N)d→α

‖h‖−1,N,KN
≤ ‖Lfε‖−1,α + ε ≤ ‖h‖−1,α + 2ε.

Since ε > 0 is arbitrary we are done. �

APPENDIX

We begin with a lemma.

LEMMA A.1. There exists a finite constant depending only on the transition
probability p such that

Dτ(f )≤ CnD0(f )

for all functions f in Hn.

PROOF. We note that, on Hn, D0(f ) can be replaced by the expression

D̂0(f )= 1

2

∑
e∈En

∑
A∈En

{f (σ eA)− f (A)}2

because of its equivalence to D0(f ) which is, in fact, uniform in n. Here En is the
set of edges in En connecting A and B if A= σx,yB for some x, y ∈ Z

d∗ such that
y − x ∈ F . Recall that F can be taken to be the set of points in Z

d where every
coordinate is bounded by 2 in absolute value.

An easy calculation of∫ (
1− ξ(z)

)[f (τzξ)− f (ξ)]2 dνα
for f ∈Hn of the form f =∑

|A|=n f (A).A leads to

Dτ (f )= 1
2

∑
z

∑
|A|=n

p(z)rz(A)[f (τ−zA)− f (A)]2,(A.1)
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with rz(A)= α if z ∈ A and 1− α otherwise. Since rz(A)≤ 1 and (A.1) is really
a finite sum over {z :p(z) > 0}, it is basically a question of estimating∑

A∈En

(
f (τ−zA)− f (A)

)2

for each z. We can assume without loss of generality that z = (1,0, . . .), the unit
vector in the direction of the first coordinate axis.

The problem is now reduced to the following: we are given a function
g: En→R. We think of En as a graph with edges En. The Dirichlet form is

D̂0(g)= 1
2

∑
e∈En

|(δg)(e)|2

and we are claiming an estimate of the form

1
2

∑
A∈En

|g(τzA)− g(A)|2 ≤ CnD̂0(g),

with a constant independent of n. It is clear that for any A and B = τzA one can
move from A to B along the edges of the graph En, using only the edges in En.
We will verify that we can assign a set of edges EA ⊂ En such that (i) for every A

one can use the edges of EA to go from A to τzA, (ii) for any A there are at most
n edges in EA and (iii) the subsets {EA} are mutually disjoint as A varies over En.
Then it is easy to see that

|g(τzA)− g(A)|2 =
∣∣∣∣ ∑
e∈EA

(δg)(e)

∣∣∣∣2 ≤ n
∑
e∈EA

|(δg)(e)|2,

and, summing over A ∈ En, because the EA are disjoint, we can establish the
lemma.

To construct the paths from A to τzA, we totally order the points of Z
d∗ by

lexicographic ordering. We say that z = (z1, . . . , zd) ∈ Z
d∗ is positive if either

z1 > 0 or z1 = 0, z2 = 0, . . . , zj−1 = 0 and zj > 0 for some j , 2 ≤ j ≤ d . The
total ordering declares y > x if y − x is positive. Let the set A ∈ En consist of
the n points (x1, x2, . . . , xn) of Z

d∗ . We can assume that they are ordered so that
x1 > x2 > · · ·> xn. Then τzA= (x∗1 , . . . , x∗n), where x∗j = xj + z unless xj =−z
in which case x∗j = xj + 2z= z. We use the edges in En to shift successively each
xi to x∗i starting from x1 and proceeding in order and ending with shifting xn. Any
edge that is used goes from some A1 to A2 = σx,x∗A1. Since the shifts were made
in lexicographic order we can determine without ambiguity which points of A1

have already been shifted and which have not been. In other words, the paths from
any two different A to the corresponding τyA do not share a common edge. It is
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also clear that exactly n edges are used. Any edge corresponds to x∗ −x = z or 2z,
both of which are in F . �

We want to look at the resolvent equation

λuλ−Luλ =−h(A.2)

and obtain some decay estimates on the contributions to the Dirichlet form
from terms of large degree. We follow essentially the method carried out in
[8] or [11]. The lattice is Z

d∗ and we have the Bernoulli measure να on X =
{0,1}Zd∗ . We consider the orthonormal basis {.A} introduced in (3.1) and the
decomposition of L2(να) as

⊕
j Hj . We will consider operators T acting on

L2(να) as scalar multiplication by t (j) on Hj . Assume that t (j) is constant for
j ≤ n1. These are the operators that commute with the projection operators πj

onto the subspaces Hj . The operator L can be written as L0 + Lτ , the sum
of the parts corresponding to the motions of untagged particles and the tagged
particle. The operator L0 commutes with T. Corresponding to the decomposition
L2(να)=⊕Hj , we can write a block decomposition for Lτ involving a tridiagonal
block matrix Li,j . If we write u=∑

j uj where uj = πju, then we can compute
the commutator

[T,L] = TL−LT

=∑
j

t (j)[Lj−1,j uj−1+Lj,juj +Lj+1,juj+1]

−∑
j

[
t (j − 1)Lj−1,juj−1+ t (j)Lj,j uj + t (j + 1)Lj+1,juj+1

]
=∑

j

[[t (j)− t (j − 1)]Lj−1,juj−1+ [t (j)− t (j + 1)]Lj+1,juj+1
]
.

We let t (j)uj = vj and t (j)− t (j − 1)= s(j). From the reversibility of Lτ , we
can conclude that

L
∗
j−1,j = Lj,j−1.

We then use it to estimate the following quadratic form〈[T,L]T−1
Tu,Tu

〉
=∑

j

〈[t (j)− t (j − 1)]Lj−1,juj−1

+ [t (j)− t (j + 1)]Lj+1,juj+1, t (j)uj
〉

=∑
j

s(j)

t (j − 1)
〈Lj−1,j vj−1, vj 〉(A.3)
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−∑
j

s(j + 1)

t (j + 1)
〈Lj+1,jvj+1, vj 〉

=∑
j

s(j)

t (j − 1)
〈Lj−1,jvj−1, vj 〉

−∑
j

s(j + 1)

t (j + 1)
〈Lj,j+1vj , vj+1〉

=∑
j

s(j)2

t (j − 1)t (j)
〈Lj−1,jvj−1, vj 〉

=∑
j

s(j)2

t (j − 1)t (j)
〈Lτ vj−1, vj 〉

≤∑
j

s(j)2

t (j − 1)t (j)

√
〈−Lτ vj−1, vj−1〉

√
〈−Lτ vj , vj 〉

≤ 1

2

∑
j

s(j)2

t (j − 1)t (j)
[〈−Lτ vj−1, vj−1〉 + 〈−Lτ vj , vj 〉].

Since −Lτ is symmetric and positive definite, the penultimate inequality is
valid. We can now combine the last inequality of our calculation in (A.3) with
Lemma A.1 to arrive at

〈[T,L]T−1
Tu,Tu

〉≤∑
j

C

2

js(j)2

t (j − 1)t (j)
[〈−L0vj−1, vj−1〉 + 〈−L0vj , vj 〉].

Let us suppose that

sup
j

Cjs(j)2

t (j − 1)t (j)
≤ δ.

Then 〈[T,L]T−1
Tu,Tu

〉≤ δ〈−L0v, v〉 ≤ δ〈−Lv, v〉 = δ〈−LTu,Tu〉.(A.4)

We start with the resolvent equation

λuλ−Luλ =−h,
operate by T and take inner product with v = Tuλ. We get

λ〈v, v〉 − 〈
TLT

−1v, v
〉=−〈h, v〉,
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which can be rewritten using (A.4) as

λ〈v, v〉 − 〈Lv, v〉 = 〈[TL−LT]T−1v, v
〉− 〈h, v〉

≤ δ〈−Lv, v〉 − 〈h, v〉.
This implies the estimate

‖v‖2
1 = 〈−Lv, v〉 ≤ (1− δ)−1|〈h, v〉| ≤ ‖Th‖−1‖v‖1 ≤ ‖Th‖0,−1‖v‖1.

In particular,

sup
λ>0
‖Tuλ‖2

0,1 ≤ (1− δ)−1‖Th‖0,−1.

It is not hard to construct sequences t (j) that satisfy

sup
j

Cjs(j)2

t (j − 1)t (j)
≤ δ

and increase rapidly to ∞. We can get up to ec
√
n for some small c > 0 that

depends on C and δ. This a priori estimate can easily be formally established to
show that for any local h ∈H0,−1 there is a constant C(k,h) such that

D0(πnuλ)≤ C(k,h)n−k(A.5)

for all λ > 0 and n≥ 1. Note that the mean zero property implies that π0(uλ)= 0.

REFERENCES

[1] DE MASI, A., FERRARI, P. A., GOLDSTEIN, S. and WICK, W. D. (1989). An invariance
principle for reversible Markov processes: applications to random motions in random
environments. J. Statist. Phys. 55 787–855.

[2] GIACOMIN, G., OLLA, S. and SPOHN, H. (2001). Equilibrium fluctuations for ∇φ interface
models. Ann. Probab. 29 1138–1172.

[3] GRIGOR’YAN, A. A. (1988). On Liouville theorems for harmonic functions with finite Dirichlet
integral. Math. USSR-Sb. 60 485–504.

[4] KESTEN, H. (1982). Percolation Theory for Mathematicians. Birkhäuser, Boston.
[5] KIPNIS, C. and LANDIM, C. (1999). Scaling Limit of Interacting Particle Systems. Springer,

Berlin.
[6] KIPNIS, C. and VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of

reversible Markov processes and applications to simple exclusion. Comm. Math. Phys.
106 1–19.

[7] LANDIM, C. (1998). Decay to equilibrium in L∞ of asymmetric simple exclusion processes in
infinite volume. Markov Process. Related Fields 4 517–534.

[8] LANDIM, C. and YAU, H. T. (1997). Fluctuation–dissipation equation of asymmetric simple
exclusion processes. Probab. Theory Related Fields 108 321–356.

[9] LIGGETT, T. (1985). Interacting Particles Systems. Springer, Berlin.
[10] OSADA, H. and SAITOH, T. (1995). An invariance principle for non-symmetric Markov

processes and reflecting diffusions in random domains. Probab. Theory Related Fields
101 45–63.



508 C. LANDIM, S. OLLA AND S. R. S. VARADHAN

[11] SETHURAMAN, S., VARADHAN, S. R. S. and YAU, H. T. (2000). Diffusive limit of a tagged
particle in asymmetric exclusion process. Comm. Pure Appl. Math. 53 972–1006.

[12] SOARDI, P. M. (1994). Potential Theory on Infinite Networks. Lecture Notes in Math. 1590.
Springer, New York.

[13] VARADHAN, S. R. S. (1995). Self diffusion of a tagged particle in equilibrium for asymmetric
mean zero random walks with simple exclusion. Ann. Inst. H. Poincaré Probab. Statist.
31 273–285.

[14] VARADHAN, S. R. S. (1994). Non-linear diffusion limit for a system with nearest neighbor
interactions II. In Asymptotic Problems in Probability Theory: Stochastic Models and
Diffusion on Fractals (K. D. Elworthy and N. Ikeda, eds.). 75–128. Wiley, New York.

C. LANDIM

IMPA
ESTRADA DONA CASTORINA 110
CEP 22460 RIO DE JANEIRO

BRAZIL

AND

CNRS UPRES-A 6085
UNIVERSITÉ DE ROUEN

76128 MONT SAINT AIGNAN

FRANCE

E-MAIL: landim@impa.br

S. OLLA

DÉPARTEMENT DE MATHÉMATIQUES

UNIVERSITÉ DE CERGY-PONTOISE

2 AV. ADOLPHE CHAUVIN

B.P. 222
PONTOISE 95.302 CERGY-PONTOISE CEDEX

FRANCE

AND

CENTRE DE MATHÉMATIQUES APPLIQUÉES

ECOLE POLYTECHNIQUE

91128 PALAISEAU CEDEX

FRANCE

E-MAIL: olla@u-cergy.fr

S. R. S. VARADHAN

COURANT INSTITUTE OF MATHEMATICAL SCIENCES

NEW YORK UNIVERSITY

251 MERCER STREET

NEW YORK, NEW YORK 10012
E-MAIL: varadhan@cims.nyu.edu


