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FINITE SIZE SCALING IN THREE-DIMENSIONAL
BOOTSTRAP PERCOLATION1
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Université Paris Sud

We consider the problem of bootstrap percolation on a three-
dimensional lattice and we study its finite size scaling behavior. Boot-
strap percolation is an example of cellular automata defined on the
d-dimensional lattice �1�2� � � � �L�d in which each site can be empty
or occupied by a single particle; in the starting configuration each site
is occupied with probability p, occupied sites remain occupied forever,
while empty sites are occupied by a particle if at least � among their 2d
nearest neighbor sites are occupied. When d is fixed, the most interesting
case is the one � = d: this is a sort of threshold, in the sense that the
critical probability pc for the dynamics on the infinite lattice Z

d switches
from zero to one when this limit is crossed. Finite size effects in the
three-dimensional case are already known in the cases � ≤ 2; in this paper
we discuss the case � = 3 and we show that the finite size scaling function
for this problem is of the form f�L� = const/ ln lnL. We prove a conjecture
proposed by A. C. D. van Enter.

1. Introduction. Cellular automata are dynamical systems defined on
the d-dimensional lattice Z

d in which each site of the lattice is occupied by
one of finitely many types at each time t. An update rule is defined, which is
homogeneous (all the sites follow the same rule) and local (transitions are
determined by the configuration of types on a finite set of neighboring sites)
[19, 14].

These models can be thought of as interacting particle systems and their
connections with statistical mechanics models have been widely studied in
past years (see, e.g., [6, 13, 18, 20]). A particular example of cellular automata,
known as bootstrap percolation, has been introduced in [5] to model some
magnetic systems. More information on the physical relevance of this model
is given in [4, 7].

In bootstrap percolation only two different types are associated to each
site: each site can be either occupied by a particle or empty. In the starting
configuration each site is independently occupied with probability p. Occupied
sites remain occupied forever, while empty sites become occupied by a particle
if at least � among their 2d nearest neighbor sites are occupied. The object
of primary interest is the probability pfull��� that at the end of the dynamics,
that is, in the infinite time configuration, all the sites are occupied. The basic
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question that has been addressed in physics literature is whether by changing
the value of the parameter p the system exhibits a sort of phase transition,
that is, whether there exists a critical value pc��� ∈ �0�1	 such that pfull��� = 1
if p > pc��� and pfull��� < 1 if p < pc���.

For a fixed dimension d, any site occupied in the dynamics associated to � is
also occupied in the dynamics associated to �−1. Hence pc��� is an increasing
function of �. The first rigorous result on the value of pc��� is due to van Enter,
who used the idea of Straley’s argument [7] to prove that in the case d = 2
and � = 2 the critical probability is equal to zero [15]. In [10, 12], Schonmann
has proved that pc��� ∈ �0�1�, more precisely pc��� = 0 if � ≤ d, otherwise
pc��� = 1; these results suggest that the most peculiar case is � = d.

Before these rigorous results the phase transition scenario in bootstrap per-
colation models was not clear. The technique that had been used to measure
the critical probability pc��� was the finite size scaling: a finite volume esti-
mate of the critical probability was found by means of Monte Carlo simulations
on a finite lattice L = �1�2� � � � L�d, for instance, the probability p0�5

L that one
half of the samples were completely filled at the end of the dynamics, and the
critical value pc��� was extrapolated by means of a suitable scaling function
f�L�. That is, the expression

p0�5
L − pc���

L→∞∼ f�L�(1.1)

was supposed to be valid and Monte Carlo data were properly fitted by means
of the function f�L� (see [1] and references therein).

It is rather clear that the estimate of pc strongly depends on the choice of
the scaling function f�L�; the typical choice, when critical effects in second-
order phase transition are studied, is f�L� = const ×L−1/ν where ν is a suit-
able exponent. In fact this choice with 1/ν = d is correct in the case � = 1,
while estimations of pc��� in the cases � = 2 and d ≥ 2 obtained by means
of Monte Carlo data analyzed through this function f�L� did not fit in the
rigorous scenario depicted by Schonmann’s results [1]. The problem is that
the power law L−1/ν approaches zero too quickly and must be replaced by a
slower function f�L� = const × �lnL�−�d−1� as suggested by the finite volume
results of Aizenman and Lebowitz [3, 8]. Indeed the analysis of old and new
data performed with the correct scaling function yields the correct estimate of
the critical probability [2, 16, 17].

In [3] bootstrap percolation on finite lattices L is considered in the case
� = 2 and d ≥ 2 and it is observed that if p is kept fixed, then in the limit
L → ∞ the probability pL�pfull to fill �1� � � � �L�d tends to one whatever the
value of p is. But if p → 0 together with L → ∞, then it is possible to find
a particular regime in which the probability to fill everything tends to zero.
Indeed it is proved in [3] that there exist two constants c+ > c− > 0 such
that if p ≥ c+/�lnL�d−1 then pL�pfull → 1 when p → 0 and L → ∞, while if
p ≤ c−/�lnL�d−1, then in the same limit pL�pfull → 0.

Let us focus on the case d = 3. The choice � = 2 is not the most delicate
one; indeed, according to [12] in the case � = 3, that is, even in a situation
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in which it is more difficult to fill empty sites, the critical probability pfull is
still zero. Hence one can guess that in the case d = 3, � = 3, the correct finite
scaling function is not the Aizenman–Lebowitz one, but perhaps a function
approaching zero more slowly. Our aim is to study this case and to show that
results similar to those in [3], and conjectured by A. C. D. van Enter, hold with
the scaling function f�L� = const/ ln lnL. This problem has been proposed in
[12] as Problem 3.1; we notice also that related questions have been discussed
in [9, 11].

An interesting follow up would be the generalization of our results
to the d-dimensional case with � = d. In this case one expects f�L� =
const/�ln ln · · · lnL� with the logarithm applied d− 1 times.

In Section 2 we introduce the notations and we state the main result. The-
orem 2.1 is proved in Section 3.

2. Notation and results. We first describe the model of bootstrap per-
colation that we are going to study. Let us consider the lattice Z

3 and the
discrete time variable t = 0�1�2� � � � � The status of the site x ∈ Z

3 at time
t ∈ N is described by a random variable Xt�x� with values in �0�1�. The site
x is occupied at time t if Xt�x� = 1 and empty if Xt�x� = 0. We denote by
� �= �0�1�Z

3
the space of the configurations and by Xt ∈ � the configuration

of the system at time t. The initial configuration X0 is chosen by occupying
independently each site of the lattice with probability p (initial density). Then
the system evolves according to the following deterministic rules:

1. If Xt�x� = 1, then Xt+1�x� = 1 (1’s are stable).
2. If Xt�x� = 0 and x has at least three occupied sites among its six nearest

neighbors, then Xt+1�x� = 1.
3. Xt+1�x� = 0 otherwise.

We omit in our notations the dependence of the process Xt on the initial
density p. When the initial density will be different from p it will be clearly
stated. We denote by X the final configuration attained by the system when
the dynamics stops, that is,

X �= lim
t→∞

Xt�(2.1)

By Schonmann’s result [10, 12], we know that X�x� = 1 for all x ∈ Z
3 when-

ever p > 0.
Let us consider a subset  ⊂ Z

3. We denote by X�t the process restricted
to  with free boundary conditions; that is, the dynamics runs without taking
into account sites outside . Thus X�t, X�t�x� and X will, respectively,
denote the configuration at time t, the value of the random variable at time t
and site x and the final configuration for the process restricted to .

Given two arbitrary sets 1� 2 ⊂ Z
3, we denote by X2

1� t
the process re-

stricted to 1 and with sites in 2 occupied. The sites in Z
3 \ �1 ∪2� are not

taken into account to run the dynamics of X2
1� t

. We omit 1 in the notation
if 1 = Z

3 and we omit 2 if 2 = �.
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Definition 2.1. Following [3] we say that a set  ⊂ Z
3 is internally

spanned if it is entirely covered in the final configuration of the dynamics
restricted to , that is, if

∀ x ∈ � X�x� = 1�(2.2)

We have now introduced the bootstrap percolation model in dimension d = 3
and with parameter � = 3. As we have already remarked, this is the most
delicate three-dimensional bootstrap percolation model. Indeed, � = 3 is the
highest value of the parameter � such that the critical probability in infinite
volume is equal to zero: for each positive initial density p, the probability that
the whole lattice is completely occupied by particles at the end of the dynamics
is equal to 1.

In this particular situation we examine the question of finite size scaling,
that is, following [3], we consider the process XL� t

on the finite cube L =
�1� � � � �L�3 of size L and we perform the simultaneous limits L → ∞ and
p → 0. We prove that there exists a cutoff between regimes in which the
asymptotic probability that the cube L is internally spanned is zero or one.

Theorem 2.1. Let us consider the cube L of side length L and the process
Xt with initial density p and let us denote by R�L�p� the probability that the
cube L is internally spanned. There exist two constants c+ > c− > 0 such that:

(i) R�L�p� −→ 1 if �L�p� → �∞�0� in the regime p > c+/ ln lnL;
(ii) R�L�p� −→ 0 if �L�p� → �∞�0� in the regime p < c−/ ln lnL.

We start to prove the first part of Theorem 2.1; this is the easy part of
the theorem and its proof has already been sketched in [16]. The idea of the
proof relies on the notion of critical length. However small p is, if a fully
occupied cube has size large enough, then the probability of finding on its faces
two-dimensional occupied square droplets large enough to grow and cover all
the faces of the cube (two-dimensional supercritical droplets) is close to 1.
As p goes to 0, the size of such a cube must diverge to ∞ and this must
happen quickly enough; the critical length of the occupied cubes is of order
exp�const/p�. In order to have a probability close to 1 of finding such cubes,
the size L of the region L must be of order exp exp�const/p�.

We now make this a little more precise. From results in [12] one easily
obtains that there exists a constant c1 > 0 such that, given a cube l, if
p ≥ c1/ ln l then there exists a constant a1 > 0 such that

P�l covers Z
3 � l occupied at t = 0� ≥

∞∏
k=l

�1 − exp�−a1k���(2.3)

We consider a large cube L and we estimate R�L�p� from below:

R�L�p� ≥ P�in L ∃ l occupied at t = 0, l covers Z
3� =

P�l covers Z
3 � in L ∃ l occupied at t = 0� P�in L ∃ l

occupied at t = 0��
(2.4)
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Now, from (2.3) it follows that if l ≥ exp�c1/p� then the first factor in (2.4)
tends to 1 when p goes to 0. It remains to adjust the value of L so that the
second factor of (2.4) tends to 1, too. By partitioning the cube L in disjoint
cubes of size l one has

P�in L ∃ l occupied at t = 0� ≥ 1 − �1 − pl3��L/l�3 �(2.5)

By choosing c+ > c1 > 0, l = exp�c1/p� and L > exp exp�c+/p�, the right-hand
term in the equation above tends to 1 when p goes to 0. This completes the
proof of the first part of Theorem 2.1. ✷

3. Proof of Theorem 2.1. We prove here the second part of Theorem 2.1.
Let us sketch briefly the strategy of our proof. Our goal is to find a a suitable
upper bound to the probability that a cube L is internally spanned. We say
that a cube is crossed if, in the final configuration of the dynamics restricted
to the cube itself, there is an occupied connected set joining two opposite faces
of the cube. We compute an upper bound to the probability of the simple event
that a cube is crossed by building several processes which dominate the orig-
inal bootstrap percolation process. The last process is simply a juxtaposition
of several independent two-dimensional bootstrap percolation processes with
an additional increasing step. We then rely on the known estimates [3] for
the bootstrap percolation model in the case d = 2, l = 2 to bound from above
the probability that a cube is crossed. If the region L is internally spanned,
then it must contain cubes of every intermediate size which are crossed. The
best upper bound is obtained for cubes of size of order exp�const/p�, which
is likely to be the size of a “critical droplet,” yielding an upper bound of the
correct order.

First, we give some additional definitions. Given a site x ∈ Z
3 we denote by

�x1� x2� x3� its three coordinates and given a set  ⊂ Z
3 we define its diameter

d�� �= sup��xi − yi�� x ∈ � y ∈ � i ∈ �1�2�3���(3.1)

that is, d�� is the side length of the minimal cube surrounding the set .
We say that  ⊂ Z

3 is a region of Z
3 if and only if it is nearest-neighbors

connected. If 1 and 2 are two regions of Z
3 and 1 ∪ 2 is a region as well,

then d�1 ∪ 2� ≤ d�1� + d�2�.
We adapt to our situation a key lemma of [3] describing what happens at a

smaller scale inside an internally spanned region.

Lemma 3.1. Let 1 be a region of Z
3. If 1 is internally spanned, then for

all κ such that 1 ≤ κ and 2κ+ 1 ≤ d�1� there exists some region 2 included
in 1 which is internally spanned and such that κ ≤ d�2� < 2κ+ 1.

Proof. We build the final configuration X1
through the following algo-

rithmic procedure. Let �0 be the collection of the sites occupied at time zero.
Suppose we have built a collection of internally spanned regions �n; we define
a rule to build the collection �n+1:
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(i) If there exist two regions A�B of �n such that A ∪B is still a region,
then we set

�n+1 �= �n ∪ �A ∪B� \ �A�B��(3.2)

that is, �n+1 is obtained by replacing in �n the two elementsA and B byA∪B.
(ii) If no such regions exist then we choose a site x not belonging to any

set in �n and having three neighbors in the set
⋃
A∈�n A. We denote by Ai,

1 ≤ i ≤ r, the r regions of �n containing a neighbor of x, and we set

�n+1 �= �n ∪
{ r⋃
i=1

Ai ∪ �x�
}∖

�A1� � � � �Ar��(3.3)

(iii) If no such site x exists, the algorithm stops.

Notice that for each n, the regions of �n are internally spanned. Since by
hypothesis 1 is internally spanned, the procedure ends for some m such that
�m = �1�. Moreover, we have that max�d�A�� A ∈ �0� = 1, max�d�A�� A ∈
�m� = d�1� and for any n ≤m− 1,

max�d�A�� A ∈ �n+1� ≤ 2 max�d�A�� A ∈ �n� + 1�(3.4)

Hence there exists n such that

κ ≤ max�d�A�� A ∈ �n� < 2κ+ 1�(3.5)

which means that in �n there is an internally spanned region 2 such that
κ ≤ d�2� < 2κ+ 1. ✷

Definition 3.1. Let us consider a cube  in Z
3. We say that  is crossed,

or that there is a crossing in , if and only if in the final configuration X of
the dynamics restricted to  there is an occupied region joining two opposite
faces of the cube .

We note that for any region A the following inclusion holds:

�A is internally spanned�
⊂ �the smallest cube surrounding A is crossed��

(3.6)

Hence, by using Lemma 3.1, for any L and any κ such that 2κ + 1 < L, we
have

R�L�p� ≤ P�∃ l� κ ≤ l < 2κ+ 1� ∃ l ⊂ L� l is crossed�
≤ �κ+ 1� L3 max

κ≤l<2κ+1
P�l is crossed��(3.7)

Thus,

R�L�p� ≤ L3 min
1≤κ<�L−1�/2

�κ+ 1� max
κ≤l<2κ+1

P�l is crossed��(3.8)
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We have reduced the estimate of R�L�p� to the estimate of the probability
that a cube l is crossed and by symmetry we can consider the case of a
crossing along the first coordinate direction (denoted by e1 in the sequel),

P�l is crossed� ≤ 3 P�l is crossed along e1��(3.9)

In order to estimate the right-hand term of (3.9) we reduce the problem to a
two-dimensional situation by properly cutting the cube l in slices of thickness
two-perpendicular to the x1-direction. For the sake of definiteness we suppose
that l �= �1�2� � � � � l�3 where l is an even integer and we define the slices

Tk �= �x ∈ l� x1 = 2k− 1 or x1 = 2k�� 1 ≤ k ≤ l

2
�(3.10)

We define a map s associating to each site in a slice the only nearest neighbor
along the first coordinate direction belonging to the same slice,

∀ x ∈ l� s�x� �=
{ �x1 + 1� x2� x3�� if x1 is odd,
�x1 − 1� x2� x3�� if x1 is even.

(3.11)

The processXl\Tk
Tk� t

, obtained by restricting the original processXt to the slice
Tk and by occupying all the sites in l \Tk, dominates the original process in
the same slice,

∀ k ∈
{
1� � � � �

l

2

}
∀ x ∈ Tk� ∀ t ≥ 0� Xt�x� ≤Xl\Tk

Tk� t
�x��(3.12)

In each slice Tk, for k in �1� � � � � l/2�, we define a new process Ykt .

Definition 3.2. We consider all the sites in l \Tk occupied and we define
the process Ykt on �0�1�Tk as follows. For any x in Tk:

(i) Yk0�x� = max�Xl\Tk
Tk�0

�x��Xl\Tk
Tk�0

�s�x��� = max�X0�x��X0�s�x���.
(ii) If Ykt �x� = 1 then Ykt+1�x� = 1.
(iii) If Ykt �x� = 0 and x has at least three occupied sites among its six near-

est neighbors in the configuration Ykt , then Ykt+1�x� = 1 and Ykt+1�s�x��=1.
(iv) Ykt+1�x� = 0 otherwise.

The mechanism to build Ykt+1�x� is the one used for Xl\Tk
Tk� t+1 followed by an

additional step increasing the configuration. This mechanism ensures that for
all t and any x in Tk one has Ykt �x� = Ykt �s�x��.

We next introduce a family of two-dimensional processes.

Definition 3.3. To each slice Tk, for k in �1� � � � � l/2�, we associate a two-
dimensional l× l square Qk

l �= �1�2� � � � � l�2. On each square Qk
l we define a

process ZQkl � t by

ZQkl � t�x2� x3� �= Ykt �2k− 1� x2� x3� = Ykt �2k� x2� x3�(3.13)

for any �x2� x3� ∈ Qk
l .
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The processes ZQkl � t, 1 ≤ k ≤ l/2, are independent and they are two-
dimensional bootstrap percolation processes with parameter � = 2 and ini-
tial density q = 1 − �1 − p�2 = 2p − p2. Furthermore, these processes dom-
inate the original process in the slices, that is, for any k ∈ �1� � � � � l/2�,
x = �x1� x2� x3� ∈ Tk and t ≥ 0,

XTk� t
�x� ≤ ZQkl � t�x2� x3��(3.14)

We use these two-dimensional processes to estimate the probability that a
cubic region is crossed. We consider the �l/2�×l×l parallelepiped �l obtained
by collecting all the l/2 squares Qk

l introduced in Definition 3.3 (the kth slice
along e1 corresponds to Qk

l ) and we denote by Z�l
the configuration on �l

defined as follows: ∀ x1 ∈ �1� � � � � l/2�, ∀ x2� x3 ∈ �1� � � � � l�,

Z�l
�x1� x2� x3� �= ZQx1

l
�x2� x3��(3.15)

where ZQkl , k ∈ �1� � � � � l/2�, is the final configuration of the process ZQkl � t. We
bound (3.9) by

P�l is crossed along e1�
≤ P�in Z�l

there is a crossing along e1��
(3.16)

We consider next the two-dimensional bootstrap percolation model with
parameter � = 2 and initial density q. We define as well the concept of “being
internally spanned” and we denote by S�l� a square of side length l. We recall
that for such a process, the final configuration is a union of separated occupied
rectangular regions; that is, the distance between two occupied rectangles is
strictly larger than 1. We restate a few results for this model.

Lemma 3.2 (Aizenman–Lebowitz [3]). For all κ ≥ 1, a necessary condition
for S�l� to be internally spanned, where κ ≤ l, is that it contains at least one
rectangular region whose maximal side length is in the interval �κ�2κ + 1	
which is also internally spanned.

The proof of Lemma 3.2 can be found in [3].

Lemma 3.3. Let A be a rectangular region of side lengths l1 and l2, where
l1 ≤ l2. For q small enough one has

P�A is internally spanned� ≤ �4l2q�l2/2�(3.17)

Proof. If A is partitioned in l2/2 disjoint slabs of width 2, a necessary
condition for A to be internally spanned is that each slab contains initially an
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occupied site. Hence

P�A is internally spanned� ≤ �1 − �1 − q�2l1�l2/2

≤ exp
(
l2
2

ln�1 − exp�2l2 ln�1 − q���
)

≤ exp
(
l2
2

ln�−2l2 ln�1 − q��
)
�

(3.18)

For q small enough, ln�1 − q� ≥ −2q, whence

P�A is internally spanned� ≤ exp
(
l2
2

ln�4l2q�
)
= �4l2q�l2/2� ✷(3.19)

Lemma 3.4. For any l in N and any κ ≤ �l − 1�/2 let � be the event: S�l�
contains a rectangular region internally spanned whose maximal side length
belongs to the interval �κ�2κ+ 1	. For q small enough one has

P�� � ≤ l2 �2κ+ 1�2 exp
(
−κ

2
exp�−4�2κ+ 1�q�

)
�(3.20)

Proof. We suppose q small enough to have ln�1−q� ≥ −2q and we bound
the probability of the event � as follows:

P�� � ≤ l2 �2κ+ 1�2 max
κ≤l2≤2κ+1

exp
(
l2
2

ln�1 − exp�2l2 ln�1 − q���
)

≤ l2 �2κ+ 1�2 exp
(
κ

2
ln�1 − exp�2�2κ+ 1� ln�1 − q���

)

≤ l2 �2κ+ 1�2 exp
(
κ

2
ln�1 − exp�−4�2κ+ 1�q��

)

≤ l2 �2κ+ 1�2 exp
(
−κ

2
exp�−4�2κ+ 1�q�

)
� ✷

(3.21)

Now we come back to the proof of the upper bound. Let α be positive. Notice
that p ≤ q ≤ 2p. We denote by 1 the configuration in a square Qh

l with all
the sites occupied. We still increase the configuration ZQkl by setting ZQkl = 1
in case ZQkl contains at least one occupied rectangular region of maximal side
length larger than α/q. Suppose that l ≥ α/q and α/q > 3. By applying Lemma
3.4 with κ = α/3q, we get

P�ZQkl = 1� ≤ l2
(

2α
3q

+ 1
)2

exp
(
− α

6q
exp

(
−4

(
2α
3q

+ 1
)
q

))

≤ l2α2

q2
exp

(
− α

6q
exp�−4α�

)
�

(3.22)

We suppose that α is small enough to have exp�−4α� ≥ 1/2. Then

P�ZQkl = 1� ≤ l2α2

q2
exp

(
− α

12q

)
�(3.23)
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Let M be the (random) number of indices k such that ZQkl = 1 and let
k�1�� � � � � k�M� be these indices arranged in increasing order. Let �1 be the
event

�1 �= �there is a crossing along e1 in Z�l
��

We decompose this event as follows:

P��1� = P��1�M = 0�

+
l/2∑
m=1

∑
i1<···<im

P��1�M =m�k�1� = i1� � � � � k�m� = im��
(3.24)

Let i < j be two indices in �1� � � � � l/2�. By � �i� j� we denote the follow-
ing event: there exists a sequence of H disjoint occupied rectangular regions
�Rh� 1 ≤ h ≤H� in Z�l

such that:

(i) R1 is included in Qi
l, RH is included in Qj

l .
(ii) The regions Rh, 2 ≤ h ≤H− 1, are included in

⋃
i<h<j Q

h
l .

(iii) For each h, 1 ≤ h ≤H, if Rh belongs to Qk
l , then Rh is separated from

the other occupied rectangular regions of ZQkl .
(iv) The maximal side length of all these regions is strictly less than α/q;

we denote by rh the maximal side length of Rh.
(v) For each h, 1 ≤ h ≤H−1, a site of Rh is the neighbor of a site of Rh+1.
(vi) All the sites of these regions are occupied in Z�l

.

We remark thatH is free; however, it has to be larger than j−i+1. Moreover,
the sequence of rectangles �Rh� 2 ≤ h ≤H−1� can go back and forth between
the squares Qi+1

l and Qj−1
l . We make the convention that for any i, � �i� i� =

� �i� i− 1� is the full event of probability 1. Using (3.23), we have

P��1�M =m�k�1� = i1� � � � � k�m� = im�

≤ P
(
M =m�k�1� = i1� � � � � k�m� = im�� �1� i1 − 1��

� �i1 + 1� i2 − 1�� � � � �� �im−1 + 1� im − 1�� �

(
im + 1�

l

2

))

=
m+1∏
h=1

P�� �ih−1 + 1� ih − 1�� P�Z
Q
i1
l
= 1� · · ·P�Z

Q
im
l

= 1�

≤
(
l2α2

q2
exp

(
− α

12q

))m m+1∏
h=1

P�� �ih−1 + 1� ih − 1���

(3.25)

where we have set i0 = 0 and im+1 = l/2 + 1.
In order to estimate P�� �i� j�� for i < j, we consider a fixed sequence

r1� � � � � rH in �1� � � � � α/q − 1�. The number of sequences R1� � � � �RH of rect-
angles with maximal sides r1� � � � � rH and satisfying the above requirements
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is smaller than

l2r1 × r2
1r2 × r2

2r3 × · · · × r2
H−1rH ≤ l2 �r1r2 · · · rH�3�(3.26)

Notice that several rectangles of the sequence R1� � � � �RH might belong to the
same slice. However the rectangles belonging to the same slice are separated
and the events that these rectangles are internally spanned depend only on
the dynamics restricted to the rectangles. Hence these events are independent,
so that

P�R1� � � � �RH are occupied in Z�l
�

≤ P�R1� � � � �RH internally spanned�
= P�R1 internally spanned� · · ·P�RH internally spanned�
≤ �4r1q�r1/2 · · · �4rHq�rH/2�

(3.27)

where in the last inequality we have used Lemma 3.3. Thus

P�� �i� j�� = ∑
H≥j−i+1

P�∃ R1� � � � �RH realizing � �i� j��

≤ ∑
H≥j−i+1

∑
r1�����rH<α/q

l2 �r1 · · · rH�3 �4r1q�r1/2 · · · �4rHq�rH/2

= ∑
H≥j−i+1

l2
( ∑

1≤r<α/q
r3 �4rq�r/2

)H
�

(3.28)

We estimate the sum
∑

1≤r<α/q r3 �4rq�r/2 as follows:

∑
1≤r<α/q

r3 �4rq�r/2 = ∑
1≤r≤8

r3 �4rq�r/2 + ∑
9≤r<α/q

r3 �4rq�r/2

≤ 83�32q�1/2 +
(
α

q

)4

max
9≤r<α/q

�4rq�r/2�
(3.29)

Let f�r� = �4rq�r/2. For α small enough, f�r� is decreasing on �9� α/q�, whence
∑

1≤r<α/q
r3 �4rq�r/2 ≤ 83�32q�1/2 + α4369/2q1/2 ≤ b0q

1/2�(3.30)

where b0 is a constant not depending on α. Thus,

P�� �i� j�� ≤ ∑
H≥j−i+1

l2�b0
√
q�H�(3.31)

Finally, for q small enough, so that b0
√
q < 1/2 and ln b0 ≤ �−1/4� lnq, we

have

P�� �i� j�� ≤ 2l2�b0
√
q�j−i+1 = 2l2 exp

( 1
4�j− i+ 1� lnq

)
�(3.32)
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Coming back to inequality (3.25),

P��1�M =m�k�1� = i1� � � � � k�m� = im�

≤
(
l2α2

q2
exp

(
− α

12q

))m
�2l2�m+1 exp

[(
l

2
−m

)(
1
4

lnq
)](3.33)

and putting this estimate in (3.24),

P��1� = P��1�M = 0�

+
l/2∑
m=1

∑
i1<···<im

P��1� M =m�k�1� = i1� � � � � k�m� = im�

≤
l/2∑
m=0

(
l

2

)m( l2α2

q2
exp

(
− α

12q

))m
�2l2�m+1 exp

[(
l

2
−m

)(
1
4

lnq
)]

≤ 2l2 exp
[
l

8
lnq

] l/2∑
m=0

[
l5α2

q2
exp

(
− α

12q

)
exp

[−1
4

lnq
]]m

�

(3.34)

This is our estimate of the probability of a crossing along e1 in the case l ≥ α/q.
On the other hand, in the case l < α/qwe estimate the probability of a crossing
along e1 by considering directly the event � �1� l/2�,

P�l is crossed along e1� ≤ P
(
�

(
1�
l

2

))
≤ 2l2 exp

[
l

8
lnq

]
�(3.35)

We note that it would not have been possible to use the same strategy in the
case l ≥ α/q because the probability of having a very large internally spanned
rectangle in some slice does not vanish.

Supposing that l ≤ exp�α/120q�, one has

l5α2

q2
exp

(
− α

12q

)
exp

[
−1

4
lnq

]
≤ α2

q2
exp

(
− α

24q
− 1

4
lnq

)
�(3.36)

If q is sufficiently small so that the right hand term is smaller than 1, under
the hypothesis 2 ≤ l ≤ exp�α/120q�, from (3.9), (3.34), (3.35) and (3.36), one
has

P�l is crossed� ≤ 6l2 exp
[
l

8
lnq

](
l

2
+ 1

)
≤ 6l3 exp

(
l

8
lnq

)
�(3.37)

Hence, there exists α > 0 such that for p sufficiently small and 2 ≤ l ≤
exp�α/240p�,

P�l is crossed � ≤ 6l3 exp
(
l

8
ln�2p�

)
�(3.38)

Finally, we use equations (3.8) and (3.38) to estimate the probability
R�L�p� and to complete the proof of Theorem 2.1. First we consider the case
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L ≤ exp�α0/p� with α0 = α/240 and we write

R�L�p� ≤ L3 min
1≤κ<�L−1�/2

�κ+ 1� × 6�2κ+ 1�3 exp
(
κ

8
ln�2p�

)

≤ 6L7 exp
(
L

24
ln�2p�

)
�

(3.39)

We remark that the right-hand term goes to zero in the limit p → 0 and
L→ ∞. On the other hand, in the case L > exp�α0/p�, we restrict the mini-
mum in (3.8) to the range 2κ+ 1 ≤ exp�α0/p� and we get

R�L�p� ≤ 6L3 exp
(

4α0

p

)
exp

[
1
24

exp
(
α0

p

)
ln�2p�

]
�(3.40)

From the estimate above we see that there exists a positive constant c− such
that if L is less than exp exp�c−/p� then R�L�p� goes to 0 in the limit L→ ∞
and p→ 0. This completes the proof of Theorem 2.1. ✷
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