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FIRST ORDER CORRECTION FOR THE HYDRODYNAMIC LIMIT
OF SYMMETRIC SIMPLE EXCLUSION PROCESSES
WITH SPEED CHANGE IN DIMENSION d=>3

BY ELISE JANVRESSE

Université de Rouen

The hydrodynamic limit of the symmetric simple exclusion process
with speed change is given by a diffusive equation in the appropriate
scale. Following the nongradient method introduced by Varadhan and the
Navier—-Stokes methods developed by Yau, we prove that in the same scale,
the next order correction is given by a third order equation for dimension
d>3.

1. Introduction. We consider the configuration space consisting of parti-
cles in Z? and we suppose that there is a hard core interaction so that two par-
ticles cannot occupy the same site. By imposing some probability distribution
on the configuration space we obtain a model of lattice gases in equilibrium.
This lattice gas model can be turned into a dynamical one if some rules for
the motion of particles are given.

We consider the symmetric simple exclusion process with speed change.
This model can be informally described as follows: A particle at site x jumps to
a neighboring site x+y chosen with equiprobability at a rate which depends on
the presence of particles at sites x — y and x + 2y. If the site x + y is occupied,
the jump is suppressed. The generator of this process is given, for o« > —1/2
fixed, by

(1.1 Lfm)= X Teery(m) (F(n™*7) = f(m)),

x, |y[=1

where r, ., (1) = n(x)(1 — n(x + ¥))(1 + an(x — y) +an(x+2y)) and n* *+
is the configuration n after a particle jumped from site x to site x + y.

The total number of particles is the unique conserved quantity and for each
0 < p < 1, there exists a translation invariant product probability measure
denoted by v, that is invariant for the dynamics and for which the density of
particles is p: v, is the product Bernoulli measure with parameter p. Moreover,
since the process is symmetric, the measures are reversible.

We are interested in the evolution of the local density of particles. Let us
fix the scale of the lattice to be N~'. In order to have the particle moving a
distance of order 1 in the macroscopic scale, we have to wait for a time of order
N2. So introducing a diffusive time scaling (¢ = ¢N?), we can check that the
density follows the hydrodynamic equation

1.2) dp =30, (p(1+ ap)).

Received July 1997.

AMS 1991 subiject classifications. Primary 60K35; secondary 82C22.

Key words and phrases. Infinite interacting particle systems, hydrodynamic limit, nongradient
methods, symmetric simple exclusion process.

1874



FIRST ORDER CORRECTION FOR A HYDRODYNAMIC LIMIT 1875

A fundamental question in mathematical physics is the derivation and in-
terpretation of equations which are not scaling invariant and thus cannot be
obtained from a scaling limit.

For example, in the context of asymmetric interacting particle systems,
several interpretations have been proposed for the Navier—Stokes (NS) equa-
tion.

It is well known that the macroscopic evolution of the strictly asymmetric
simple exclusion process (ASEP) under Euler rescaling is described (cf. [9]) by
the first order quasilinear hyperbolic equation

(1.3) dep+ 30y [p(1 = p)] = 0.

In the context of ASEP, the equation that corresponds to the NS equation is
(1.4) dip + 20y [p(L = p)] = N7* 33, (a" 7 (p)dy,p),
i i,J

where a /(p) is the diffusion coefficient depending on p.
This leads to the following three interpretations of the NS equation:

1. The NS equation (1.4) is the first order correction to the hydrodynamic
equation (1.3): It describes the evolution of the density up to order N1
(see [1, 7).

2. Long time behavior: Equation (1.4) describes the evolution of the density
up to time scale NZ2. In diffusive scale, we obtain from (1.4),

3ip+ N Y0, [p(1 = p)] =X, (a"/(p)y, p)-

Assuming that the initial data are constant along the drift direction, the
diverging term vanishes.

3. Incompressible limit (see [2, 3]): Consider a small perturbation of a constant
profile (p = po + N~1u) in the diffusive scale. For simplicity, take py = 1/2.
Otherwise a uniform motion has to be taken out. We find that u satisfies
the equation

Jpu+2) d.u” =) d;(a"7(1/2)d ju).
e i,J
Notice that the diffusion coefficient is computed at the equilibrium density
1/2 and is a constant in the equation.

Note that the second and third interpretations concern the behavior of the
system under diffusive rescaling. The first interpretation is a statement on
the process under Euler rescaling.

Let us turn to the symmetric process we introduced above. Consider the
equation

o d
(1.5) aip™ =2, (pN (1 - p"N)) — N > P (Rij(PN)ﬁujPN),

i, j=1
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where R;; is a continuous function on (0, 1). Since our process is symmetric, we
already used diffusive rescaling to get the hydrodynamic limit, so the second
and third interpretations may not be applied in our case. In this paper, we
shall prove the first interpretation holds in dimension d > 3: Equation (1.5)
describes the evolution of the density up to order N~1. It is the first order
correction to (1.2).

Our method is based on a nongradient system method (see [10]), a multi-
scale analysis and a relative entropy argument (see [11]). The paper is orga-
nized as follows: In Section 2, we first recall the rigorous definitions of the
symmetric simple exclusion process with speed change and state our main
result. Its proof is outlined in Sections 3 and 8. Beside other problems, we
need to prove a very strong control of the specific relative entropy: For the
usual hydrodynamic limit, following the arguments in [3], we need to bound
the specific relative entropy by O(N~1) (Section 7). Unfortunately, this is not
sufficient to identify the correction term and we need to bound the specific rel-
ative entropy by O(N~2). Details will be described in Section 4 and the proofs
can be found in Sections 7 and 9. In Section 10, we state the properties of the
diffusion coefficient R and prove lemmas we assumed in Sections 8 and 9.

2. Statement of the result. We consider the symmetric simple exclusion
process with speed change on a lattice of size N in dimension d > 3 with
periodic boundary conditions. We shall denote by T‘Z{, the d-dimensional torus
with length N. The configurations of this process are given by

n = {n(x); x € 2% n(x+ Ne;) = n(x)},

where (e;)/ = 8,; and n(x) = 1 or 0, indicating if the site x is occupied or not.
The generator of this process is given, for « > —1/2 fixed, by

(2.1) Lyfm= 3 7oy (F™5) = f(m),

x, |y[=1

where r, ., (1) = n(x)(1 — n(x + y))(1 + an(x — y) + an(x + 2y)) and
n(x+y), z=x,
7" Y (2) = 1 (%), z=x+y,
n(2), otherwise.
The Bernoulli measures {v,, 0 < p < 1} are the invariant measures for this
process.

Let Wy ., = ro., — e, o be the current between 0 and e;. A simple compu-
tation gives that

Wo,e, = (B — 7o, b)) — (v; — 27,,0; + T30, 0;)

with %;(n) = ng — an_,m,, +2an_, mo and v;(n) = an_,, no.
We start the process with the inhomogeneous product measure

2.2 3 (1) = Z3t o) x| T 57 )|
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where A\q(u) is a smooth function on T (the d-dimensional torus of volume 1)
and Z y(Ap) is a normalization constant.

For a positive integer N and Ty > 0, denote by P, the probability measure
on the path space D([0, T], {0, 1}T‘zir) of the Markov process with generator
L y accelerated by N2 and starting from ,u,év, and denote by E, the expectation
with respect to Py.

To the measure (2.2) corresponds an initial density profile

exp(Ag(w))
exp(Ag(u)) +1°

Notice that the initial profile mg is bounded away from 0 and 1: there exists
6 > 0 such that 6 < my(u) <1-34.
Denote by m the solution of the equation

r7trn = Au¢(m)7
m(0, -) = mo("),

with ¢(m) = m(1+ am). Since ¢ and m, are smooth, there exists a classical
smooth solution to this equation.

This equation describes the macroscopic behavior of the symmetric simple
exclusion process with speed change. More precisely, if ¢V (¢, u) is defined as

q" (t, u) = Ey[n([Nu])],

it follows that, for each fixed time ¢, ¢ (¢, -) converges weakly to m(¢, -). In fact,
for each fixed time ¢, g™V (¢, -) converges pointwise to m(¢, -) in each continuity
point of m(¢, -) (see Chapter 9 in [5]).

Our result describes the first order correction in this limit: For each integer
N consider the equation

(2.3) mo(u) =

(2.4)

d
gm = A, p(mY)— = 3 2 (R,(mY)a, m"),
(25) ¢ N el i J J

mN(0, ) = mo("),

where R is a continuous function on (0, 1) which will be defined later (cf.
Section 10). We can understand (2.5) as a perturbation of (2.4) as follows.
For any fixed solution m of (2.4), consider the linear equation

d
S=A,[¢ S]—«a 2 (R..
(2-6) i u[d) (m) ] i,élaui( I'J(m)&ujm)a

Since R(m) is only continuous, we consider the solution of (2.6) in the following
weak sense: Fix T' > 0 and consider the dual backward equation

2.7 dgd(s,u)+ ¢’ (m(s,u))A,J(s,u) =0,
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with final condition J (7', u) = J(u). It is easy to obtain the estimates

d T
3 /0 ds /Td du (3,,J (s, w))? < Cy [ du I (u)? exp(C,T),
i=1

@8 7
3 / ds / du (%, J(s,u))? < Cy [pa du(d, J(u))?exp(C,T)
2y 95 ] ) ;

for some finite constants C,, C,, C; and C, that depend only on the bounds
on m and ¢.

Denote by -# the Hilbert space generated by C*(7'?) and the inner product
(-, -)1 defined by

d
(F.G)1 =Y [ (0,F)0,6).
i=1

Let #, be the dual space of - with respect to L?(T?). The mapping
S: [0,T] — #, is said to be a solution of (2.6) if for every J,: T? — R
smooth,

¢ d
(S(2), Jo) = —a [ ds [dudZ I(s,u) 3 (Ry(my(w))d, my(w)),
0 i L= J
i, j=1
where J (s, u) is the solution of the backward equation (2.7) with final condi-
tion J(¢, u) = Jo(u). In view of estimates (2.8), it is not difficult to prove the
existence of a unique solution to (2.6).
The main result of this paper is the following theorem.

THEOREM 2.1. For any t < T, we have
N(g"(t,) = m(¢,-)) = S(2)
weakly in # ;.

3. Proof of Theorem 2.1. Denote by S: [0, Ty] x T¢ — R the weak solu-
tion of the linear equation (2.6). Fix atime 0 < T' < Ty and a smooth function
Jo: T — R. Denote by J: R, x T¢ — R the solution of the linear equation
(2.7) with final condition J(T, u) = Jy(u). We have to prove that

I L[ )

For o > 0, let R” be a smooth function on [0, 1] converging to R uniformly on
each compact subset of (0, 1). This is possible since R is continuous in (0, 1).
Then there exists a smooth solution to the linear equation (2.6) (with the
corresponding smoothed coefficient R“), which is denoted by S7: R, x T¢ — R.
We start computing the time derivative of

R R )|



FIRST ORDER CORRECTION FOR A HYDRODYNAMIC LIMIT 1879

A simple computation shows that it is equal to

Ex| N (6 ) ML)
- E| S 0 (1) ) (1 ) o)
T | E)
-wZA R () e )]
vl B ()

The last term in the above formula is the error we obtain when making a
summation by parts in the sums. At the end of this section, we prove that ¢y
is of op(1). Moreover,

LNnt(x) = ZTx(W—ei,O - WO, e;)’
where W, . is the current between 0 and e;. Recall that
WO,ei = (hl - Teihi) - (Ui - ZTeivi + Tzeivi)

with h;(n) = ng — an_, ., +2an_, me and v;(n) = an_,, no. Hence, summing
by parts and using Taylor expansion, we obtain that

X
Ny J(t, N) N2Lyn,(x)

X

= N Zﬂii Jt<N>Txhi(nt) - N Zﬂii Jt(%)q-xvi Ton(D)-

Therefore, making summations by parts, (3.1) is equal to

By| N 7, 530 ) et = 6mp = 9/ (- mo (1) )]

X

— N_dz&th(N>EN(’Tin)

- x - x x
- N ;wii Jt<N>Rij (mt<ﬁ>> aujmt<ﬁ>

plus a small error of o (1). The second line is the correction needed for the first
line to converge to 0. By the law of large numbers (more precisely, using the
hydrodynamical behavior of the exclusion process with speed change and, in
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particular, the classical one-block and two-block estimates), this line converges
as N increases to oo to

(2 —ay /OT dt [ du 2, T (w)[~2m ()3, + RG(m, ()] 3, me(w)

We now concentrate on the first line. Recall that ¢(m) = m(1+ am). Since
the linear terms of the first line cancel, we may rewrite it as

aBy| NS (@ D) (1 )

(3.3) x {TxH,-(»f,t) - m2<t, %)

o))

with H;(n) = 2n(—e;)n(0) — n(—e;)n(e;).

Notice that if « = 0, Theorem 2.2 is proved. Namely, there is no first or-
der correction for the usual symmetric simple exclusion process. Hence, we
suppose a # 0.

At this point, following the approach of [4], we would like to replace the
cylinder function r, H,(7,) by a function of the empirical measure. In order to
do this, we need some notation.

For an integer I, denote by n’(x) the empirical density on a hypercube of
length 27 + 1 centered at x:

1
Iy —
7' (x) A > (),

¥; y—xeh;
A={yez —l<y <l forl<i=<d)

Furthermore, denote by S; ;(n) the conditional expectation given the density
of particles on A; of H;(n) = 2n(—e;)1n(0) — n(—e;)n(e;):

Si.«(n) = E[H,(n)In'(0)].

Recall that the canonical measure on finite boxes is the uniform measure. In
particular, S; ;(n) does not depend on m and can be explicitly computed. It is
given by

1

=17 O -7 (0.

Si.i(n) = (1'(0))* -

Since S; (- is a function of 1’(0), for convenience we denote it sometimes by
S,(n*(0)). Define the sequence K(N) by

K = BNY4,

where B is a positive integer independent of N which will increase to oo
after N.
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A summation by parts permits us to rewrite (3.3) as

«E N[Nl‘d (2 J)<t, %)

x,1

. {[Tmet) ~ Sk(nk(x))]

2 - m2(e 1)

o oo o) o

Here oy p(1) represents a term vanishing as N 1 oo and then B 1 oco. The

error made in the summation by parts is small since K « ~/N and m and
J are smooth functions. Moreover, the term (|[Ag| — 1)"1n%(0)[1 — n%(0)]
vanishes because N4 « K.

To keep notation simple, for each 1 < i < d and each positive integer [,
denote by V; ;(n) the cylinder function defined by

(3.4) V. (n) = H;(n) — S;(n*(0)).
With this notation we may rewrite the last expectation as

aEN[Nl‘d Z (&iiJ)(t, %) {rle-, k() + [ntK(x) —m (t’ %)]ZH

+ ON, B(l)

In view of (3.2), since m is bounded away from 0 and 1 and since R/ ;
converges uniformly to R; ; on each compact subset of (0, 1), to conclude the
proof of Theorem 1.2 it remains to prove the following lemmas.

LEMMA 3.1. Recall that K = BNY4 Foreach 1 <i <d,

T
lim thN[Nl_dZ(ﬁiiJ)<t,%)HV;‘,K(TH)}

N—-ooJQ
T
22/0 dt /du (@2 J)(t, w) Ry j(m(t, u)) — 2m(t, u)3; ;](9, m)(t, w).
i, J

LEMMA 3.2. Let K, be a sequence increasing to oo faster than N¥/¢ and
slower than N%* (NY? « K « N%*). Then

lim OT dt Ey [Nld 3 (nf‘N(x) - m(t, %)ﬂ —0.

It is this last lemma that forced us to choose the sequence K(N) much
larger than NY/<,
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CONJECTURE 3.1 (Summation by parts formula). Let G, H: T% — R be two
smooth functions. Then

<l o(F)a(3) ()] -

PrROOF. Denote by F' the product of the functions GH. With this notation,
the sum in the statement can be rewritten as

wrplen(y) |- slen (@) -G w) - (w1
From Taylor’s expansion at the second order, this expression is equal to
2 IN Y (52 F)(%) +O(NY.
As N increases to oo, this expression converges to
21 / du (2, F)(u) =0
This concludes the proof of the conjecture. O

4. Bounds on entropy and Dirichlet form. The strategy in proving the
two lemmas of the previous section is based on the study of the time evolution
of the relative entropy. Fix a reference product invariant measure v, on the
configuration space S¢, = {O 1}T?V. For each time ¢ > 0, let ¢~ be the density
of the product measure Vm(t , with slowly varying density profile m(¢, -) with
respect to v,:

N

i = L)~ Loy oS4t )
v,  ZI
where
x m(t, x/N)[1 - p]
4.1 Mt =) =1
@ (%) = vl o e w7y
and ZY is the normalizing constant
1-—
Ziv :exp{_ngM
X _p

Let /N = dv P /dv,, where PN denotes the semigroup of the Markov
process with generator LN accelerated by N?. It is well known that ft is the
solution of

ﬁtft _N2L ft>

(4.2)
fév = o.
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Here L, represents the adjoint of Ly in Lz(vf,v). Since the process is reversible

wr.t. v, Ly = Ly. From now on we will omit the index N in /¥ and ¢}
Denote by H y(t) the entropy of v}, P{ with respect to v, ):

f
Hy(t) = H(Vr]r\LI(O,-)ng}Vm(t,-)) = /ft log l/j—t dv
t

Notice that H y(0) = 0. For each density f: S% — R,, denote by Dy(f) the
Dirichlet form, that is, the convex semicontinuous functional defined by

Dy(f) =~ [VFLyVF dv,.

PROPOSITION 4.1 (First entropy bound). There exists a constant C such that
for every ¢t < T,

lim sup{Nl‘dHN(t) + /Ot Nz‘dDN(fs)ds} <c.

N—oo

The proof of Lemma 3.2 is based on this result. However, to prove Lemma
3.1 we need more: a bound on the entropy of o(N?1) instead of O(N?1).
To obtain such a bound, we need to consider corrections of order 1/N? in the
density .

Let us introduce some notation. Denote by ¢ the space of cylinder functions.
For each positive integer K and m in {0, 1/(K?), ..., 1} we denote by v ,, the
canonical measure on {0, 1}« with density m (i.e., the corresponding uniform
measure). Let & be the linear space of cylinder functions that have mean zero
with respect to all canonical measures on a sufficiently large box Ag:

(4.3) & ={ge¢; vk ,[g] =0 for some K > 0 and all m}.

For functions F; and G; in f 1 <i=<d,foratime0 <¢<T,and an
integer N, define the den5|ty 1//t (n) with respect to the reference measure
v, by

F.G 1 X _2 2 X
lpt (”7) = Wexp{Xx:/\<ta N)nx - N ;ﬁul/\ ta N Fi(Txn)

- N2 ;(&ui/\<t, %))2@(%7})},

where Z is a normallzmg constant Denote by HN(ft|¢t ) the entropy
of v, >P with respect to g!;t

HN(ftMt /fthQ l/jft

dV

For each density f: S‘Z{, — R, and each ¢t < 0, denote by DN(fw/f’G) the
positive convex lower semicontinuous functional defined by

f f
D /lp {LN FG wf,GLNIOgW}dV'D.

t
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PROPOSITION 4.2 (Second entropy bound). For every ¢t < T,

. . N .G Lo
Flg];; Jxlfinoo{Nl dHN(ftllpf )+/0 Ny (£ ) ds} =0

From Propositions 4.1 and 4.2, we can prove the following proposition:
PROPOSITION 4.3. limy_ . N*9H y(t) =0.

PROOF. We have

N (Hg(6) ~ Hy(F ol ) = N+ [ £, (109 71 = 1og ¢§fa) v,

¢ ¢

lpF,G
- Nz‘d/ftlog :‘p dv,.

t

Hence,
N>(Hy(t) - Hy (£ 95 %))
= N>9E,, [—N—Z Z aiiA(t, %) Fi(t.m)
ot F.G

2
a2 x _ _ nj2-d Zy
N ;(&ui/\<t, N)) G,(Txn)i| N“"%log 7

t

The second term on the right-hand side of the previous equality is equal to

N*“logE, [exp{—N—2 Zr?i/\(t, %)Fi(fxn)
5 (0(6 ) G
i\ N
which can be rewritten as

d .
N2~ 1og E%[ I1 exp{—N2 > Zaii/\(t, W)

JEAR r, r(2R+1)eTy i=1

X 7T eri1)F }

oot Hoal )

r,r(2R+1)eT¢ i=1

X 7i2r+1)Gi }:|>

where Ay is the smaller box of size R which contains the supports of F'; and
G;. If 2R + 1 does not divide N, there is a small error in the above formula
which converges to 0 as N goes to infinity.
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By Holder’s inequality, since ¢, is a product measure, the previous term is
bounded above by

N2 d(2R +1)¢ x
m Z |Og E‘l’ [exp(—Tﬁui)\<t, N)Fl(Txn)

A (o) o)

Expanding the exponential, we obtain

o T (1 SR (0 (5 V)

W@D((aui)\t(%))z&(rw)) + O(N‘A))-

Hence N?-¢ Iog(Zf’G/Zt) is bounded above by

NZ—dE%[ Zzaz ( )F(Txn)— —Zg(auim(%»z&(um]

plus a small error of O(N~2). On the other hand, by Jensen’s inequality,
N2-d1og(zF9Z;1) is bounded below by

N2—dEwt[ 2252 ( )F(Txn)— —2§(aui)\t<%))20i(7xn)].

Hence, N2-¢(H y(t) — Hy(f,lwF %)) is equal to
NZ—dEf[ 2232 (t —)F(Txn)+N 22(& /\< ;))2(;1.(7,57;)}

plus a small error of O(N~2). In this expression, F;, and G, denote, respec-
tively, ¥,—E, (F;) and G, - E, (G,). By the entropy inequality, for each & > 0,
this term is bounded above by

le‘dHN(t)+3N1‘dlogE¢[<exp{ Zaz ( )F(Txn)

S e

Using the same arguments, we easily check that for any ¢ > 0 the second term
converges to 0 as N 1 oco. Moreover, by Proposition 4.1, eN'"?H y(t) < Ce.
Letting & go to 0, we proved that N2~¢(H y(t) — HN(ft|¢f’G)) converges to 0
as N 1 oo.

Hence, we may replace HN(ft|¢//tF’G) by H n(%) in Proposition 4.2, and we
get Proposition 4.3. O
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5. Abound from the entropy. In this section we will prove a bound that
is controlled by the relative entropy. Lemma 3.2 is a simple corollary of this
estimate and Proposition 4.3.

LEMMA 5.1. Let K, be a sequence that increases to oo as N 1 co and is
small if compared to N** (K 5y « N*4). There exists y > 0 such that

m wen (0 o)< B oo )

N

ProOF. By the entropy inequality for any positive constant vy,

[ (1 0 m(e ) ]

-si[ep (e -n(e )]
st etz (o (e ) )]

By Hdlder’s inequality, since ¢, is a product measure, the limit as N increases
to oo of the second term on right-hand side is bounded above by

1 _ 2 \\ 2
limsup————>Y log E, |exp]yK4 ( En(x —m(t, —)) ”
NmpyNdflK‘}v§ 9 wt[ p{v N (Y (x) N

Here K stands for 2K 5 + 1. Since m, is a smooth function, this limit is
equal to

N 1 _
li — —>'logE 2yK4
imsup Kjlv yNdXXJ og %[exp{ yK%

(gg,.5, (0 3) ]

plus a small error of O(K4,N~3).
If one establishes

(5.1) E, [exp{2yX% (x)}] < const,

where X g, (x) = (1/V K%) yexeng, (n(y)—m(t, y/N)), Lemma5.1 is proved.
By logarithmic Chebychev inequality, for each 6 > 0,
E, [exp{2yX%, ()] = 2 exp(2ya®)P(X g, (x) = a)

acZ

< Y exp(2ya®)exp(—ab)E, [exp(0X g (x))].

a€’

Since | X g, (x)| < VR4, notice that the sum reduces to |a| < vV K%
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Moreover, an easy computation shows that E, [exp(6 X g (x))] is equal to

el g e () (o) 1))

since exp{8(K%) 12} <1+ 0(K%)"1/2 + Co2(K%)L for 0 < VK4,

2
Ewt[exp{ZyX%N(x)}] <y exp{zm2 + f_{—i > m,(%) — ae}.

acZ N yex+AKN
Choosing
aK?,

0=
2CY yexing, M3/ N)

and noting that 6 < \/K_ﬁlv if C is large enough, we obtain

I_{d
2 N 2
B o0 (21X, @]) = De| (2v- 4 Eeeing, M(/N )}

which is bounded by a constant for y small enough. O
The following lemma will be useful in the proofs of the entropy bounds.

LEMMA 5.2. Let K, be a sequence that increases to co as N 1 oo and is
small if compared to N** (K, < N**). There exists y > 0 such that

s 2 70 ) ] 28 oo ).

N

PROOF. Using the fact that [n%~(x) — m(¢, x/N)| < const, the left-hand
side of the inequality appearing in Lemma 5.2 is bounded above by

2
const EN[Nl‘d 3 (nf{”’(x) - m(t, %)) ]
Using Lemma 5.1, we get Lemma 5.2. O

6. Multiscale estimates. In this section we recall some multiscale esti-
mates from [3] and extend them to our setting. These estimates replace the
usual one-block—two-block estimates and will be used later on to prove Lemma
3.1 and Propositions 4.1 and 4.2. Our estimates are similar to [3] except some
extra work is needed because our system is not near equilibrium. In partic-
ular, we need estimates uniform with respect to the density p. We start with
some notation.



1888 E. JANVRESSE

Recall from the previous sections that we denote by ¢ the linear space of
cylinder functions that have mean zero with respect to all canonical measures
on a sufficiently large box Ag:

(6.1) & ={ge¢; vk ,[g] =0 for some K > 0 and all m}.

Moreover, for a density 0 < m < 1, let %, be the space of cylinder functions
such that

g(m)=v,[g]l=0 and d,v,[g]l _, =& (m)=0.

Note that the second condition is equivalent to imposing that the covariance,
with respect to the measure v,,, of g and the formal sum )", n(x) vanishes:

> vnlg(n); n(2)] =0.

Notice that & C %, for all m in [0, 1]. The following definition is taken from
[3]-

DEFINITION 6.1. Let g be a cylinder function and denote by s(g) its sup-
port:
s(g) =min{l e N; supp g C A}.

For each [ > s(g) and m in {0,1/1%, ..., 1}, define the “variance” V,(g, m) of
g with respect to »; ,, by

1
Vig.m) = Gy
(6.2) x <[.Zz (1.8~ gl(m»](—Ll)_l[x% (8- gl(m))hw,m

In this formula [, denotes the integer [ —s(g) so that 3., 7,8 is measurable

with respect to {n(x); x € A;}. Moreover, L; is the restriction to A; of the
generator L and g;(m) is the expected value of g with respect to the canonical
measure v; .

If g € £, we define also the “variance” of g by

Vin(8) = lim sup v, [V (g, 1'(0))]-

Notice that for g € . the subtraction in (6.2) is unnecessary for [ sufficiently
large.

We need the following two results. The proof of the first lemma is the same
as in [6] and the second can be found in [3].

LEMMA 6.1. For each cylinder function 4 in £,
llim Vi(h,m)=Y,(h)

uniformly for m € [0, 1].
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LEMMA 6.2 (Integration by parts formula). Let g € &,, be a cylinder func-
tion. Denote by I the smallest integer such that A; contains the support of g.
Then there exists a family of functions ®,(x, g), where x € Z¢ and b is an edge,
such that

(Txg’ u>m = Z ((I)b(x> g)’ Vbu>m’

bex+A,;

Y |b - x|T WD Dy(x, g))),, < C(g)

bex+A;

for some constant C(g) depending only on g.

In the above formula V,u(n) = u(n®) — u(n) and n° is the configuration n
with the sites in the bond b exchanged.

The following result is a one-block estimate whose proof relies on the stan-
dard perturbation theorem on the largest eigenvalue of a symmetric operator.

LEMMA 6.3 (One-block estimate). Let f, be the solution of the forward
equation (4.2). There exists a universal constant C; such that for any smooth
function J, positive y and h € &4,

o N a(5) s v en)

= Coy [ @)V, (B .
In this formula m(t, u) is the solution of (2.4).
ProoOF. Fix a positive integer [ independent of N and that will increase

to oo after N. Since J is smooth, the summation on the left-hand side of the
statement of the lemma can be rewritten as

e o) e o[ )

where we denote (21 + 1)~ Y, ., 7,h by Av, 7,k
Since v, is translation invariant, this term is equal to

N [0( ) @y, + 0 5 )
It can easily be rewritten as
04 NIE Yot £ K) [I(5) (v, 7, fodnx+0(5)

where (7,f,); xk denotes the projection of 7, f, on the space of configurations
with K particles on A; and c(x, f,, K) is given by

C(x, ft7 K) = Vp[Txft 1{2‘”517]}]:1{}].
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By convexity of the Dirichlet form, we have that

Y ex, fr KDy ((7of )i ) < (2L + 1) Dy(f,)
x K

with

Dyx(f)=12) ¥ (re ([ —\f <’7>]2>Z,K

lx—y|<1
x, yeA,

From the standard perturbation theorem on the largest eigenvalue of a
symmetric operator (cf. [5, 8, 10]), we have

Iimsup{Nl dz/ ( )(Av|y q< Tyl fe dv, — yN* dDN(f)}

N—oo

. L N?y
< Ilmsup{ ZZC(DC ftaK)(2l+1)d

N—oo

» [Niy [9(5%)  mb afon o~ Dol o) |

lyl<t
Ny
(2l +1)¢

[B = [ (v ) o]

— Coytlimsup N- dZJ2< N)EN[Vxh n'(x))]-

N—-oo

< Iimsup{N‘dZZC(x, fe, K)
x K

N—oo

In this formula, V,; stands for the finite volume variance defined in (6.2) and
C, is a universal constant. By the law of large numbers, the right-hand side
of the last expression is equal to

Cyy ™ [ du S @)y [ Vil 0'(O)]:

To conclude the proof, it remains to invoke Lemma 6.1, which states that the
finite volume variance converges uniformly to the infinite volume variance. O

Notice that if A(n) is of the form

h(n) = w(n'(0))Av|,17,8,

with g in & and w smooth, the left-hand side of the inequality appearing in
Lemma 6.3 is bounded above by

Coy ™ [ du T2 @)V, 0y (w(m () g).

In this case, the term corresponding to (6.4) is

N1 ;;C(% e K)/J<%) w(ﬁ)(Avwsl 78) (Tof )1, k AV k-
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For each K, w behaves as a constant. We obtain that this term is bounded
above by

X

Cry INIY J2< N)EN[wml(x))Z Vi(g, n'(x),

which converges as N 1 oo, then [ 4 oo, to

[ 2wy w0V 0(8) = 2 [ e T @) Va0, (1) ).

For any local function 2 and any integer L > s(h) fixed, consider the de-
composition

(6.5) h={h—v,[h]|2"O)]}+v,[h | n"(0)] := k) + hr(n"(0)).

Notice that for each L, h;, belongs to 4 since it has mean zero with respect

to all canonical measures on boxes of length larger than L.
The following theorem is taken from [7].

THEOREM 6.1 (Multiscale estimates). Fix a cylinder function 2 and a se-
quence K = K(N) such that
K2+(1/2)+a
lim ——— =0
N—oo N

for some constant a > 0. Let f, be the solution of the forward equation (4.2).
There exists an universal constant C; and a function C(%, L) vanishing as
L 4 oo [limg_, ., C(h, L) = 0] such that for any smooth function J and any
positive v,

lim {Nl—dfg J(%)[Txh — hg(®@)]f, dv, — yNZ_dDN(ft)}

N—oo
<Cyy? / 2 (W)Y e,y (1) du + C(h, L).
Since Theorem 6.1 holds for all L, we can take the limit L 1 co. We would
like to have that
L'LVL‘OVm(h(L)) =V,.(h)

uniformly in m on compact subsets of (0, 1). Unfortunately, since 2 may not be
in the space %,,, V,,,(h) may not even be defined. For this reason, we introduce
the function 2™, which is the projection of 2 on %,, and is given by

R™ = h — (R),, — k' (m)[n(0) — m],
where h(p) = (h), and Z'(-) is its derivative:

Vi(hy = (B")r), m) = B (m)? V,(n(0) — n*(0), m).



1892 E. JANVRESSE

From the variational formula for the finite volume variance, V,;(n(0) —
n%(0), m) is equal to

@+ sup {2l ¥ (1= nh). u) - Dy ().
u |x\§l’

In this formula, I’ = [ — L, the supremum is carried over all functions u
in L2(v; ), (-,-) represents the inner product of L%(y, ,,) and D, ,, is the
Dirichlet form with respect to the measure v, ,,.

Note that >, ., n, — nl(x) is of O(I191L). Hence, it is of the form 3", 7, g,
where g is cylindrical and the sum is carried over O(I¢"1L) terms.

We now apply the integration by parts formula stated in Lemma 6.2 to
the function g to obtain that the expression inside the supremum is bounded
above by

(©.6) [ 5 20 ). V)= Dyt
X beA,
Using Schwarz inequality, the bound on ®,(x, g) given in Lemma 6.2 and the
above remark, we easily obtain that
Jim Vi (mo — 7*(0), m) =0.
Hence,
Iim Vi(hwy = (B")@), m) =0

uniformly in [0, 1]. So we can assume, without loss of generality, that 4 is in
“,,- We claim that under this assumption,

To prove this, it suffices to check that lim;_,  lim, . V,(k;, m) = 0. Using
again the variational formula for the finite volume variance and applying the
integration by parts formula stated in Lemma 6.2 to the function 7LL, we obtain
that V,(A, m) is bounded above by

(6.7) sup(2l' + 1)d{ S Y 2(®y(x, hy), Vyu) - Dl,m(u)}.
u |x|<U beA,
In this formula, to keep notation simple we denoted l,—zL simply by I'. From the
integration by parts lemma, we can derive a bound on ®,(x, A;,). This bound
turns out to be insufficient for our purpose. Our function A; is very special
and it depends only on n%(0).
From the proof in [3], we can check that &,(x, g) = 7,P,_,.(0, g). Moreover,
for an integer ¢ fixed,
q)b(o’ g) = % Z rb(n)vb(_LAan )_1(gn - gn+l)7

n:beAqn+1
where
8n = Vm(g | (nx)xeA;,, ) “’an(o))-
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For each n such that A C A, we have (h;), = h,. Hence, ®y(x, hy) =
®,(x, h) for all bonds b such that b — x is not in Ay. If b € A, we have
(A1)n = (h1),.1 for each n such that ¢"*' < L. Hence, the sum reduces to n
such that ¢"** > L.

Using the Schwarz inequality, the expression inside the supremum in (6.7)
is bounded above by

U +1)% Y Y C b — x| T3 dy(x, hy)?)
|x|<l beA,

. —d-1/2
+ 2l + 1)‘d{ > %(rb(n)(vbuﬁ - Dz,m(u)}-

beA, |x|<l

Since Y|, <y |b — x|747%/2 < const, we can choose C such that the second line
of the previous expression is negative. The first line can be rewritten as

QU+1)4 Y > Clb— x|TTY2(Dy(x, hy)?)
lx|<l' b:|b—x|>L

+@U+1)7TY Y Clb— x| dy(x, hy)?)= Ay + A,
|x|<l" b:|b—x|<L

From the previous remarks about the special feature of /; and the bound
on the L2 norm of ®,(x, k) of the above integration by parts lemma, A; <
C(h, L), where C(h, L) is a constant depending only on & and L, which goes
to 0 as L goes to co. Moreover, from the proof in [3] and the previous remarks,
A, < f(L), where f(L) goes to 0 as L goes to co. Hence,

lim lim V,(h;,,m)=0

L—oo [—o0

uniformly on [0, 1]. We have thus shown that for every cylinder function A,
Jim Vo () = Vi (R™).
—> 00
We summarize these last conclusions in the following corollary.

COROLLARY 6.1. Fix a cylinder function 2 and a sequence K = K(IN) such
that
K2+a+1/2

tim =

for some constant o > 0. Let f, be the solution of the forward equation (4.2).
There exists an universal constant C; such that for any positive constant vy,

imsup | V-4 [ 505 )[ruh = hactn (o) v, = Y82 D))

N—o0

= Coy [ @)V, (R du.
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Furthermore,

im Vo () = Vi (R™).

7. Proof of the first entropy bound. Recall the definition of the entropy
H y(t) and the one of the Dirichlet form introduced before Proposition 4.2.
We start by computing the time derivative of H 5(t),

271 % _
o Hy(t) = | (NZL}*vft mQ%+ N szftlgtt 2 ft> .

(7.1) —/(sztLNlog&—%&d/>

p

= _NZDN(ftht) + w_Z(NZL}Fv - &t)d/t de,

where Dy (f;|¢,) is given by

ft ft ft
e e AL L

To compute the second term on the right-hand side, we need to know the
equation satisfied by A. Recall the definition of A given by (4.1). A simple
computation shows that

Ap(m) & d
m(l—m) ,:Zl ¢'(m) 7y, A + 1:21 ¢'(m)(9,,1)?,

I\ =

where ¢(m) = m(1+ am) and ¢(m) = m(1 — m)(1+ 2am). Hence,

Ipy Ap(m)
W " m—m)

We turn now to the term N2y¢;1L%;¢,, which is equal to

: b=
SR b o

= N? L%::l rx7x+y(n)[exp{)\t(x+Ty> — )\t<%>} — 1]

Expanding the exponential up to the fourth order, we obtain

el

6N > T x+y(”fl)|: { (%)—M(%)HZO(NH).

x, |y|=1

(nx - m)
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In particular, ;1(N2L%, — d,), is equal to

3 At el = m) = ¥ ) (n, = m)

# X (7 (s ) trass— etm = gm) (n. )

2
(7.2) 2 ﬁlz‘i)‘(t’ %)d’(m) " (a”fA(t’ %)) “tm)
I (R

c 2y (e E) (e X Lol E)) r
T > AT ) > 7 | T8 Al %, > AT TxW;
N &\ )N )T (N B N

+ O(N92)
with
hi(n) = mg — an_gm,, + 2an_, Mo,
v;i(n) = an_, Mo,
gi(n) = %(’"o,ei +7e,.0)s
wi(n) = l(’”o e; — Te,, 0) = l W, e

We easily check that 4 A(t, x/N)p(m) + (9, A(t, x/N))*@(m) is equal to
—ad® m(t,x/N) — (1 + a)&2 (log(1 — m(t, x/N))). Hence, the third line is
of o(Nd 1) by summation by parts (cf. Conjecture 3.1). By the law of large
numbers, the expected value with respect to the measures f, dv, of the fourth
and the fifth lines divided by N¢-1 converges to

3 [ e w) 7 0,0 + 0, () 7 A0 om 1))
i=1

which is bounded by a constant. In turn, to compute the expected value of the
first line, recall the definition given in Section 3 of K, A; and V; ; and the
computations made just after. We showed there that the expected value with
respect to f, dv, of the first line divided by N1 is equal to

x
a N4 Z &ii)‘<t> N) /TxVi,K(TI)ft dv, + oy p(1)

+a N Z ﬁi/\(t, %) /[n{f(x) - m<t, %)Tft dv,.

By Lemma 5.1, there exists yy > 0 such that the second line is bounded
above by

Yo N Hy(t) + on(1).
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We deal with the second line as we have done with the first:
7.8 — ¢(m) — ¢'(m)(n, —m)
= %Tx(nei - 7’0) + 7-xG"i - (Gz>m - (Gzym (nx - m)

Here, G; = g; — 3(n,, + mo) and < G; >,,= (2a — 1)m? — 2am? represents the
expectation of G; with respect to v,,.

Define V() = G;(n)— E[G;|n"(0)]. The term E[G;|n*(0)] is easily com-
puted and is equal to

(2a = [ (OF - T O - 7%(0)]

2 1
—ZanK03+nK027]K0—l< + )
|7+ P O - D+ T
n*(0)(n¥(0) - 1) }
(IAxl = D)(|Akl—2)
Hence, the expected value with respect to f, dv, of the second line divided by
N?-1is equal to

+2

2
x 4
Nty (aui)\(t, N)) [ Vi k(n)fedv, + oy (1)

PN oo () (1(4 7))
(e 2

2y (a6 ) f[5-m(e )|

N a ((7u( %))Z)Emm)-

By the law of large numbers, the last line converges to

d
1 2
§/T du L(d,, A, 1)) 0, my(w),
which is bounded by a constant. Moreover, by Lemmas 5.1 and 5.2 there exists
Yo > 0 such that the second the third and fourth lines are bounded above by
Yo "N Hy(8) + oy (D).

Keep in mind that the entropy H 5 (¢) vanishes at time 0. We prove at the end
of this section that Dy(f,) = —[f:Lylog f,dv, and Dy(f,|¢,) are not too
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far apart: In fact, there exists a constant Cy, = Cy(m) such that

to -
& N D) - DaF v} de] = Cot
On the other hand, a simple computation relying on the elementary inequality
alog(b/a) < 2/a(v/b — a) shows that Dy(f,) < Dy(f,). Therefore, from
(7.1), (7.2) and the previous bounds we get that

N UHy (1) + [ (/2N Dy(f) dt

to
gCt0+le NYUH () dt
0
to
+/0 dt{aNle /‘75/\<t’ %)rxVi,K(n)ft dv,
- WANTIDy(F))

to _ X 2 ,
+/O dt{Nl d§/<‘9ui)‘<t’ N)) TxVi,K(n)fthP

- (1/4>N”DN(ft>}

for some finite constant C;.

To conclude the proof of the proposition, it remains to show that the two last
terms on the right-hand side are bounded and then apply Gronwall’s lemma.
This follows directly from Corollary 6.1. O

We now prove (7.3). The proof relies on the explicit formula of the Dirichlet
forms. Indeed, by definition we have that
Ly,

N Dy (Fil) = D7) = N [ £, {2

The expression inside the braces multiplied by N2~¢ is equal to

v 2 el (52) ()] 20 () ()]

Expanding the exponential, we obtain that this term is equal to

v 2 O E) 30 )]

plus a small error of O(N~1). Computing this term, we can rewrite it as

+ LN |Og ‘rllt} de.

2
N Y 2 (5 Jreh + (337 ) ) e+ OO,

x,e;

Hence, N2~y 1L, + Ly log ¢, is of order 1. O
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8. Proof of Lemma 3.1. Recall that R” is a smooth approximation of R
converging uniformly to R on each compact subset of (0, 1). For a positive
integer /, 1 <i < d and a family {F;, 1 <i < d} of functions in &, let W; ;(n)
be given by

Wi,l(n) = Vi,l(n) + 2771(0) 2l + 1)7d Z Vei”r/(y)

lyl<l

d
-3 Bl @ + 0 X a0} - LuFita)
j=1

lyl<l

Here, as in the previous sections, I’ = —1 and, for 1 < j < d and y € Z¢,
Vej”fl(y) stands for n(y +e;) — n(y).

The time integral on the left-hand side of the statement of Lemma 3.1 is
equal to

T X
/O thNI:Nl_dZé)iLJ<t’ N)wai,K(nt)}

T x d
s [ B NS R (65 ) 3 [RE ) - 20 ) 0]
(8.1) o =t
<KD Y Vn)]
|y—x|<K’

T x

+/ dt EN[Nl-dzng(t, N)LNFi(Tx’r]t)} =0 +Q, + Q.
0 x,1 '

We claim that 5 vanishes in the limit as N 1 co. By the martingale property
we have the identity

/oT dt Ey [N_d_l 2 NZLN{ai J<t’ %)Fi(Txm)}]

x, 1

T
= _/ thN[N‘d‘l Z&t{aiJ(t, i)1"‘i(nmt)”
0 x,1 ' N
+Ey| N D075 ) Fita) |

- By N (0,5 ) Fiteano) |

As N 1 oo, the right-hand side of the last expression converges to O.

We turn now to the second integral of (8.1) that we denoted by ,. The
first step in the proof that (), vanishes as N 1 oo is to replace R;{j(n{{(x))
by Ry ;(m(t,x/N)) and nK(x) by m(t, x/N). This is the content of the next
result.
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LEMMA 8.1. For every ¢ > 0, every smooth function J: [0, ] x T¢ — R and
every smooth function a: [0, 1] — R,

IILTO z\lrznoc Ot ds EN[Nl—dg JS(%){a(nl(x)) _ a(ms<%>>}
* ﬁ > Vei”fl(y)} =0.

ly—x|<l

PrOOF.  Since V, n(y) = —n(y)(1 — n(y +¢;)) + n(y + )1 — n(y)), the
expected value appearing in the statement of the lemma may be rewritten as

w50 faer (o 3)]
xﬁ S n()(@— 1y + e Fa(n” ) = Fo(m)w(dn).

|y—x|<l
By the Schwarz inequality this expression is bounded above by

sior e 2 () flaotn -a(m(3))]

X |y—x|<l

x 1(¥)(L = n(y + e D[V s 7% + VF,(m)) v, (dn)

N?9A
tarryr e X [1a-u+e)

x |y-al<l

x {737 — T o) v, (dn)

for every positive A. Since a is smooth, the first term is bounded by
| 12
N=9C(J,a)A1 Y EN[|n§(x) - m(s, %>| }
x | |

which converges to 0 as N 1 oo and then I 1 oo by the law of large numbers.

The second term is bounded by A const N2~ Dy (f,). We conclude the proof
by letting A | 0 in the penultimate formula and invoking the content of
Proposition 4.1. O

Notice that we may let [ depend on N in the statement of the last lemma.
In this case we just need to require that I, < N.

We now return to the proof of the claim that (), vanishes as N 1 co. Since
R is smooth, we can use summation by parts so that the difference operator
V will act on a smooth function. Since NV is of order 1, by the law of large
numbers, as N 1 oo, the second integral of (8.1) converges to

3 /OT dt /du 32 J(t, u) [RY ;(m(t, w)) — 2m(t, w); ;)(d, m)(t, u).
i, J
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Letting o | 0, since R? converges to R uniformly on compact subsets of (0, 1),
we obtain that this expression converges to the expression appearing on the
right-hand side of the statement of Lemma 3.1.

Finally, by Proposition 4.1 and Corollary 6.1, the limit, as N 1 oo, of the
first integral of (8.1) is bounded above by

C T
?1 Z/O ds /du ((931_ J(S’ u))zvm(s, u)(Wi,m(s, u), o-) + 0267

where
Wi m, o(n) =[21(0)n(e;) — n(—e;)n(e;)]™ +2mV, n(0)
- Z R ,(m)V, n(0) — LF;(n).

Here we adopted the notation introduced in Section 6. As o | 0, the last
integral converges to

C T
?l Z/O ds /du (&ii J(S’ u))ZVm(s,u)(Wi,m(s,u),O)'

Since the solution m of (2.4) is bounded away from 0 and 1, to conclude the
proof of Lemma 3.1, it is enough to prove the following result:

LEMMA 8.2. For every 6 > 0,

inf - sup V,(W. =0
Few Egmgg—é m( L,m,O)

forl<i<d.
This concludes the proof of Lemma 3.1. O

9. Proof of Proposition 4.2. The proof of this result follows closely the
proof of Proposition 4.1. For this reason we will omit some details.
For 1 < i < d, fix functions F;(n) and G;(n) in 4 and denote (F,, ..., F )

and (G4, ..., Gy) by F and G. Recall the definition of th’G given in Section 4.
We start computing the time derivative of the entropy of f, with respect to

«,//f’G, which is equal to

©1) = N2Dy(f, o)+ [ ) N2 Ly = a)ul € fodv,

A careful calculation, taking into account computations already done in the
proof of Proposition 4.1 (Section 7), shows that (¢, ) "Y(N2L%, — )yt ¢ is
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equal to
g ﬁii)\(t’ %) {mehi — ¢(m) — $'(m) (n, — m)}

X

- (ua(, ) et ) ) (. )
o ) o
- ; aii/\(t, %)LNF;-(TM)

_ ; (&ui/\<t, %))ZLNGL»(TM)

Yy
Wx,ereiVx, x+e; <Z ﬁi_//\(t’ N)FJ(TJ’T’))
¥, J

(%)

+ % > &ui)t<t, %)oﬁi)\(t, %)vxgi + %(&ui)\<t, %))3%%
(%)
(%)

2
Y
Wx,x+e,~vx, x+e; <Z ((7,”)\<t, ﬁ)) Gj(Tyn))

¥ J

In this formula Zf’G and Z, are normalizing constants associated to the den-
sities th’G and ¢, respectively, and v, ., f(n) denotes f(n* **%)— f(n). We
now compute separately the limit of the time integral of the expected value of
each of these terms divided by N¢1,

We will deal with the first and second lines of (9.2) as we have done in the
proof of Proposition 4.1. Recall the definition of V; ;(n) and V’; ;(n). As shown
in the proof of Proposition 4.1, there exists y, > 0 such that the time integral
of the expected value of the first line of (9.2) divided by N¢~! is bounded
above by

t _ X
01/0 dSNl d; ﬁii/\s<ﬁ)/7xvi,l{(n)fsdvp

t
+ % /0 ds N"H y(f,)+ oy p(1),
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and there exists y; > 0 such that the time integral of the expected value of
the second line of (9.2) divided by N9 is bounded above by

t _ X 2 ,
AdSNl d;(r}u,)\s<ﬁ>> /TxVi,K(n)fstP

t
+% [ ds N Hy(f)) + o 5(1)

plus a term which converges to
d ¢
Z/O ds /Td du 3(d, A, w))? 0, my(w).
i=1

By the integration by parts formula, the third line of (9.2) divided by N¢-!
vanishes in the limit when N 1 oo.

The sixth line, integrated in time and divided by N9, is equal to the
difference of

N4 log E%[exp{—N‘2 Zoﬁ/\(%) Fi(7:m)

) o]

and a similar term taken at time 0. In this formula, E, represents expecta-
tion with respect to the measure ,(n)v,(dn). Since each F;, G, is a cylinder
function and since ,(n)v,(dn) is a product measure, by Holder’s inequality
we obtain that the last expression is bounded above by

(9.3)

X

Ni-d di?
77 > log E%[exp{—ﬁ r?ii)\t<N>Fi(Txn)

A n(3)) o]

Here [ is a positive integer such that the support of each cylinder function F;
and G, is contained in {—/, ..., [}¢. From the elementary inequalities log(1 +
u) < uande* —1 < u+ 2 1u?el, and since divi, F; and G; are bounded
functions, we obtain that the last sum is bounded above by

_N-d-1 ; E, |:(9ii)\<t, %) Fi(t,m)+ (aui/\(t, %))2@(%‘0)}

plus a small error of O(N3). As N 1 oo, this expression converges to 0. On
the other hand, by Jensen’s inequality, (9.3) is bounded below by

_N-d-1 ; E, [aﬁ}(t, %) Fy(rem) + (ﬁui/\(t, %))2@(@7;)}
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and we have just seen that this expression converges to 0. Therefore, the sixth
line of (9.2), integrated in time and divided by N¢1, is equal to

ZF,G ZF,G
led | t _I 0 ,
{09 z, 97z,

which converges to 0 as N 1 oo.
As shown in Section 7, the time integral of the expected value of the seventh
and eighth lines of (9.2) divided by N¢-! converges as N 4 oo to

ié/ot ds /Td duf{—ami(u) a5 A (w) + 9, A(1) 35 A (w)e(m(u))}.

Furthermore, by the law of large numbers, the time integral of the expected
value of the ninth line of (9.2) divided by N?-1 converges as N 4 oo to

¢
_Z/O ds /du 3y, A(s, u)oﬁj/\(s, ) X Vs, [ Wo,e; Vo, e, L, )5
i, J

where Wy, =1, o — o, IS the current between 0 and e; and for a cylinder
function ¥ and I'y, represents the formal infinite sum

Ly(n) = ) W(rym).

yeZd

We have also used here the smoothness of F, A and m. The last expression is
equal to

t
2 Y [ ds [ dud,Ms.w)d As.u)(Wo.e.. F )0
L J

where
<W0,ei7 f)m,O = Z(Wo,ei’ Txf)m

X

With the same arguments, the time integral of the expected value of the tenth
line of (9.2) divided by N9~ converges as N 1 oo to

t
2 2/0 ds fdu Fy (S5 u)(&uj)\(s, u))z(WO,ei, G ) m.(u),0-
i, Jj

Since the entropy N1-¢H y(f,) is bounded by N* ¢ H(f |yF %) + on(1) (cf.
proof of Proposition 4.3), up to this point we have shown that

1-d F.G ! 2-d F.G
N“-4H(f, |4 )+/O ds N=4Dy(f, |yF©)
is bounded above by

1-d F.G N 1-d F.G
N'H(folu" %) + (vo+ %) [ ds N*H(f, |w]°)

(94) + /Ot ds EN|:Nl_d Z 075!.)\(8’ %){aTxVi,K(ns) - LNFi(Txns)}]
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¢ x 2

+ [ dsEx[NUOT (a,0(s0 ) ) re Vi) = LaGatrn)|
0 x, 1 ' N '
t

+/ dsfdu S 32 A(s, 1) 2amy(u) d, my(w)
0 l 12 1
¢ x 2

—/ ds /du z<au_A(s, —>) a9, my(w)[(2a — 1)m,(w) — 3am,(u)?]
0 " i N i

14

42 Z/ dsfduo?u_)\(s, )32 A5, 1) (Wo.es F ) wr.0

i’j O 1 J 1 S

t
42 Z/O ds fdu&ui)t(s, w)(dy A8, )Y (Wo, g G Ym0
2]

plus a small error of oy (1).

We now concentrate our attention on the second, fourth and sixth lines of
this sum. Recall that R“ is a smooth approximation of the coefficient R. Let
W, k(n) be the cylinder function defined by

W, k() =V, k(n)+ 29X O)(K)* ¥ Ve.n(y)

ly|<K'
-3 B F OB E V0] - 2L
Jj=1 ly|<K’

In this formula, K’ stands for K — 1. Notice also that to reduce notation we
omitted the dependence of W; x on o and F.
The second line of (9.4) is equal to

t X
CY/O dSEN[Nl_d§ &iiAs<N>7xWi,K(ns)i|

+a/0tdsEN[Nld 3 aiiAs(%)Rﬁj(nf(x))(K’)d )3 Vejns(y)}

x, 0, J ly—x|<K’

_2a/0tdsEN[N1‘dgfyiiAS(%)nf(x)(K”)‘d 3 Vejns(y)}

ly—x|=K’
t 1-d 2 X
+/O ds EN[N x} i) auiAs(—N)rxLNF,-(ns)]

We have seen in last section that the second line of this expression converges,
as N 1 oo, to

t
aZ[O ds /du 2 (s, w)RY (m(s, u))d, m(s, ).
L, J
By similar reasoning, the third line converges to

—2a /Ot ds /du Xl: &ii)\(s, u) mgy(u)d, my(u).
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Notice that this term cancels the fourth line of (9.4). The last line converges,
as N 1 oo, to 0.

Furthermore, from Corollary 6.1 and Proposition 4.1, the limit as N 1 oo
of the first line is bounded above by

a ¢ 5 , .
g Z](; ds /du (é)ui)\(s’ u)) V’"(S’ u)(Wi,m(s, u), o-) + Cot5

for some universal constant Cy, and where Wi (7) is given by

i,m,o

Wi . o(m) = [20(0)n(—e;) — n(—e;)n(e;)]™ +2m V, n(0)
d
~ ¥ RY(m) V. n(0) ~ ZLF ()
j=1

Define W7 ,, o(n) to be the cylinder function W} with R; ;(m) replacing

i,m,o

R ;(m) in the above formula. From the variational formula for V,,, the tri-
angular inequality and the properties of V,, stated in Section 10, we obtain
that for every 0 <m < 1,

i,m,o

d
+2 3[Ry ;(m) - R; ;(m)]
-~

J 1
X [RZk(m) - Ri,k(m)]vm(vejHOa Vek”’lo)-

Since RY converges pointwise to R, letting o | 0, one obtains that the sum of
the second, fourth and sixth lines of (9.4) is bounded above by

o t ) ) .
S5 ds [ du (A )2V oni00(Wi e 0) + Cot
t
ta) [ ds [dud s w)R; j(m(s, u))(0,,m)(s, v)
LJ

¢
+2 Z/o ds /du 9y, A(s, u)ﬂij)\(s, u) (Wo o F Ym0
i, Jj

for every positive 6.
We turn now to the third, fifth and seventh lines of (9.4). Let W r(n) be
the cylinder function defined by

W, x(m) =V g(n) — [(2a = D)1*(0) = 3an®(0)*](K)* > V. ()
ly|<K’

d
- X S O (RY ! T Va0 -~ 2LuGila)
j=1

ly|<K’

The choice of S;; will be explained later.
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By similar arguments, the third, fifth and seventh lines of (9.4) are bounded
by

1 ! 4 1%
> /O ds [ du (3, A5, 1))V e,y (W} e, ) + C 0
t
+3 /O ds / du (3, A(s, w)*S; ;(m(s, u))d, m(s, )
i J

t
) Z/O ds /du&ui/\(s, 1) (J M8, )2 (Wo 03 G a0
2]

for every positive 8. Here
W;Tm = [%(’"o, ei(n) + rei,O(n) — MNe; — nO)]m - [(Za —Lm — 3am2] Vein(o)
- Z S;j(m) Vv, n(0) — 2LG ().

J

Using the two following lemmas, Gronwall’s inequality and letting 6 | 0, we
conclude the proof of the proposition. O

LEMMA 9.1. For each 1 <i < d, there exists a sequence of functions Fﬁe(n)
in ¢ such that

(95) lim sup Vm(Zm,i(n) - ZRi,j(m) Ve_/n(o) - LF%(”I)) =0,

k=00 5y<m<1-8,
where
Z, i(m) = [2n(0)n(—e;) — n(—e;)n(e;)]™ +2m V, n(0).
Moreover,
k'L"JO(Wo,e,a Fl}e)m,o =—Ry(m)m(1—m).

This lemma is proved in Section 10.

LEMMA 9.2. For each 1 <i < d, there exists a sequence of functions GZ(”fl)
in ¢ such that

imsup (23,4~ X Sy(m) V. n(0) -~ LG} ) = 0.
J

k—>00 5 <m<1-3,
where
Z,i(n) = [3(ro,e,(n) + T, 0(m) = M, = mo)]" = [(22 — 1)m — 3am?] ¥V, 7(0).
Moreover,
}!LTO<W0, e GZ)m,o =-8y(m)m(1—m).

The proof of this lemma is omitted since it is similar to the proof of
Lemma 9.1.
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10. Properties of the coefficient R. In this section we state the prop-
erties of the coefficient matrix R used in the previous sections.
Recall the definitions of # and .%,,. For each function g in .¢,, we define

V,.(g) by

Vo(8) = SUD{2<g, B)mo+2Y Biti(8) — Bl (ro,o(m))
peRr? i
hed

= S0 () (oo TP + 25 B W

In this formula, for 1 <i <d, g € 4, and h € ¢, t;,(g) and (g, h),, o are
given by
tl(g):Z<g’ xin(x»m’ (ga h)m,OZZ(g7 Txh>m7

X

and (., -),, denotes the inner product in L?(v,,). By Lemma 6.1, the finite
volume variance converges to the infinite volume variance uniformly in
[0,1]:V,,(g) =I1lim,_  V,(g, m), where V,(g, m) is defined by (6.2).

From the definition of V,, we may introduce the bilinear form V,,(-,-) on
&, by polarization

V(g h) = 2{Vu(g +h) =V, (g — h)}.

Denote by Zm the closure of ., with respect to V,, and by .#;, the kernel
of V,,. Then (<£,,/,. ,V,,), which we denote by -#,,, is a Hilbert space.
We easily prove thatfor 1 <i <dand g,h e 4,

. Vm(h’ Lg) = _<g’ h)m,O'

Vo (h, WO, ei) = —t;(h).

Vm(veinm Lg) =0.

Vm(veinov WO, ej) = _m(l - m)‘sij'

-V (Wo e, W, ej) =m(1—-m)(1+2am)s;;.

(S BWore + Lh) = I8 + T (T, T

I N

-2 ZBi(WO, e;? h)m,O'
Hence,

V(&) = 0P| -2 (. L) ~ 25 BV, W)
BeR i
hes

(S8, 2]

1

We deduce the following theorem and corollaries.

THEOREM 10.1. %, = L4 ® (Wq . )1<i<q-
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COROLLARY 10.1. For each g in &, there exists a unique vector 8 in RY
such that
g_ZBiWO,ei e LZ in fm
i

COROLLARY 10.2. For each g in &, there exists a unique vector 8 in R?
such that

g§—Y.BiVemoeLsg in,
i

From the above corollary, there exists a unique matrix A(m) such that

(10.1) Wo., =2 A; j(m)V,n(0)e Ly forl<i<d.
- _

Hence, for all vectors a € R,

|nf Vm<2aiW0, e ZaiAi’jVej”f](O) — Lg) = O

gesd i
Using the fourth property of V,, mentioned at the beginning of the section,
we can rewrite the last equality as

in;Vm ( YW, — Lg) +a'ABA'a+2m(1 — m)a'Aa =0,
ge. -

where Bj, k= Vm(ve_/n(o)’ Vek 77(0))
By formula (101)1 Vm(WO, e’ Vek ”7(0)) = Z] Ai,jvm(vejn(o)9 Vekn(o))’ that
is, AB=—m(1—m)I. Thus,

-1
t 1 \V4 M}
O[Aa——(l ),Igrgff m<§i:al 0,e; Lg>

For1<i<d, let Z, ;(n) be the cylinder function given by

Zy,i(n) =[2n(0)n(—e;) — n(—e;)n(e;)]" +2m V, n(0).

Notice that V,,(Z,, ;(n), Wy ., ) = 0. There exists a unique matrix R(m) such
that

(10.2) Zp,i(m) = Y_R; j(m)V,m(0) € LY.
J
R(m) is the coefficient of (2.5) and (2.6). Hence,

Vm(Zm,i(n)a Vekn(o)) = Z Ri,j(m)Vm(vejn(O)? Vekn(o)) = (RB)i,k‘
J
We obtain a formula for R:

—1
R = mvm(zm,i(n)’ Vek‘l’](O))A

The following proofs are similar to those in [6].
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LEMMA 10.1. R is continuous in (0, 1).

The following functional space plays a key role in the proof of the continuity
of the coefficient R. Denote by .7 the space of functions F: [0, 1] x {0, 1}Zd - R
such that:

1. For each p € [0,1], F(p,-) is a cylinder function with uniform support:

There exists a finite set A such that for each p € [0, 1], the support of

F(p,-) is contained in A.

For each configuration n, F(-, n) is a smooth function.

3. For each density p, the cylinder function F(p, -) has mean zero with respect
to all canonical measure v ,,:

n

vg mlF(p,-)] =0 for some K > 0 and all m.

PrROOF OF LEMMA 10.1. Fix o > 0. Since for each m < [0,1], Z,, ;,(n) —
>; R;, j(m)V, m(0) € L, there exist cylinder functions H;(m,n) in . such
that

U (Zon (1) = S Ri m) Ve, 1(0) - LH (m,m)) < o
J

Since for each G € #4,,, V,,(G(m, -)) is continuous in m, for each m, € [0, 1],
there exists a neighborhood N, of m, such that for m in N, ,

U Zni(1) = E Ri,(m0) Ve, 1(0) - LH (m, ) = 20
J
The family (N, ) <0, 1] CONStitutes an open covering of [0, 1]. We may there-

fore find a finite open subcovering and, by interpolation, construct continuous
functions R7;(m) and a function H(m, n) in & such that

Vo Zn (1)~ D RE(m) Vo 1(0) - LH (m, ) = o
J
From the triangle inequality, we obtain

V(= S IRZ (m) = Ry (m] 7, (0))

J

< V(= X RE () = By jm)] V2, 1(0) - LCHY G, ) = Him, )
< 20 (Zyi(n) = D RE () Vo, 1(0) - LH (m )

+ 20 (Z (1) = Z R, (m) Ve, 1(0) - LH (m )

J

<2(40)+ 20 = 100.
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Since
Vi (—Z [RY j(m) = R; ;(m)]V,,n(0), Wo,el) =[RY (m) = R; ;(m)lm(1—m),
J

by the Schwarz inequality and the previous bound, we obtain

|R7 ,(m) — R; (m)| < \/ (Wo...) _ (10(1+2 m)

12
m(1l—m) m(1—m) ) Vo

This expression is uniformly bounded by C./o on each compact subset of (0, 1).
This proves that R;; can be uniformly approximated by smooth functions on
each compact subset of (0, 1) and is therefore continuous in (0,1). O

Proor oF LEMMA 9.1. Fix 1 <i <d and ¢ > 0. From the proof above, we
know there exist H(m, n) € . such that

8<m=<1-6

up Vo (Zp (1)~ X Ry, (m) Ve, (0) = LH . ) ) < e
J

Fix a positive integer [ and set 4,;(n) = H,;(n%(0), n). We defined % in such a
way that i € 4. By the triangle inequality,

Sup Y, (Zps(m) — X R y(m) 9 n(0) — Lhi())
d<m<1-6 j

(10.3)
<2e+2 sup Vm(Lhi(ﬂ) — LH;(m, 17))

5<m<1-6
By the sixth property of the bilinear form V,, (-, -) with 8 =0,
Vm(Lhi — LH;(m, 7)))

= Sfrae (Yo D dH O ) - Himm)) )

i=1 x

Since Vg . 7, = 7,V the previous expression is equal to

—x, —x+e;?

i((w— S 7 Ve are [HA(3(0), m) — Hy(m, n)])2>m,

i=1 x

which can be rewritten, since v,, is translation invariant, as

(Z\/rx,ereiVx, xte; [H;(n'(0), n) — H;(m, ’f))]>2>m.

2
i=1 x
Since H; belongs to .7, there exists a cube A such that we can restrict the

sum above x to x € A. The error term comes from jumps of a particle from A,
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to Aj or from jumps in the opposite direction. Since H € 7, the error term
is of O({71). By the Schwarz inequality and since for every bond b and every
L%(v,,) function g, ((V,2)?),, < 4(g?),,, we obtain that the second term on
the right-hand side of (10.3) is bounded above by

sup {C(H)([H;(n'(0), ) = Hy(m, n)]%),, + O )},

8<m<1-6

which vanishes as / goes to co by the law of large number.
This concludes the first part of the lemma: we proved there exists a sequence
of functions hj,(7n) in ¢ such that

lim sup V, (Zm,i(ﬂ) - Z R; j(m)Vv, n(0) - Lh;e(”’?)) =0.

k=00 §,<m<1-8§,
By the Schwarz inequality,

| |
ivm(zm,i(n) = ¥Ry (m)V. n(0) - LhAC). Wo,.,) i’

J

which is equal to

Z R;;(m)m(1—m)8; —V,(Lhf, W)

J

because V,,(Z,, ;(n), Wy ,,) = 0is bounded above by 0,(1) \/Vm(WO’ .,)- Hence,

lim (Wo o, 2f) .0 = —Ri(m) m (1 —m). =

k—o00
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