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FIRST ORDER CORRECTION FOR THE HYDRODYNAMIC LIMIT
OF SYMMETRIC SIMPLE EXCLUSION PROCESSES

WITH SPEED CHANGE IN DIMENSION d≥≥≥3

By Elise Janvresse

Université de Rouen

The hydrodynamic limit of the symmetric simple exclusion process
with speed change is given by a diffusive equation in the appropriate
scale. Following the nongradient method introduced by Varadhan and the
Navier–Stokes methods developed by Yau, we prove that in the same scale,
the next order correction is given by a third order equation for dimension
d ≥ 3.

1. Introduction. We consider the configuration space consisting of parti-
cles in Z

d and we suppose that there is a hard core interaction so that two par-
ticles cannot occupy the same site. By imposing some probability distribution
on the configuration space we obtain a model of lattice gases in equilibrium.
This lattice gas model can be turned into a dynamical one if some rules for
the motion of particles are given.

We consider the symmetric simple exclusion process with speed change.
This model can be informally described as follows: A particle at site x jumps to
a neighboring site x+y chosen with equiprobability at a rate which depends on
the presence of particles at sites x−y and x+2y. If the site x+y is occupied,
the jump is suppressed. The generator of this process is given, for α > −1/2
fixed, by

(1.1) Lf�η� = ∑
x
 �y�=1

rx
x+y�η�
(
f�ηx
x+y� − f�η�)


where rx
x+y�η� = η�x��1− η�x+ y���1+ αη�x− y�+αη�x+2y�� and ηx
x+y

is the configuration η after a particle jumped from site x to site x+ y.
The total number of particles is the unique conserved quantity and for each

0 ≤ ρ ≤ 1, there exists a translation invariant product probability measure
denoted by νρ that is invariant for the dynamics and for which the density of
particles is ρ	 νρ is the product Bernoulli measure with parameter ρ. Moreover,
since the process is symmetric, the measures are reversible.

We are interested in the evolution of the local density of particles. Let us
fix the scale of the lattice to be N−1. In order to have the particle moving a
distance of order 1 in the macroscopic scale, we have to wait for a time of order
N2. So introducing a diffusive time scaling (t′ = tN2), we can check that the
density follows the hydrodynamic equation

(1.2) ∂tρ =
∑
i

∂2
ui
�ρ�1+ αρ���
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A fundamental question in mathematical physics is the derivation and in-
terpretation of equations which are not scaling invariant and thus cannot be
obtained from a scaling limit.

For example, in the context of asymmetric interacting particle systems,
several interpretations have been proposed for the Navier–Stokes (NS) equa-
tion.

It is well known that the macroscopic evolution of the strictly asymmetric
simple exclusion process (ASEP) under Euler rescaling is described (cf. [9]) by
the first order quasilinear hyperbolic equation

∂tρ+
∑
i

∂ui
�ρ�1− ρ�� = 0�(1.3)

In the context of ASEP, the equation that corresponds to the NS equation is

∂tρ+
∑
i

∂ui
�ρ�1− ρ�� =N−1 ∑

i
 j

∂ui

(
ai
 j�ρ�∂uj

ρ
)

(1.4)

where ai
 j�ρ� is the diffusion coefficient depending on ρ.
This leads to the following three interpretations of the NS equation:

1. The NS equation (1.4) is the first order correction to the hydrodynamic
equation (1.3): It describes the evolution of the density up to order N−1

(see [1, 7]).
2. Long time behavior: Equation (1.4) describes the evolution of the density

up to time scale N2. In diffusive scale, we obtain from (1.4),

∂tρ+N
∑
i

∂ui
�ρ�1− ρ�� = ∑

i
 j

∂ui

(
ai
 j�ρ�∂uj

ρ
)
�

Assuming that the initial data are constant along the drift direction, the
diverging term vanishes.

3. Incompressible limit (see [2, 3]): Consider a small perturbation of a constant
profile (ρ = ρ0 +N−1u) in the diffusive scale. For simplicity, take ρ0 = 1/2.
Otherwise a uniform motion has to be taken out. We find that u satisfies
the equation

∂tu+ 2
∑
e

∂eu
2 = ∑

i
 j

∂i�ai
 j�1/2� ∂ju��

Notice that the diffusion coefficient is computed at the equilibrium density
1/2 and is a constant in the equation.

Note that the second and third interpretations concern the behavior of the
system under diffusive rescaling. The first interpretation is a statement on
the process under Euler rescaling.

Let us turn to the symmetric process we introduced above. Consider the
equation

∂tρ
N = �u�ρN�1− ρN�� − α

N

d∑
i
 j=1

∂2
ui

(
Rij�ρN� ∂uj

ρN
)

(1.5)
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where Rij is a continuous function on �0
1�. Since our process is symmetric, we
already used diffusive rescaling to get the hydrodynamic limit, so the second
and third interpretations may not be applied in our case. In this paper, we
shall prove the first interpretation holds in dimension d ≥ 3: Equation (1.5)
describes the evolution of the density up to order N−1. It is the first order
correction to (1.2).

Our method is based on a nongradient system method (see [10]), a multi-
scale analysis and a relative entropy argument (see [11]). The paper is orga-
nized as follows: In Section 2, we first recall the rigorous definitions of the
symmetric simple exclusion process with speed change and state our main
result. Its proof is outlined in Sections 3 and 8. Beside other problems, we
need to prove a very strong control of the specific relative entropy: For the
usual hydrodynamic limit, following the arguments in [3], we need to bound
the specific relative entropy by O�N−1� (Section 7). Unfortunately, this is not
sufficient to identify the correction term and we need to bound the specific rel-
ative entropy by O�N−2�. Details will be described in Section 4 and the proofs
can be found in Sections 7 and 9. In Section 10, we state the properties of the
diffusion coefficient R and prove lemmas we assumed in Sections 8 and 9.

2. Statement of the result. We consider the symmetric simple exclusion
process with speed change on a lattice of size N in dimension d ≥ 3 with
periodic boundary conditions. We shall denote by Td

N the d-dimensional torus
with length N. The configurations of this process are given by

η = {
η�x�
 x ∈ Z

d
 η�x+Nei� = η�x�}

where �ei�j = δij and η�x� = 1 or 0, indicating if the site x is occupied or not.

The generator of this process is given, for α > −1/2 fixed, by

LNf�η� =
∑

x
 �y�=1

rx
x+y�η�
(
f�ηx
x+y� − f�η�)
(2.1)

where rx
x+y�η� = η�x��1− η�x+ y���1+ αη�x− y� + αη�x+ 2y�� and

ηx
x+y�z� =



η�x+ y�
 z = x


η�x�
 z = x+ y


η�z�
 otherwise.

The Bernoulli measures �νρ
 0 ≤ ρ ≤ 1� are the invariant measures for this
process.

Let W0
 ei = r0
 ei − rei
0 be the current between 0 and ei. A simple compu-
tation gives that

W0
 ei = �hi − τeihi� − �vi − 2τeivi + τ2eivi�
with hi�η� = η0 − αη−eiηei

+ 2αη−eiη0 and vi�η� = αη−eiη0.
We start the process with the inhomogeneous product measure

µN
0 �η� = Z−1

N �λ0� exp
[∑

x

λ0

(
x

N

)
η�x�

]

(2.2)
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where λ0�u� is a smooth function on Td (the d-dimensional torus of volume 1)
and ZN�λ0� is a normalization constant.

For a positive integer N and T0 > 0, denote by PN the probability measure
on the path space D��0
T0�
 �0
1�Td

N� of the Markov process with generator
LN accelerated by N2 and starting from µN

0 , and denote by EN the expectation
with respect to PN.

To the measure (2.2) corresponds an initial density profile

m0�u� =
exp�λ0�u��

exp�λ0�u�� + 1
�(2.3)

Notice that the initial profile m0 is bounded away from 0 and 1: there exists
δ > 0 such that δ ≤m0�u� ≤ 1− δ.

Denote by m the solution of the equation

∂tm = �uφ�m�

m�0
 ·� =m0�·�


(2.4)

with φ�m� =m�1 + αm�. Since φ and m0 are smooth, there exists a classical
smooth solution to this equation.

This equation describes the macroscopic behavior of the symmetric simple
exclusion process with speed change. More precisely, if qN�t
 u� is defined as

qN�t
 u� 	= EN�ηt��Nu���

it follows that, for each fixed time t, qN�t
 ·� converges weakly to m�t
 ·�. In fact,
for each fixed time t, qN�t
 ·� converges pointwise to m�t
 ·� in each continuity
point of m�t
 ·� (see Chapter 9 in [5]).

Our result describes the first order correction in this limit: For each integer
N consider the equation

∂tm
N = �uφ�mN� − α

N

d∑
i
 j=1

∂2
ui

(
Rij�mN� ∂uj

mN
)



mN�0
 ·� =m0�·�

(2.5)

where R is a continuous function on �0
1� which will be defined later (cf.
Section 10). We can understand (2.5) as a perturbation of (2.4) as follows.

For any fixed solution m of (2.4), consider the linear equation

∂tS = �u�φ′�m�S� − α
d∑

i
 j=1

∂2
ui
�Rij�m� ∂uj

m�


S�0
 ·� = 0�

(2.6)

Since R�m� is only continuous, we consider the solution of (2.6) in the following
weak sense: Fix T > 0 and consider the dual backward equation

∂sJ�s
 u� +φ′�m�s
 u���uJ�s
 u� = 0
(2.7)
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with final condition J�T
u� = J�u�. It is easy to obtain the estimates

d∑
i=1

∫ T

0
ds

∫
Td

du �∂ui
J�s
 u��2 ≤ C1

∫
Td duJ�u�2 exp�C2T�


d∑
i=1

∫ T

0
ds

∫
Td

du �∂2
ui
 uj

J�s
 u��2 ≤ C3
∫
Td du�∂ui

J�u��2 exp�C4T�
(2.8)

for some finite constants C1, C2, C3 and C4 that depend only on the bounds
on m and φ.

Denote by �1 the Hilbert space generated by C1�Td� and the inner product
�·
 ·�1 defined by

�F
G�1 =
d∑
i=1

∫
Td
�∂ui

F��∂ui
G��

Let �−1 be the dual space of �1 with respect to L2�Td�. The mapping
S	 �0
T� → �−1 is said to be a solution of (2.6) if for every J0	 Td → R

smooth,

�S�t�
J0� = −α
∫ t

0
ds

∫
du∂2

ui
J�s
 u�

d∑
i
 j=1

(
Rij�ms�u�� ∂uj

ms�u�
)



where J�s
 u� is the solution of the backward equation (2.7) with final condi-
tion J�t
 u� = J0�u�. In view of estimates (2.8), it is not difficult to prove the
existence of a unique solution to (2.6).

The main result of this paper is the following theorem.

Theorem 2.1. For any t ≤ T0 we have

N�qN�t
 ·� −m�t
 ·��⇀ S�t�
weakly in �−1.

3. Proof of Theorem 2.1. Denote by S	 �0
T0� ×Td → R the weak solu-
tion of the linear equation (2.6). Fix a time 0 ≤ T < T0 and a smooth function
J0	 Td → R. Denote by J	 R+ × Td → R the solution of the linear equation
(2.7) with final condition J�T
u� = J0�u�. We have to prove that

lim
N→∞

EN

[
N1−d ∑

x

J

(
T


x

N

)[
ηT�x� −m

(
T


x

N

)]]
= �ST
JT��

For σ > 0, let Rσ be a smooth function on �0
1� converging to R uniformly on
each compact subset of �0
1�. This is possible since R is continuous in �0
1�.
Then there exists a smooth solution to the linear equation (2.6) (with the
corresponding smoothed coefficient Rσ ), which is denoted by Sσ 	 R+×Td → R.
We start computing the time derivative of

EN

[
N1−d ∑

x

J

(
T


x

N

)[
ηT�x� −m

(
T


x

N

)
−N−1Sσ

(
T


x

N

)]]
�
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A simple computation shows that it is equal to

EN

[
N1−d ∑

x

J

(
t


x

N

)
N2LNηt�x�

]

−EN

[
N1−d ∑

x
 i

φ′
(
m

(
t


x

N

))
�∂2

ui
J�

(
t


x

N

)
ηt�x�

]

−N1−d ∑
x

J

(
t


x

N

){
�uφ

(
mt

(
x

N

))

− α

N

∑
i
 j

∂2
ui

{
Rσ

ij

(
mt

(
x

N

))
∂uj

mt

(
x

N

)}}

+N1−d ∑
x

φ′
(
m

(
t


x

N

))
�∂2

ui
J�

(
t


x

N

)
mt

(
x

N

)
+ εN�

(3.1)

The last term in the above formula is the error we obtain when making a
summation by parts in the sums. At the end of this section, we prove that εN
is of oN�1�. Moreover,

LNηt�x� =
∑
i

τx�W−ei
0 −W0
 ei�


where W0
 ei is the current between 0 and ei. Recall that

W0
 ei = �hi − τeihi� − �vi − 2τeivi + τ2eivi�
with hi�η� = η0 − αη−eiηei

+ 2αη−eiη0 and vi�η� = αη−eiη0. Hence, summing
by parts and using Taylor expansion, we obtain that

N1−d ∑
x

J

(
t


x

N

)
N2LNηt�x�

=N1−d ∑
x
 i

∂2
ui
Jt

(
x

N

)
τxhi�ηt� −N−d ∑

x
 i

∂3
ui
Jt

(
x

N

)
τxvi + oN�1��

Therefore, making summations by parts, (3.1) is equal to

EN

[
N1−d ∑

x
 i

∂2
ui
Jt

(
x

N

){
τxhi�ηt� −φ�mt� −φ′�mt�

(
ηt�x� −mt

(
x

N

))}]

−N−d ∑
x
 i

∂3
ui
Jt

(
x

N

)
EN�τxvi�

−N−d ∑
x
 i

α ∂2
ui
Jt

(
x

N

)
Rσ

ij

(
mt

(
x

N

))
∂uj

mt

(
x

N

)

plus a small error of oN�1�. The second line is the correction needed for the first
line to converge to 0. By the law of large numbers (more precisely, using the
hydrodynamical behavior of the exclusion process with speed change and, in
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particular, the classical one-block and two-block estimates), this line converges
as N increases to ∞ to

− α
∑
i
 j

∫ T

0
dt

∫
du∂2

ui
Jt�u�

[−2mt�u�δij +Rσ
ij�mt�u��

]
∂uj

mt�u��(3.2)

We now concentrate on the first line. Recall that φ�m� =m�1+ αm�. Since
the linear terms of the first line cancel, we may rewrite it as

αEN

[
N1−d ∑

x
 i

�∂2
ui
J�

(
t


x

N

)

×
{
τxHi�ηt� −m2

(
t


x

N

)

− 2m
(
t
 x

N

)[
ηt�x� −m

(
t
 x

N

)]}]
(3.3)

with Hi�η� = 2η�−ei�η�0� − η�−ei�η�ei�.
Notice that if α = 0, Theorem 2.2 is proved. Namely, there is no first or-

der correction for the usual symmetric simple exclusion process. Hence, we
suppose α �= 0.

At this point, following the approach of [4], we would like to replace the
cylinder function τxHi�ηt� by a function of the empirical measure. In order to
do this, we need some notation.

For an integer l, denote by ηl�x� the empirical density on a hypercube of
length 2l+ 1 centered at x:

ηl�x� = 1
�7l�

∑
y
y−x∈7l

η�y�


7l =
{
y ∈ Z

d
 −l ≤ yi ≤ l
 for 1 ≤ i ≤ d
}
�

Furthermore, denote by Si
 l�η� the conditional expectation given the density
of particles on 7l of Hi�η� = 2η�−ei�η�0� − η�−ei�η�ei�:

Si
 l�η� = E
[
Hi�η��ηl�0�]�

Recall that the canonical measure on finite boxes is the uniform measure. In
particular, Si
 l�η� does not depend on m and can be explicitly computed. It is
given by

Si
 l�η� = �ηl�0��2 − 1
�7l� − 1

ηl�0��1− ηl�0���

Since Si
 l�·� is a function of ηl�0�, for convenience we denote it sometimes by
Sl�ηl�0��. Define the sequence K�N� by

K = BN1/d


where B is a positive integer independent of N which will increase to ∞
after N.
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A summation by parts permits us to rewrite (3.3) as

αEN

[
N1−d ∑

x
 i

�∂2
ui
J�

(
t


x

N

)

×
{[
τxHi�ηt� −SK�ηK

t �x��
]

+ �ηK
t �x��2 −m2

(
t


x

N

)

− 2m
(
t


x

N

)[
ηK
t �x� −m

(
t


x

N

)]}]
+ oN
B�1��

Here oN
B�1� represents a term vanishing as N ↑ ∞ and then B ↑ ∞. The
error made in the summation by parts is small since K � √

N and m and
J are smooth functions. Moreover, the term ��7K� − 1�−1ηK�0��1 − ηK�0��
vanishes because N1/d �K.

To keep notation simple, for each 1 ≤ i ≤ d and each positive integer l,
denote by Vi
 l�η� the cylinder function defined by

Vi
 l�η� =Hi�η� −Sl�ηl�0���(3.4)

With this notation we may rewrite the last expectation as

αEN

[
N1−d ∑

x
 i

�∂2
ui
J�

(
t


x

N

){
τxVi
K�ηt� +

[
ηK
t �x� −m

(
t


x

N

)]2}]

+ oN
B�1��
In view of (3.2), since m is bounded away from 0 and 1 and since Rσ

i
j

converges uniformly to Ri
j on each compact subset of �0
1�, to conclude the
proof of Theorem 1.2 it remains to prove the following lemmas.

Lemma 3.1. Recall that K = BN1/d. For each 1 ≤ i ≤ d,

lim
N→∞

∫ T

0
dtEN

[
N1−d ∑

x
 i

�∂2
ui
J�

(
t


x

N

)
τxVi
K�ηt�

]

= ∑
i
 j

∫ T

0
dt

∫
du �∂2

ui
J��t
 u� [Ri
j�m�t
 u�� − 2m�t
 u�δi
 j

]�∂uj
m��t
 u��

Lemma 3.2. Let KN be a sequence increasing to ∞ faster than N1/d and
slower than N3/4 �N1/d �KN �N3/4�. Then

lim
N→∞

∫ T

0
dtEN

[
N1−d ∑

x

(
η
KN

t �x� −m

(
t


x

N

))2]
= 0�

It is this last lemma that forced us to choose the sequence K�N� much
larger than N1/d.
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Conjecture 3.1 (Summation by parts formula). Let G
H	 Td→R be two
smooth functions. Then

lim
N→∞

N1−d ∑
x

[
�∂ui

G�
(
x

N

)
H

(
x

N

)
+ �∂ui

H�
(
x

N

)
G

(
x

N

)]
= 0�

Proof. Denote by F the product of the functions GH. With this notation,
the sum in the statement can be rewritten as

N1−d ∑
x

[
�∂ui

F�
(
x

N

)]
=N1−d ∑

x

[
�∂ui

F�
(
x

N

)
−N

{
F

(
x

N
+ ei
N

)
−F

(
x

N

)}]
�

From Taylor’s expansion at the second order, this expression is equal to

−2−1N−d ∑
x

�∂2
ui
F�

(
x

N

)
+O�N−1��

As N increases to ∞, this expression converges to

−2−1
∫
du �∂2

ui
F��u� = 0�

This concludes the proof of the conjecture. ✷

4. Bounds on entropy and Dirichlet form. The strategy in proving the
two lemmas of the previous section is based on the study of the time evolution
of the relative entropy. Fix a reference product invariant measure νρ on the

configuration space Sd
N = �0
1�Td

N . For each time t ≥ 0, let ψN
t be the density

of the product measure νNm�t
·� with slowly varying density profile m�t
 ·� with
respect to νρ:

ψN
t �η� =

dνNm�t
·�
dνρ

= 1

ZN
t

exp
{∑

x

λ

(
t


x

N

)
ηx

}



where

λ

(
t


x

N

)
= log

{
m�t
 x/N��1− ρ�
ρ�1−m�t
 x/N��

}
(4.1)

and ZN
t is the normalizing constant

ZN
t = exp

{
−∑

x

log
1−m�t
 x/N�

1− ρ

}
�

Let fN
t = dνNm�0
·�P

N
t /dνρ, where PN

t denotes the semigroup of the Markov
process with generator LN accelerated by N2. It is well known that fN

t is the
solution of

∂tf
N
t =N2L∗

Nf
N
t 


fN
0 = ψ0�

(4.2)
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Here L∗
N represents the adjoint of LN in L2�νNρ �. Since the process is reversible

w.r.t. νNρ , L∗
N = LN. From now on we will omit the index N in fN

t and ψN
t .

Denote by HN�t� the entropy of νNm�0
·�P
N
t with respect to νm�t
·�:

HN�t� =H
(
νNm�0
·�P

N
t

∣∣νm�t
·�
) = ∫

ft log
ft

ψt

dνρ�

Notice that HN�0� = 0. For each density f	 Sd
N → R+, denote by DN�f� the

Dirichlet form, that is, the convex semicontinuous functional defined by

DN�f� = −
∫ √

fLN

√
fdνρ�

Proposition 4.1 (First entropy bound). There exists a constant C such that
for every t < T0,

lim sup
N→∞

{
N1−dHN�t� +

∫ t

0
N2−dDN�fs�ds

}
≤ C�

The proof of Lemma 3.2 is based on this result. However, to prove Lemma
3.1 we need more: a bound on the entropy of o�Nd−1� instead of O�Nd−1�.
To obtain such a bound, we need to consider corrections of order 1/N2 in the
density ψt.

Let us introduce some notation. Denote by � the space of cylinder functions.
For each positive integer K and m in �0
1/�K̄d�
 � � � 
1� we denote by νK
m the
canonical measure on �0
1�7K with density m (i.e., the corresponding uniform
measure). Let � be the linear space of cylinder functions that have mean zero
with respect to all canonical measures on a sufficiently large box 7K:

� = {
g ∈ � 
 νK
m�g� = 0 for some K > 0 and all m

}
�(4.3)

For functions Fi and Gi in � , 1 ≤ i ≤ d, for a time 0 ≤ t ≤ T0 and an
integer N, define the density ψ

F
G
t �η� with respect to the reference measure

νρ by

ψ
F
G
t �η� = 1

Z
F
G
t

exp
{∑

x

λ

(
t


x

N

)
ηx −N−2 ∑

x
 i

∂2
ui
λ

(
t


x

N

)
Fi�τxη�

−N−2 ∑
x
 i

(
∂ui

λ

(
t


x

N

))2

Gi�τxη�
}



where Z
F
G
t is a normalizing constant. Denote by HN�ft�ψF
G

t � the entropy
of νm�0
·�P

N
t with respect to ψ

F
G
t dνρ:

HN

(
ft

∣∣ψF
G
t

) = ∫
ft log

ft

ψ
F
G
t

dνρ�

For each density f	 Sd
N → R+ and each t ≤ 0, denote by DN�f�ψF
G

t � the
positive convex lower semicontinuous functional defined by

DN

(
f
∣∣ψF
G

t

) = ∫
ψ
F
G
t

{
LN

f

ψ
F
G
t

− f

ψ
F
G
t

LN log
f

ψ
F
G
t

}
dνρ�



1884 E. JANVRESSE

Proposition 4.2 (Second entropy bound). For every t < T0,

inf
F
G∈�

lim
N→∞

{
N1−dHN

(
ft

∣∣ψF
G
t

)+ ∫ t

0
N2−dDN

(
fs

∣∣ψF
G
s

)
ds

}
= 0�

From Propositions 4.1 and 4.2, we can prove the following proposition:

Proposition 4.3. limN→∞N1−dHN�t� = 0.

Proof. We have

N2−d(HN�t� −HN

(
ft

∣∣ψF
G
t

)) =N2−d
∫
ft

(
log

ft

ψt

− log
ft

ψ
F
G
t

)
dνρ

=N2−d
∫
ft log

ψ
F
G
t

ψt

dνρ�

Hence,

N2−d(HN�t� −HN

(
ft

∣∣ψF
G
t

))

=N2−dEft

[
−N−2 ∑

x
 i

∂2
ui
λ

(
t


x

N

)
Fi�τxη�

−N−2 ∑
x
 i

(
∂ui

λ

(
t


x

N

))2

Gi�τxη�
]
−N2−d log

Z
F
G
t

Zt

�

The second term on the right-hand side of the previous equality is equal to

N2−d logEψt

[
exp

{
−N−2 ∑

x
 i

∂2
ui
λ

(
t


x

N

)
Fi�τxη�

−N−2 ∑
x
 i

(
∂ui

λ

(
t


x

N

))2

Gi�τxη�
}]




which can be rewritten as

N2−d logEψt

[ ∏
j∈7R

exp
{
−N−2 ∑

r
 r�2R+1�∈Td
N

d∑
i=1

∂2
ui
λ

(
t

j+ �2R+ 1�r

N

)

× τj+�2R+1�Fi

}

× exp
{
−N−2 ∑

r
 r�2R+1�∈Td
N

d∑
i=1

(
∂ui

λ

(
t

j+ �2R+ 1�r

N

))2

× τj+�2R+1�Gi

}]



where 7R is the smaller box of size R which contains the supports of Fi and
Gi. If 2R + 1 does not divide N, there is a small error in the above formula
which converges to 0 as N goes to infinity.
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By Hölder’s inequality, since ψt is a product measure, the previous term is
bounded above by

N2−d

d�2R+ 1�d
∑
x
 i

logEψt

[
exp

(
−d�2R+ 1�d

N2
∂2
ui
λ

(
t


x

N

)
Fi�τxη�

− d�2R+ 1�d
N2

(
∂ui

λ

(
t


x

N

))2

Gi�τxη�
)]

�

Expanding the exponential, we obtain

N2−d

d�2R+ 1�d
∑
x
 i

log
(

1− d�2R+ 1�d
N2

Eψt

(
∂2
ui
λt

(
x

N

)
Fi�τxη�

)

− d�2R+ 1�d
N2

Eψt

((
∂ui

λt

(
x

N

))2

Gi�τxη�
)
+O�N−4�

)
�

Hence N2−d log�ZF
G
t /Zt� is bounded above by

N2−dEψt

[
−N−2 ∑

x
 i

∂2
ui
λt

(
x

N

)
Fi�τxη� −N−2 ∑

x
 i

(
∂ui

λt

(
x

N

))2

Gi�τxη�
]

plus a small error of O�N−2�. On the other hand, by Jensen’s inequality,
N2−d log�ZF
G

t Z−1
t � is bounded below by

N2−dEψt

[
−N−2 ∑

x
 i

∂2
ui
λt

(
x

N

)
Fi�τxη� −N−2 ∑

x
 i

(
∂ui

λt

(
x

N

))2

Gi�τxη�
]
�

Hence, N2−d�HN�t� −HN�ft�ψF
G
t �� is equal to

N2−dEft

[
N−2 ∑

x
 i

∂2
ui
λ

(
t


x

N

)
F̃i�τxη� +N−2 ∑

x
 i

(
∂ui

λ

(
t


x

N

))2

G̃i�τxη�
]

plus a small error of O�N−2�. In this expression, F̃i and G̃i denote, respec-
tively, Fi−Eψt

�Fi� and Gi−Eψt
�Gi�. By the entropy inequality, for each ε > 0,

this term is bounded above by

εN1−dHN�t� + εN1−d logEψt

(
exp

{
1
εN

∑
x
 i

∂2
ui
λt

(
x

N

)
F̃i�τxη�

+ 1
εN

∑
x
 i

(
∂ui

λt

(
x

N

))2

G̃i�τxη�
})

�

Using the same arguments, we easily check that for any ε > 0 the second term
converges to 0 as N ↑ ∞. Moreover, by Proposition 4.1, εN1−dHN�t� ≤ Cε.
Letting ε go to 0, we proved that N2−d�HN�t� −HN�ft�ψF
G

t �� converges to 0
as N ↑ ∞.

Hence, we may replace HN�ft�ψF
G
t � by HN�t� in Proposition 4.2, and we

get Proposition 4.3. ✷
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5. A bound from the entropy. In this section we will prove a bound that
is controlled by the relative entropy. Lemma 3.2 is a simple corollary of this
estimate and Proposition 4.3.

Lemma 5.1. Let KN be a sequence that increases to ∞ as N ↑ ∞ and is
small if compared to N3/4 �KN �N3/4�. There exists γ > 0 such that

EN

[
N1−d ∑

x

(
η
KN

t �x� −m

(
t


x

N

))2]
≤ HN�t�

γNd−1
+C�γ� O

(
N

Kd
N

)
�

Proof. By the entropy inequality for any positive constant γ,

EN

[
N1−d ∑

x

(
η
KN

t �x� −m

(
t


x

N

))2]

= Eft

[
N1−d ∑

x

(
ηKN�x� −m

(
t


x

N

))2]

≤ HN�t�
γNd−1

+ 1
γNd−1

logEψt

[
exp

{
γ

∑
x

(
ηKN�x� −m

(
t


x

N

))2}]
�

By Hölder’s inequality, since ψt is a product measure, the limit as N increases
to ∞ of the second term on right-hand side is bounded above by

lim sup
N→∞

1

γNd−1K̄d
N

∑
x

logEψt

[
exp

{
γK̄d

N

(
ηKN�x� −m

(
t


x

N

))2}]
�

Here K̄N stands for 2KN + 1. Since mt is a smooth function, this limit is
equal to

lim sup
N→∞

N

K̄d
N

1
γNd

∑
x

logEψt

[
exp

{
2γK̄d

N

×
(

1

K̄d
N

∑
y∈x+7KN

(
η�y� −m

(
t


y

N

)))2}]

plus a small error of O�K̄4
NN

−3�.
If one establishes

Eψt

[
exp

{
2γX2

KN
�x�}] ≤ const
(5.1)

where XKN
�x� = �1/

√
K̄d

N�
∑

y∈x+7KN
�η�y�−m�t
 y/N��, Lemma 5.1 is proved.

By logarithmic Chebychev inequality, for each θ > 0,

Eψt

[
exp

{
2γX2

KN
�x�}] ≤ ∑

a∈Z

exp�2γa2�P�XKN
�x� ≥ a�

≤ ∑
a∈Z

exp�2γa2� exp�−aθ�Eψt

[
exp�θXKN

�x��]�

Since �XKN
�x�� ≤

√
K̄d

N, notice that the sum reduces to �a� ≤
√
K̄d

N.
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Moreover, an easy computation shows that Eψt
�exp�θXKN

�x��� is equal to

∏
y∈x+7KN

exp
{ −θ√

K̄d
N

mt

(
y

N

)
+ log

(
1+mt

(
y

N

)(
exp

(
θ√
K̄d

N

)
− 1

))}
�

Since exp�θ�K̄d
N�−1/2� ≤ 1+ θ�K̄d

N�−1/2 +Cθ2�K̄d
N�−1 for θ ≤

√
K̄d

N,

Eψt

[
exp

{
2γX2

KN
�x�}] ≤ ∑

a∈Z

exp
{

2γa2 + Cθ2

K̄d
N

∑
y∈x+7KN

mt

(
y

N

)
− aθ

}
�

Choosing

θ = aK̄d
N

2C
∑

y∈x+7KN
mt�y/N�

and noting that θ ≤
√
K̄d

N if C is large enough, we obtain

Eψt

[
exp

{
2γX2

KN
�x�}] ≤ ∑

a∈Z

exp
{(

2γ − K̄d
N

4C
∑

y∈x+7KN
mt�y/N�

)
a2

}



which is bounded by a constant for γ small enough. ✷

The following lemma will be useful in the proofs of the entropy bounds.

Lemma 5.2. Let KN be a sequence that increases to ∞ as N ↑ ∞ and is
small if compared to N3/4 �KN �N3/4�. There exists γ > 0 such that

EN

[
N1−d ∑

x

(
η
KN

t �x� −m

(
t


x

N

))3]
≤ HN�t�

γNd−1
+C�γ� O

(
N

Kd
N

)
�

Proof. Using the fact that �ηKN�x� −m�t
 x/N�� ≤ const, the left-hand
side of the inequality appearing in Lemma 5.2 is bounded above by

constEN

[
N1−d ∑

x

(
η
KN

t �x� −m

(
t


x

N

))2]
�

Using Lemma 5.1, we get Lemma 5.2. ✷

6. Multiscale estimates. In this section we recall some multiscale esti-
mates from [3] and extend them to our setting. These estimates replace the
usual one-block–two-block estimates and will be used later on to prove Lemma
3.1 and Propositions 4.1 and 4.2. Our estimates are similar to [3] except some
extra work is needed because our system is not near equilibrium. In partic-
ular, we need estimates uniform with respect to the density ρ. We start with
some notation.
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Recall from the previous sections that we denote by � the linear space of
cylinder functions that have mean zero with respect to all canonical measures
on a sufficiently large box 7K:

� = {
g ∈ � 
 νK
m�g� = 0 for some K > 0 and all m

}
�(6.1)

Moreover, for a density 0 ≤ m ≤ 1, let �m be the space of cylinder functions
such that

g̃�m� = νm�g� = 0 and ∂ρνρ�g�
∣∣
ρ=m = g̃′�m� = 0�

Note that the second condition is equivalent to imposing that the covariance,
with respect to the measure νm, of g and the formal sum

∑
x η�x� vanishes:∑

z

νm�g�η�
 η�z�� = 0�

Notice that � ⊂ �m for all m in �0
1�. The following definition is taken from
[3].

Definition 6.1. Let g be a cylinder function and denote by s�g� its sup-
port:

s�g� = min
{
l ∈ N
 suppg ⊂ 7l

}
�

For each l ≥ s�g� and m in �0
1/l̄d
 � � � 
1�, define the “variance” Vl�g
m� of
g with respect to νl
m by

Vl�g
m� = 1
�2lg + 1�d

×
〈[ ∑

�x�≤lg
�τxg− g̃l�m��

]
�−Ll�−1

[ ∑
�x�≤lg

�τxg− g̃l�m��
]〉

νl
m

�

(6.2)

In this formula lg denotes the integer l−s�g� so that
∑

�x�≤lg τxg is measurable
with respect to �η�x�
 x ∈ 7l�. Moreover, Ll is the restriction to 7l of the
generator L and g̃l�m� is the expected value of g with respect to the canonical
measure νl
m.

If g ∈ �m we define also the “variance” of g by

Vm�g� = lim sup
l→∞

νm
[
Vl�g
ηl�0��]�

Notice that for g ∈ � the subtraction in (6.2) is unnecessary for l sufficiently
large.

We need the following two results. The proof of the first lemma is the same
as in [6] and the second can be found in [3].

Lemma 6.1. For each cylinder function h in � ,

lim
l→∞

Vl�h
m� = Vm�h�

uniformly for m ∈ �0
1�.
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Lemma 6.2 (Integration by parts formula). Let g ∈ �m be a cylinder func-
tion. Denote by l the smallest integer such that 7l contains the support of g.
Then there exists a family of functions @b�x
g�, where x ∈ Z

d and b is an edge,
such that 〈

τxg
u
〉
m
= ∑

b∈x+7l

〈
@b�x
g�
∇bu

〉
m



∑
b∈x+7l

�b− x�d+�1/2�〈(@b�x
g�
)2〉

m
≤ C�g�

for some constant C�g� depending only on g.

In the above formula ∇bu�η� = u�ηb� − u�η� and ηb is the configuration η
with the sites in the bond b exchanged.

The following result is a one-block estimate whose proof relies on the stan-
dard perturbation theorem on the largest eigenvalue of a symmetric operator.

Lemma 6.3 (One-block estimate). Let ft be the solution of the forward
equation (4.2). There exists a universal constant C1 such that for any smooth
function J, positive γ and h ∈ � ,

lim sup
N→∞

{
N1−d ∑

x

∫
J

(
x

N

)
τxhft dνρ − γN2−dDN�ft�

}

≤ C1γ
−1

∫
J�u�2

Vm�t
 u��h�du�
(6.3)

In this formula m�t
 u� is the solution of (2.4).

Proof. Fix a positive integer l independent of N and that will increase
to ∞ after N. Since J is smooth, the summation on the left-hand side of the
statement of the lemma can be rewritten as

N1−d ∑
x

∫
J

(
x

N

)
�Av�y−x�≤l τyh�ft dνρ +O

(
l2

N

)



where we denote �2l+ 1�−d ∑
�y−x�≤l τyh by Av�y−x�≤l τyh.

Since νρ is translation invariant, this term is equal to

N1−d ∑
x

∫
J

(
x

N

)
�Av�y�≤l τyh� τxft dνρ +O

(
l2

N

)
�

It can easily be rewritten as

N1−d ∑
x

∑
K

c�x
ft
K�
∫
J

(
x

N

)
�Av�y�≤l τyh� �τxft�l
K dνl
K+O

(
l2

N

)

(6.4)

where �τxft�l
K denotes the projection of τxft on the space of configurations
with K particles on 7l and c�x
ft
K� is given by

c�x
ft
K� = νρ

[
τxft 1�∑�y�≤l ηy=K�

]
�
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By convexity of the Dirichlet form, we have that∑
x

∑
K

c�x
ft
K�Dl
K

(�τxft�l
K
) ≤ �2l+ 1�d DN�ft�

with

Dl
K�f� = �1/2� ∑
�x−y�≤1
x
y∈7l

〈
rx
y�η�

[√
f�ηx
y� −

√
f�η�

]2〉
l
K

�

From the standard perturbation theorem on the largest eigenvalue of a
symmetric operator (cf. [5, 8, 10]), we have

lim sup
N→∞

{
N1−d ∑

x

∫
J

(
x

N

)
�Av�y−x�≤l τyh�ft dνρ − γN2−dDN�ft�

}

≤ lim sup
N→∞

{
N−d ∑

x

∑
K

c�x
ft
K� N2γ

�2l+ 1�d

×
[

1
Nγ

∫
J

(
x

N

) ∑
�y�≤l

τyh �τxft�l
K dνl
K −Dl
K

(�τxft�l
K
)]}

≤ lim sup
N→∞

{
N−d ∑

x

∑
K

c�x
ft
K� N2γ

�2l+ 1�d

×
[
C1�2l+ 1�d

N2γ2

∫
J2

(
x

N

)
Vl

(
h


K

�2l+ 1�d
)
dνl
K

]}

= C1γ
−1 lim sup

N→∞
N−d ∑

x

J2
(
x

N

)
EN

[
Vl�h
ηl�x��]�

In this formula, Vl stands for the finite volume variance defined in (6.2) and
C1 is a universal constant. By the law of large numbers, the right-hand side
of the last expression is equal to

C1γ
−1

∫
duJ2�u�νm�t
 u�

[
Vl�h
ηl�0��]�

To conclude the proof, it remains to invoke Lemma 6.1, which states that the
finite volume variance converges uniformly to the infinite volume variance. ✷

Notice that if h�η� is of the form

h�η� = w�ηl�0��Av�y�≤lτyg

with g in � and w smooth, the left-hand side of the inequality appearing in
Lemma 6.3 is bounded above by

C1γ
−1

∫
duJ2�u�Vmt�u��w�mt�u��g��

In this case, the term corresponding to (6.4) is

N1−d ∑
x

∑
K

c�x
ft
K�
∫
J

(
x

N

)
w

(
K

�2l+ 1�d
)
�Av�y�≤l τyg� �τxft�l
K dνl
K�
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For each K, w behaves as a constant. We obtain that this term is bounded
above by

C1γ
−1N−d ∑

x

J2
(
x

N

)
EN

[
w�ηl�x��2 Vl�g
ηl�x��]


which converges as N ↑ ∞, then l ↑ ∞, to

C1

γ

∫
duJ2�u�w�mt�u��2

Vmt�u��g� =
C1

γ

∫
duJ2�u�Vmt�u��w�mt�u��g��

For any local function h and any integer L ≥ s�h� fixed, consider the de-
composition

h = {
h− νρ

[
h � ηL�0�]}+ νρ

[
h � ηL�0�] 	= h�L� + h̃L�ηL�0���(6.5)

Notice that for each L, h�L� belongs to � since it has mean zero with respect
to all canonical measures on boxes of length larger than L̄.

The following theorem is taken from [7].

Theorem 6.1 (Multiscale estimates). Fix a cylinder function h and a se-
quence K =K�N� such that

lim
N→∞

K2+�1/2�+a

N
= 0

for some constant a > 0. Let ft be the solution of the forward equation (4.2).
There exists an universal constant C1 and a function C�h
L� vanishing as
L ↑ ∞ �limL→∞C�h
L� = 0� such that for any smooth function J and any
positive γ,

lim
N→∞

{
N1−d

∫ ∑
x

J

(
x

N

)[
τxh− h̃K�ηK�x��]ft dνρ − γN2−dDN�ft�

}

≤ C1γ
−1

∫
J2�u�Vm�t
 u��h�L��du+C�h
L��

Since Theorem 6.1 holds for all L, we can take the limit L ↑ ∞. We would
like to have that

lim
L→∞

Vm�h�L�� = Vm�h�

uniformly in m on compact subsets of �0
1�. Unfortunately, since h may not be
in the space �m, Vm�h� may not even be defined. For this reason, we introduce
the function hm, which is the projection of h on �m and is given by

hm = h− �h�m − h̃′�m��η�0� −m�

where h̃�ρ� = �h�ρ and h̃′�·� is its derivative:

Vl�h�L� − �hm��L�
m� = h̃′�m�2 Vl�η�0� − ηL�0�
m��
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From the variational formula for the finite volume variance, Vl�η�0� −
ηL�0�
m� is equal to

�2l′ + 1�−d sup
u

{
2
〈 ∑
�x�≤l′

�ηx − ηL�x�
 u
〉
−Dl
m�u�

}
�

In this formula, l′ = l − L, the supremum is carried over all functions u
in L2�νl
m�, �·
 ·� represents the inner product of L2�νl
m� and Dl
m is the
Dirichlet form with respect to the measure νl
m.

Note that
∑

�x�≤l′ ηx −ηL�x� is of O�ld−1L�. Hence, it is of the form
∑

x τxg,
where g is cylindrical and the sum is carried over O�ld−1L� terms.

We now apply the integration by parts formula stated in Lemma 6.2 to
the function g to obtain that the expression inside the supremum is bounded
above by {∑

x

∑
b∈7l

2
〈
@b�x
g�
 ∇bu

〉−Dl
m�u�
}
�(6.6)

Using Schwarz inequality, the bound on @b�x
g� given in Lemma 6.2 and the
above remark, we easily obtain that

lim
l→∞

Vl�η0 − ηL�0�
 m� = 0�

Hence,

lim
l→∞

Vl�h�L� − �hm��L�
m� = 0

uniformly in �0
1�. So we can assume, without loss of generality, that h is in
�m. We claim that under this assumption,

lim
L→∞

Vm�h�L�� = Vm�h��

To prove this, it suffices to check that limL→∞ liml→∞Vl�h̃L
m� = 0. Using
again the variational formula for the finite volume variance and applying the
integration by parts formula stated in Lemma 6.2 to the function h̃L, we obtain
that Vl�h̃L
m� is bounded above by

sup
u
�2l′ + 1�−d

{ ∑
�x�≤l′

∑
b∈7l

2
〈
@b�x
 h̃L�
 ∇bu

〉−Dl
m�u�
}
�(6.7)

In this formula, to keep notation simple we denoted lh̃L
simply by l′. From the

integration by parts lemma, we can derive a bound on @b�x
 h̃L�. This bound
turns out to be insufficient for our purpose. Our function h̃L is very special
and it depends only on ηL�0�.

From the proof in [3], we can check that @b�x
g� = τx@b−x�0
 g�. Moreover,
for an integer q fixed,

@b�0
 g� = 1
2

∑
n	 b∈7qn+1

rb�η�∇b�−L7qn+1
�−1�gn − gn+1�


where

gn = νm
(
g � �ηx�x∈7c

qn

 ηqn�0�)�
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For each n such that 7 ⊂ 7qn , we have �h̃L�n = hn. Hence, @b�x
 h̃L� =
@b�x
h� for all bonds b such that b − x is not in 7L. If b ∈ 7L, we have
�h̃L�n = �h̃L�n+1 for each n such that qn+1 < L. Hence, the sum reduces to n
such that qn+1 ≥ L.

Using the Schwarz inequality, the expression inside the supremum in (6.7)
is bounded above by

�2l′ + 1�−d ∑
�x�≤l′

∑
b∈7l

C �b− x�d+1/2〈@b�x
 h̃L�2〉

+ �2l′ + 1�−d
{ ∑
b∈7l

∑
�x�≤l′

�b− x�−d−1/2

C

〈
rb�η��∇bu�2〉−Dl
m�u�

}
�

Since
∑

�x�≤l′ �b − x�−d−1/2 ≤ const, we can choose C such that the second line
of the previous expression is negative. The first line can be rewritten as

�2l′ + 1�−d ∑
�x�≤l′

∑
b	 �b−x�>L

C �b− x�d+1/2〈@b�x
 h̃L�2〉

+ �2l′ + 1�−d ∑
�x�≤l′

∑
b	 �b−x�≤L

C �b− x�d+1/2〈@b�x
 h̃L�2〉= A1 +A2�

From the previous remarks about the special feature of h̃L and the bound
on the L2 norm of @b�x
h� of the above integration by parts lemma, A1 ≤
C�h
L�, where C�h
L� is a constant depending only on h and L, which goes
to 0 as L goes to ∞. Moreover, from the proof in [3] and the previous remarks,
A2 ≤ f�L�, where f�L� goes to 0 as L goes to ∞. Hence,

lim
L→∞

lim
l→∞

Vl�h̃L
m� = 0

uniformly on �0
1�. We have thus shown that for every cylinder function h,

lim
L→∞

Vm�h�L�� = Vm�hm��

We summarize these last conclusions in the following corollary.

Corollary 6.1. Fix a cylinder function h and a sequence K =K�N� such
that

lim
N→∞

K2+a+1/2

N
= 0

for some constant a > 0. Let ft be the solution of the forward equation (4.2).
There exists an universal constant C1 such that for any positive constant γ,

lim sup
N→∞

{
N1−d

∫ ∑
x

J

(
x

N

)[
τxh− h̃K�ηK�x��]ft dνρ − γN2−d DN�ft�

}

≤ C1γ
−1

∫
J�u�2

Vm�t
 u��hm�du�
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Furthermore,

lim
L→∞

Vm�h�L�� = Vm�hm��

7. Proof of the first entropy bound. Recall the definition of the entropy
HN�t� and the one of the Dirichlet form introduced before Proposition 4.2.

We start by computing the time derivative of HN�t�,

∂tHN�t� =
∫ (

N2L∗
Nft log

ft

ψt

+ N2L∗
Nftψt − ∂tψt ft

ψt

)
dνρ

=
∫ (

N2ftLN log
ft

ψt

− ft

ψt

∂tψt

)
dνρ

= −N2DN�ft�ψt� +
∫ ft

ψt

�N2L∗
N − ∂t�ψt dνρ


(7.1)

where DN�ft�ψt� is given by
∫
ψt

{
LN

ft

ψt

− ft

ψt

LN log
ft

ψt

}
dνρ�

To compute the second term on the right-hand side, we need to know the
equation satisfied by λ. Recall the definition of λ given by (4.1). A simple
computation shows that

∂tλ =
�φ�m�

m�1−m� =
d∑
i=1

φ′�m� ∂2
ui
λ+

d∑
i=1

ϕ′�m��∂ui
λ�2


where φ�m� =m�1+ αm� and ϕ�m� =m�1−m��1+ 2αm�. Hence,

∂tψt

ψt

= ∑
x

�φ�m�
m�1−m��ηx −m��

We turn now to the term N2ψ−1
t L∗

Nψt, which is equal to

N2 ∑
x
 �y�=1

rx
x+y�η�
[
ψt�ηx
x+y�

ψt�η�
− 1

]

=N2 ∑
x
 �y�=1

rx
x+y�η�
[
exp

{
λt

(
x+ y

N

)
− λt

(
x

N

)}
− 1

]
�

Expanding the exponential up to the fourth order, we obtain

N2LN

(∑
z

λt

(
z

N

)
ηt�z�

)
+ 1

2

∑
x
 �y�=1

rx
x+y�η�
[
N

{
λt

(
x+ y

N

)
− λt

(
x

N

)}]2

+ 1
6N

∑
x
 �y�=1

rx
x+y�η�
[
N

{
λt

(
x+ y

N

)
− λt

(
x

N

)}]3

+O�Nd−2��
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In particular, ψ−1
t �N2L∗

N − ∂t�ψt is equal to

∑
x
 i

∂2
ui
λ

(
t


x

N

){
τxhi −φ�m� −φ′�m� �ηx −m�}

+∑
x
 i

(
∂ui

λ

(
t


x

N

))2{
τxgi − ϕ�m� − ϕ′�m� �ηx −m�}

+∑
x
 i

∂2
ui
λ

(
t


x

N

)
φ�m� +

(
∂ui

λ

(
t


x

N

))2

ϕ�m�

− 1
N

∑
x
 i

∂3
ui
λ

(
t


x

N

)
τxvi

+ 1
N

∑
x
 i

∂ui
λ

(
t


x

N

)
∂2
ui
λ

(
t


x

N

)
τxgi +

1
3

(
∂ui

λ

(
t


x

N

))3

τxwi

+O�Nd−2�

(7.2)

with

hi�η� = η0 − αη−eiηei
+ 2αη−eiη0


vi�η� = αη−eiη0


gi�η� = 1
2�r0
 ei + rei
0�


wi�η� = 1
2�r0
 ei − rei
0� = 1

2 W0
 ei �

We easily check that ∂2
ui
λ�t
 x/N�φ�m� + �∂ui

λ�t
 x/N��2ϕ�m� is equal to
−α∂2

ui
m�t
 x/N� − �1 + α� ∂2

ui
�log�1 − m�t
 x/N���. Hence, the third line is

of o�Nd−1� by summation by parts (cf. Conjecture 3.1). By the law of large
numbers, the expected value with respect to the measures ft dνρ of the fourth
and the fifth lines divided by Nd−1 converges to

d∑
i=1

∫
Td

du
{−αm2

t �u� ∂3
ui
λt�u� + ∂ui

λt�u� ∂2
ui
λt�u�ϕ�mt�u��

}



which is bounded by a constant. In turn, to compute the expected value of the
first line, recall the definition given in Section 3 of K, 7l and Vi
 l and the
computations made just after. We showed there that the expected value with
respect to ft dνρ of the first line divided by Nd−1 is equal to

αN1−d ∑
x
 i

∂2
ui
λ

(
t


x

N

) ∫
τxVi
K�η�ft dνρ + oN
B�1�

+ αN1−d ∑
x
 i

∂2
ui
λ

(
t


x

N

) ∫ [
ηK
t �x� −m

(
t


x

N

)]2

ft dνρ�

By Lemma 5.1, there exists γ0 > 0 such that the second line is bounded
above by

γ−1
0 N1−dHN�t� + oN�1��
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We deal with the second line as we have done with the first:

τxgi − ϕ�m� − ϕ′�m� �ηx −m�
= 1

2τx�ηei
− η0� + τxGi − �Gi�m − �Gi�′m �ηx −m��

Here, Gi = gi − 1
2�ηei

+ η0� and < Gi >m= �2α− 1�m2 − 2αm3 represents the
expectation of Gi with respect to νm.

Define V′
iK�η� = Gi�η�−E�Gi�ηK�0��. The term E�Gi�ηK�0�� is easily com-

puted and is equal to

�2α− 1�
[
ηK�0�2 − 1

�7K� − 1
ηK�0��1− ηK�0��

]

− 2α
[
ηK�0�3 + ηK�0�2�ηK�0� − 1�

(
2

�7K� − 2
+ 1
�7K� − 1

)

+ 2
ηK�0��ηK�0� − 1�2

��7K� − 1���7K� − 2�
]
�

Hence, the expected value with respect to ft dνρ of the second line divided by
Nd−1 is equal to

N1−d ∑
x
 i

(
∂ui

λ

(
t


x

N

))2 ∫
τxV

′
i
K�η�ft dνρ + oN
B�1�

+N1−d ∑
x
 i

(
2α− 1− 6αmt

(
x

N

))(
∂ui

λ

(
t


x

N

))2

×
∫ [

ηK�x� −m

(
t


x

N

)]2

ft dνρ

− 2αN1−d ∑
x
 i

(
∂ui

λ

(
t


x

N

))2 ∫ [
ηK�x� −m

(
t


x

N

)]3

ft dνρ

−N−d ∑
x
 i

1
2∂ui

((
∂ui

λ

(
t


x

N

))2)
EN�ηx��

By the law of large numbers, the last line converges to

d∑
i=1

∫
Td

du 1
2�∂ui

λ�t
 u��2 ∂ui
mt�u�


which is bounded by a constant. Moreover, by Lemmas 5.1 and 5.2 there exists
γ′0 > 0 such that the second the third and fourth lines are bounded above by

γ′−1
0 N1−dHN�t� + oN�1��

Keep in mind that the entropy HN�t� vanishes at time 0. We prove at the end
of this section that D̃N�ft� = − ∫

ftLN log ft dνρ and DN�ft�ψt� are not too
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far apart: In fact, there exists a constant C0 = C0�m� such that∣∣∣∣
∫ t0

0
N2−d{D̃N�ft� −DN�ft�ψt�

}
dt

∣∣∣∣ ≤ C0t0�(7.3)

On the other hand, a simple computation relying on the elementary inequality
a log�b/a� ≤ 2

√
a�√b − √

a� shows that DN�ft� ≤ D̃N�ft�. Therefore, from
(7.1), (7.2) and the previous bounds we get that

N1−dHN�t0� +
∫ t0

0
�1/2�N2−dDN�ft�dt

≤ Ct0 +C1

∫ t0

0
N1−dHN�t�dt

+
∫ t0

0
dt

{
αN1−d ∑

x
 i

∫
∂2
ui
λ

(
t


x

N

)
τxVi
K�η�ft dνρ

− �1/4�N2−dDN�ft�
}

+
∫ t0

0
dt

{
N1−d ∑

x
 i

∫ (
∂ui

λ

(
t


x

N

))2

τxV
′
i
K�η�ft dνρ

− �1/4�N2−dDN�ft�
}

for some finite constant C1.
To conclude the proof of the proposition, it remains to show that the two last

terms on the right-hand side are bounded and then apply Gronwall’s lemma.
This follows directly from Corollary 6.1. ✷

We now prove (7.3). The proof relies on the explicit formula of the Dirichlet
forms. Indeed, by definition we have that

N2−d(DN�ft�ψt� − D̃N�ft�
) =N2−d

∫
ft

{
L∗

Nψt

ψt

+LN logψt

}
dνρ�

The expression inside the braces multiplied by N2−d is equal to

N2−d ∑
x
 �y�=1

rx
x+y

[
exp

{
λt

(
x+y

N

)
−λt

(
x

N

)}
−1+

(
λt

(
x+y

N

)
−λt

(
x

N

))]
�

Expanding the exponential, we obtain that this term is equal to

N2−d ∑
x
 �y�=1

rx
x+y

[
2
(
λt

(
x+ y

N

)
− λt

(
x

N

))
+ 1

2

(
λt

(
x+ y

N

)
− λt

(
x

N

))2]

plus a small error of O�N−1�. Computing this term, we can rewrite it as

N−d ∑
x
 ei

2 ∂2
ui
λt

(
x

N

)
τxhi +

(
∂ui

λt

(
x

N

))2

τxgi +O�N−1��

Hence, N2−dψ−1
t L∗

Nψt +LN logψt is of order 1. ✷
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8. Proof of Lemma 3.1. Recall that Rσ is a smooth approximation of R
converging uniformly to R on each compact subset of �0
1�. For a positive
integer l, 1 ≤ i ≤ d and a family �Fi
 1 ≤ i ≤ d� of functions in � , let Wi
 l�η�
be given by

Wi
 l�η� = Vi
 l�η� + 2ηl�0� �2l′ + 1�−d ∑
�y�≤l′

∇ei
η�y�

−
d∑

j=1

Rσ
i
j�ηl�0��

{
�2l′ + 1�−d ∑

�y�≤l′
∇ej

η�y�
}
−LNFi�η��

Here, as in the previous sections, l′ = l − 1 and, for 1 ≤ j ≤ d and y ∈ Z
d,

∇ej
η�y� stands for η�y+ ej� − η�y�.
The time integral on the left-hand side of the statement of Lemma 3.1 is

equal to
∫ T

0
dtEN

[
N1−d ∑

x
 i

∂2
ui
J

(
t


x

N

)
τxWi
K�ηt�

]

+
∫ T

0
dtEN

[
N1−d ∑

x
 i

∂2
ui
J

(
t


x

N

) d∑
j=1

[
Rσ

i
j�ηK
t �x�� − 2ηK

t �x� δi
 j
]

× �2K′ + 1�−d ∑
�y−x�≤K′

∇ej
ηt�y�

]

+
∫ T

0
dtEN

[
N1−d ∑

x
 i

∂2
ui
J

(
t


x

N

)
LNFi�τxηt�

]
= G1 +G2 +G3�

(8.1)

We claim that G3 vanishes in the limit as N ↑ ∞. By the martingale property
we have the identity

∫ T

0
dtEN

[
N−d−1 ∑

x
 i

N2LN

{
∂2
ui
J

(
t


x

N

)
Fi�τxηt�

}]

= −
∫ T

0
dtEN

[
N−d−1 ∑

x
 i

∂t

{
∂2
ui
J

(
t


x

N

)
Fi�τxηt�

}]

+EN

[
N−d−1 ∑

x
 i

∂2
ui
J

(
T


x

N

)
Fi�τxηT�

]

−EN

[
N−d−1 ∑

x
 i

∂2
ui
J

(
0


x

N

)
Fi�τxη0�

]
�

As N ↑ ∞, the right-hand side of the last expression converges to 0.
We turn now to the second integral of (8.1) that we denoted by G2. The

first step in the proof that G2 vanishes as N ↑ ∞ is to replace Rσ
i
j�ηK

t �x��
by Rσ

i
j�m�t
 x/N�� and ηK
t �x� by m�t
 x/N�. This is the content of the next

result.
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Lemma 8.1. For every t > 0, every smooth function J	 �0
 t� ×Td → R and
every smooth function a	 �0
1� → R,

lim
l→∞

lim
N→∞

∫ t

0
dsEN

[
N1−d ∑

x

Js

(
x

N

){
a�ηl�x�� − a

(
ms

(
x

N

))}

× 1
�2l′ + 1�d

∑
�y−x�≤l′

∇ei
η�y�

]
= 0�

Proof. Since ∇ei
η�y� = −η�y��1 − η�y + ei�� + η�y + ei��1 − η�y��, the

expected value appearing in the statement of the lemma may be rewritten as

N1−d ∑
x

Js

(
x

N

) ∫ [
a�ηl

s�x�� − a

(
ms

(
x

N

))]

× 1
�2l′ + 1�d

∑
�y−x�≤l′

η�y��1− η�y+ ei��
{
fs�ηy
y+ei� − fs�η�

}
νρ�dη��

By the Schwarz inequality this expression is bounded above by

N1−d

NA�2l′ + 1�d
∑
x

∑
�y−x�≤l′

J2
s

(
x

N

) ∫ [
a�ηl

s�x�� − a

(
ms

(
x

N

))]2

× η�y��1− η�y+ ei��
{√

fs�ηy
y+ei� +√
fs�η�

}2
νρ�dη�

+ N2−dA
�2l′ + 1�d

∑
x

∑
�y−x�≤l′

∫
η�y��1− η�y+ ei��

× {√
fs�ηy
y+ei� −√

fs�η�
}2
νρ�dη�

for every positive A. Since a is smooth, the first term is bounded by

N−dC�J
a�A−1 ∑
x

EN

[∣∣∣∣ηl
s�x� −m

(
s


x

N

)∣∣∣∣
2]



which converges to 0 as N ↑ ∞ and then l ↑ ∞ by the law of large numbers.
The second term is bounded by A constN2−d DN�fs�. We conclude the proof

by letting A ↓ 0 in the penultimate formula and invoking the content of
Proposition 4.1. ✷

Notice that we may let l depend on N in the statement of the last lemma.
In this case we just need to require that lN �N.

We now return to the proof of the claim that G2 vanishes as N ↑ ∞. Since
Rσ is smooth, we can use summation by parts so that the difference operator
∇ will act on a smooth function. Since N∇ is of order 1, by the law of large
numbers, as N ↑ ∞, the second integral of (8.1) converges to

∑
i
 j

∫ T

0
dt

∫
du∂2

ui
J�t
 u� [Rσ

i
j�m�t
 u�� − 2m�t
 u�δi
 j
]�∂uj

m��t
 u��
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Letting σ ↓ 0, since Rσ converges to R uniformly on compact subsets of �0
1�,
we obtain that this expression converges to the expression appearing on the
right-hand side of the statement of Lemma 3.1.

Finally, by Proposition 4.1 and Corollary 6.1, the limit, as N ↑ ∞, of the
first integral of (8.1) is bounded above by

C1

δ

∑
i

∫ T

0
ds

∫
du �∂2

ui
J�s
 u��2

Vm�s
 u�
(
Wi
m�s
 u�
 σ

)+C2δ


where

Wi
m
σ�η� = �2η�0�η�ei� − η�−ei�η�ei��m + 2m∇ei
η�0�

−∑
j

Rσ
i
 j�m� ∇ej

η�0� −LFi�η��

Here we adopted the notation introduced in Section 6. As σ ↓ 0, the last
integral converges to

C1

δ

∑
i

∫ T

0
ds

∫
du �∂2

ui
J�s
 u��2

Vm�s
 u�
(
Wi
m�s
 u�
0

)
�

Since the solution m of (2.4) is bounded away from 0 and 1, to conclude the
proof of Lemma 3.1, it is enough to prove the following result:

Lemma 8.2. For every δ > 0,

inf
F∈�

sup
δ≤m≤1−δ

Vm�Wi
m
0� = 0

for 1 ≤ i ≤ d.

This concludes the proof of Lemma 3.1. ✷

9. Proof of Proposition 4.2. The proof of this result follows closely the
proof of Proposition 4.1. For this reason we will omit some details.

For 1 ≤ i ≤ d, fix functions Fi�η� and Gi�η� in � and denote �F1
 � � � 
Fd�
and �G1
 � � � 
Gd� by F and G. Recall the definition of ψF
G

t given in Section 4.
We start computing the time derivative of the entropy of ft with respect to
ψ
F
G
t , which is equal to

−N2DN

(
ft

∣∣ψF
G
t

)+ ∫ (
ψ
F
G
t

)−1(
N2L∗

N − ∂t
)
ψ
F
G
t ft dνρ�(9.1)

A careful calculation, taking into account computations already done in the
proof of Proposition 4.1 (Section 7), shows that �ψF
G

t �−1�N2L∗
N − ∂t�ψF
G

t is
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equal to

∑
x
 i

∂2
ui
λ

(
t


x

N

){
τxhi −φ�m� −φ′�m� �ηx −m�}

+∑
x
 i

(
∂ui

λ

(
t


x

N

))2{
τxgi − ϕ�m� − ϕ′�m� �ηx −m�}

+∑
x
 i

∂2
ui
λ

(
t


x

N

)
φ�m� +

(
∂ui

λ

(
t


x

N

))2

ϕ�m�

−∑
x
 i

∂2
ui
λ

(
t


x

N

)
LNFi�τxη�

−∑
x
 i

(
∂ui

λ

(
t


x

N

))2

LNGi�τxη�

+ ∂t log
Z

F
G
t

Zt

− 1
N

∑
x
 i

∂3
ui
λ

(
t


x

N

)
τxvi

+ 1
N

∑
x
 i

∂ui
λ

(
t


x

N

)
∂2
ui
λ

(
t


x

N

)
τxgi +

1
3

(
∂ui

λ

(
t


x

N

))3

τxwi

− 1
N

∑
x
 i

∂ui
λ

(
t


x

N

)
Wx
x+ei∇x
 x+ei

(∑
y
j

∂2
uj
λ

(
t


y

N

)
Fj�τyη�

)

− 1
N

∑
x
 i

∂ui
λ

(
t


x

N

)
Wx
x+ei∇x
 x+ei

(∑
y
j

(
∂uj

λ

(
t


y

N

))2

Gj�τyη�
)

+O�Nd−2��

(9.2)

In this formula Z
F
G
t and Zt are normalizing constants associated to the den-

sities ψF
G
t and ψt, respectively, and ∇x
 x+eif�η� denotes f�ηx
x+ei�−f�η�. We

now compute separately the limit of the time integral of the expected value of
each of these terms divided by Nd−1.

We will deal with the first and second lines of (9.2) as we have done in the
proof of Proposition 4.1. Recall the definition of Vi
 l�η� and V′

i
 l�η�. As shown
in the proof of Proposition 4.1, there exists γ0 > 0 such that the time integral
of the expected value of the first line of (9.2) divided by Nd−1 is bounded
above by

α
∫ t

0
dsN1−d ∑

x
 i

∂2
ui
λs

(
x

N

) ∫
τxVi
K�η�fs dνρ

+ γ0

∫ t

0
dsN1−dHN�fs� + oN
B�1�
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and there exists γ′0 > 0 such that the time integral of the expected value of
the second line of (9.2) divided by Nd−1 is bounded above by

∫ t

0
dsN1−d ∑

x
 i

(
∂ui

λs

(
x

N

))2 ∫
τxV

′
i
K�η�fs dνρ

+ γ′0
∫ t

0
dsN1−dHN�fs� + oN
B�1�

plus a term which converges to

d∑
i=1

∫ t

0
ds

∫
Td

du 1
2�∂ui

λ�t
 u��2 ∂ui
mt�u��

By the integration by parts formula, the third line of (9.2) divided by Nd−1

vanishes in the limit when N ↑ ∞.
The sixth line, integrated in time and divided by Nd−1, is equal to the

difference of

N1−d logEψt

[
exp

{
−N−2 ∑

x
 i

∂2
ui
λt

(
x

N

)
Fi�τxη�

−N−2 ∑
x
 i

(
∂ui

λt

(
x

N

))2

Gi�τxη�
}](9.3)

and a similar term taken at time 0. In this formula, Eψt
represents expecta-

tion with respect to the measure ψt�η�νρ�dη�. Since each Fi
Gi is a cylinder
function and since ψt�η�νρ�dη� is a product measure, by Hölder’s inequality
we obtain that the last expression is bounded above by

N1−d

dl̄d

∑
x
 i

logEψt

[
exp

{
−dl̄d

N2
∂2
ui
λt

(
x

N

)
Fi�τxη�

− dl̄d

N2

(
∂ui

λt

(
x

N

))2

Gi�τxη�
}]

�

Here l is a positive integer such that the support of each cylinder function Fi

and Gi is contained in �−l
 � � � 
 l�d. From the elementary inequalities log�1+
u� ≤ u and eu − 1 ≤ u + 2−1u2e�u�, and since divλ, Fi and Gi are bounded
functions, we obtain that the last sum is bounded above by

−N−d−1 ∑
x
 i

Eψt

[
∂2
ui
λ

(
t


x

N

)
Fi�τxη� +

(
∂ui

λ

(
t


x

N

))2

Gi�τxη�
]

plus a small error of O�N3�. As N ↑ ∞, this expression converges to 0. On
the other hand, by Jensen’s inequality, (9.3) is bounded below by

−N−d−1 ∑
x
 i

Eψt

[
∂2
ui
λ

(
t


x

N

)
Fi�τxη� +

(
∂ui

λ

(
t


x

N

))2

Gi�τxη�
]
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and we have just seen that this expression converges to 0. Therefore, the sixth
line of (9.2), integrated in time and divided by Nd−1, is equal to

N1−d
{

log
Z

F
G
t

Zt

− log
Z

F
G
0

Z0

}



which converges to 0 as N ↑ ∞.
As shown in Section 7, the time integral of the expected value of the seventh

and eighth lines of (9.2) divided by Nd−1 converges as N ↑ ∞ to
d∑
i=1

∫ t

0
ds

∫
Td

du
{−αm2

s�u� ∂3
ui
λs�u� + ∂ui

λs�u� ∂2
ui
λs�u�ϕ�ms�u��

}
�

Furthermore, by the law of large numbers, the time integral of the expected
value of the ninth line of (9.2) divided by Nd−1 converges as N ↑ ∞ to

−∑
i
 j

∫ t

0
ds

∫
du∂ui

λ�s
 u� ∂2
uj
λ�s
 u� × νm�s
 u�

[
W0
 ei∇0
 eiHFj

]



where W0
 ei = rei
0 − r0
 ei is the current between 0 and ei and for a cylinder
function I and HI represents the formal infinite sum

HI�η� =
∑
y∈Z

d

I�τyη��

We have also used here the smoothness of F, λ and m. The last expression is
equal to

2
∑
i
 j

∫ t

0
ds

∫
du∂ui

λ�s
 u� ∂2
uj
λ�s
 u��W0
 ei 
Fj�ms�u�
0


where

�W0
 ei 
 f�m
0 =
∑
x

�W0
 ei 
 τxf�m�

With the same arguments, the time integral of the expected value of the tenth
line of (9.2) divided by Nd−1 converges as N ↑ ∞ to

2
∑
i
 j

∫ t

0
ds

∫
du∂ui

λ�s
 u��∂uj
λ�s
 u��2�W0
 ei 
Gj�ms�u�
0�

Since the entropy N1−dHN�fs� is bounded by N1−dH�fs �ψF
G
s � + oN�1� (cf.

proof of Proposition 4.3), up to this point we have shown that

N1−dH
(
ft

∣∣ψF
G
t

)+ ∫ t

0
dsN2−dDN

(
fs

∣∣ψF
G
s

)
is bounded above by

N1−dH
(
f0

∣∣ψF
G
0

)+ �γ0 + γ′0�
∫ t

0
dsN1−dH

(
fs

∣∣ψF
G
s

)

+
∫ t

0
dsEN

[
N1−d ∑

x
 i

∂2
ui
λ

(
s


x

N

){
ατxVi
K�ηs� −LNFi�τxηs�

}]
(9.4)
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+
∫ t

0
dsEN

[
N1−d ∑

x
 i

(
∂ui

λ

(
s


x

N

))2{
τxV

′
i
K�ηs� −LNGi�τxηs�

}]

+
∫ t

0
ds

∫
du

∑
i

∂2
ui
λ�s
 u�2αms�u� ∂ui

ms�u�

−
∫ t

0
ds

∫
du

∑
i

(
∂ui

λ

(
s


x

N

))2

∂ui
ms�u���2α−1�ms�u�−3αms�u�2�

+2
∑
i
 j

∫ t

0
ds

∫
du∂ui

λ�s
 u� ∂2
uj
λ�s
 u� �W0
 ei 
Fj�ms�u�
0

+2
∑
i
 j

∫ t

0
ds

∫
du∂ui

λ�s
 u��∂uj
λ�s
 u��2 �W0
 ei 
Gj�ms�u�
0

plus a small error of oN�1�.
We now concentrate our attention on the second, fourth and sixth lines of

this sum. Recall that Rσ is a smooth approximation of the coefficient R. Let
Wi
K�η� be the cylinder function defined by

Wi
K�η� = Vi
K�η� + 2ηK�0��K̄′�−d ∑
�y�≤K′

∇ei
η�y�

−
d∑

j=1

Rσ
i
j�ηK�0��

{
�K̄′�−d ∑

�y�≤K′
∇ej

η�y�
}
− 2
α
LNFi�η��

In this formula, K′ stands for K − 1. Notice also that to reduce notation we
omitted the dependence of Wi
K on σ and F.

The second line of (9.4) is equal to

α
∫ t

0
dsEN

[
N1−d ∑

x
 i

∂2
ui
λs

(
x

N

)
τxWi
K�ηs�

]

+ α
∫ t

0
dsEN

[
N1−d ∑

x
 i
 j

∂2
ui
λs

(
x

N

)
Rσ

i
j�ηK
s �x���K̄′�−d ∑

�y−x�≤K′
∇ej

ηs�y�
]

− 2α
∫ t

0
dsEN

[
N1−d ∑

x
 i

∂2
ui
λs

(
x

N

)
ηK
s �x��K̄′�−d ∑

�y−x�≤K′
∇ej

ηs�y�
]

+
∫ t

0
dsEN

[
N1−d ∑

x
 i

∂2
ui
λs

(
x

N

)
τxLNFi�ηs�

]
�

We have seen in last section that the second line of this expression converges,
as N ↑ ∞, to

α
∑
i
 j

∫ t

0
ds

∫
du∂2

ui
λ�s
 u�Rσ

i
j�m�s
 u�� ∂uj
m�s
 u��

By similar reasoning, the third line converges to

−2α
∫ t

0
ds

∫
du

∑
i

∂2
ui
λ�s
 u� ms�u� ∂ui

ms�u��
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Notice that this term cancels the fourth line of (9.4). The last line converges,
as N ↑ ∞, to 0.

Furthermore, from Corollary 6.1 and Proposition 4.1, the limit as N ↑ ∞
of the first line is bounded above by

α

δ

∑
i

∫ t

0
ds

∫
du �∂2

ui
λ�s
 u��2

Vm�s
 u��W∗
i
m�s
 u�
 σ� +C0tδ

for some universal constant C0 and where W∗
i
m
σ�η� is given by

W∗
i
m
σ�η� = �2η�0�η�−ei� − η�−ei�η�ei��m + 2m∇ei

η�0�

−
d∑

j=1

Rσ
i
j�m� ∇ej

η�0� − 2
α
LFi�η��

Define W∗
i
m
0�η� to be the cylinder function W∗

i
m
σ with Ri
j�m� replacing
Rσ

i
j�m� in the above formula. From the variational formula for Vm, the tri-
angular inequality and the properties of Vm stated in Section 10, we obtain
that for every 0 ≤m ≤ 1,

Vm�W∗
i
m
σ� ≤ 2 Vm�W∗

i
m
0�

+ 2
d∑

j
 k=1

[
Rσ

i
j�m� −Ri
j�m�]

× [
Rσ

i
k�m� −Ri
k�m�]Vm

(∇ej
η0
∇ek

η0
)
�

Since Rσ converges pointwise to R, letting σ ↓ 0, one obtains that the sum of
the second, fourth and sixth lines of (9.4) is bounded above by

α

δ

∑
i

∫ t

0
ds

∫
du �∂2

ui
λ�s
 u��2

Vm�s
 u�
(
W∗

i
m�s
 u�
0

)+C0 δt

+ α
∑
i
 j

∫ t

0
ds

∫
du∂2

ui
λ�s
 u�Ri
j�m�s
 u���∂uj

m��s
 u�

+ 2
∑
i
 j

∫ t

0
ds

∫
du∂ui

λ�s
 u� ∂2
uj
λ�s
 u� �W0
 ei 
Fj�ms�u�
0

for every positive δ.
We turn now to the third, fifth and seventh lines of (9.4). Let W′

i
K�η� be
the cylinder function defined by

W′
i
K�η� = V′

i
K�η� −
[�2α− 1�ηK�0� − 3αηK�0�2]�K̄′�−d ∑

�y�≤K′
∇ei

η�y�

−
d∑

j=1

Si
j�ηK�0��
{
�K̄′�−d ∑

�y�≤K′
∇ej

η�y�
}
− 2LNGi�η��

The choice of Sij will be explained later.
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By similar arguments, the third, fifth and seventh lines of (9.4) are bounded
by

1
δ

∑
i

∫ t

0
ds

∫
du �∂ui

λ�s
 u��4
Vm�s
 u�

(
W′∗

i
m�s
 u�
)+Cδt

+∑
i
 j

∫ t

0
ds

∫
du �∂ui

λ�s
 u��2Si
j�m�s
 u�� ∂uj
m�s
 u�

+ 2
∑
i
 j

∫ t

0
ds

∫
du∂ui

λ�s
 u��∂uj
λ�s
 u��2 �W0
 ei 
Gj�ms�u�
0

for every positive δ. Here

W′∗
i
m = [ 1

2�r0
 ei�η� + rei
0�η� − ηei
− η0�

]m − [�2α− 1�m− 3αm2]∇ei
η�0�

−∑
j

Sij�m� ∇ej
η�0� − 2LGi�η��

Using the two following lemmas, Gronwall’s inequality and letting δ ↓ 0, we
conclude the proof of the proposition. ✷

Lemma 9.1. For each 1 ≤ i ≤ d, there exists a sequence of functions Fi
k�η�

in � such that

lim
k→∞

sup
δ0≤m≤1−δ0

Vm

(
Zm
i�η� −

∑
j

Ri
j�m� ∇ej
η�0� −LFi

k�η�
) = 0
(9.5)

where

Zm
i�η� = �2η�0�η�−ei� − η�−ei�η�ei��m + 2m∇ei
η�0��

Moreover,

lim
k→∞

�W0
 el 
F
i
k�m
0 = −Ril�m�m �1−m��

This lemma is proved in Section 10.

Lemma 9.2. For each 1 ≤ i ≤ d, there exists a sequence of functions Gi
k�η�

in � such that

lim
k→∞

sup
δ0≤m≤1−δ0

Vm

(
Z′

m
 i�η� −
∑
j

Sij�m� ∇ej
η�0� −LGi

k

)
= 0


where

Z′
m
 i�η� =

[ 1
2�r0
 ei�η� + rei
0�η� − ηei

− η0�
]m − [�2α− 1�m− 3αm2]∇ei

η�0��
Moreover,

lim
k→∞

�W0
 el 
G
i
k�m
0 = −Sil�m�m �1−m��

The proof of this lemma is omitted since it is similar to the proof of
Lemma 9.1.
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10. Properties of the coefficient R. In this section we state the prop-
erties of the coefficient matrix R used in the previous sections.

Recall the definitions of � and �m. For each function g in �m we define
Vm�g� by

Vm�g� = sup
β∈R

d

h∈�

{
2�g
h�m
0 + 2

∑
i

βiti�g� − !β!2�r0
 e�m��m

−∑
i

�r0
 ei�m��∇0eiHh�2�m + 2
∑
i

βi�W0
 ei 
 h�m
0

}
�

In this formula, for 1 ≤ i ≤ d, g ∈ �m and h ∈ � , ti�g� and �g
h�m
0 are
given by

ti�g� =
∑
x

�g
xiη�x��m
 �g
h�m
0 =
∑
x

�g
 τxh�m


and �·
 ·�m denotes the inner product in L2�νm�. By Lemma 6.1, the finite
volume variance converges to the infinite volume variance uniformly in
�0
1�	 Vm�g� = liml→∞Vl�g
m�, where Vl�g
m� is defined by (6.2).

From the definition of Vm we may introduce the bilinear form Vm�·
 ·� on
�m by polarization

Vm�g
h� = 1
4

{
Vm�g + h� − Vm�g − h�}�

Denote by �m the closure of �m with respect to Vm and by �m the kernel
of Vm. Then ��m/�m


Vm�, which we denote by �m, is a Hilbert space.
We easily prove that for 1 ≤ i ≤ d and g
h ∈ �m:

1. Vm�h
Lg� = −�g
h�m
0.
2. Vm�h
W0
 ei� = −ti�h�.
3. Vm�∇ei

η0
Lg� = 0.
4. Vm�∇ei

η0
W0
 ej� = −m�1−m�δij.
5. Vm�W0
 ei 
W0
 ej� =m�1−m��1+ 2αm�δij.

6. Vm

( ∑
i

βiW0
 ei +Lh

)
= !β!2�r0
 e�m +∑

i

�r0
 ei�∇0
 eiHh�2�m

− 2
∑
i

βi�W0
 ei 
 h�m
0�

Hence,

Vm�g� = sup
β∈R

d

h∈�

{
−2Vm�g
Lh� − 2

∑
i

βiVm�g
W0
 ei�

− Vm

( ∑
i

βiW0
 ei +Lh

)}
�

We deduce the following theorem and corollaries.

Theorem 10.1. �m = L� ⊕ �W0
 ei�1≤i≤d�



1908 E. JANVRESSE

Corollary 10.1. For each g in �m, there exists a unique vector β in R
d

such that

g −∑
i

βiW0
 ei ∈ L� in �m�

Corollary 10.2. For each g in �m, there exists a unique vector β in R
d

such that

g −∑
i

βi ∇ei
η0 ∈ L� in �m�

From the above corollary, there exists a unique matrix A�m� such that

W0
 ei −
∑
j

Ai
j�m� ∇ej
η�0� ∈ L� for 1 ≤ i ≤ d�(10.1)

Hence, for all vectors α ∈ R
d,

inf
g∈�

Vm

( ∑
i

αiW0
 ei −
∑
i
 j

αiAi
j∇ej
η�0� −Lg

)
= 0�

Using the fourth property of Vm mentioned at the beginning of the section,
we can rewrite the last equality as

inf
g∈�

Vm

( ∑
i

αiW0
 ei −Lg

)
+ αtABAtα+ 2m�1−m�αtAα = 0


where Bj
k = Vm�∇ej
η�0�
∇ek

η�0��.
By formula (10.1), Vm�W0
 ei 
∇ek

η�0�� = ∑
j Ai
jVm�∇ej

η�0�
∇ek
η�0��, that

is, AB = −m�1−m�I. Thus,

αtAα = −1
m�1−m� inf

g∈�
Vm

( ∑
i

αiW0
 ei −Lg

)
�

For 1 ≤ i ≤ d, let Zm
i�η� be the cylinder function given by

Zm
i�η� = �2η�0�η�−ei� − η�−ei�η�ei��m + 2m∇ei
η�0��

Notice that Vm�Zm
i�η�
W0
 ek� = 0. There exists a unique matrix R�m� such
that

Zm
i�η� −
∑
j

Ri
j�m� ∇ej
η�0� ∈ L� �(10.2)

R�m� is the coefficient of (2.5) and (2.6). Hence,

Vm

(
Zm
i�η�
∇ek

η�0�) = ∑
j

Ri
j�m�Vm

(∇ej
η�0�
∇ek

η�0�) = �RB�i
 k�

We obtain a formula for R:

R = −1
m�1−m�Vm

(
Zm
i�η�
∇ek

η�0�)A�

The following proofs are similar to those in [6].
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Lemma 10.1. R is continuous in �0
1�.

The following functional space plays a key role in the proof of the continuity
of the coefficient R. Denote by � the space of functions F	 �0
1�×�0
1�Z

d → R

such that:

1. For each ρ ∈ �0
1�, F�ρ
 ·� is a cylinder function with uniform support:
There exists a finite set 7 such that for each ρ ∈ �0
1�, the support of
F�ρ
 ·� is contained in 7.

2. For each configuration η, F�·
 η� is a smooth function.
3. For each density ρ, the cylinder function F�ρ
 ·� has mean zero with respect

to all canonical measure νK
m:

νK
m�F�ρ
 ·�� = 0 for some K > 0 and all m�

Proof of Lemma 10�1. Fix σ > 0. Since for each m ∈ �0
1�, Zm
i�η� −∑
j Ri
j�m�∇ej

η�0� ∈ L� , there exist cylinder functions Hi�m
η� in � such
that

Vm

(
Zm
i�η� −

∑
j

Ri
j�m� ∇ej
η�0� −LHi�m
η�

)
≤ σ�

Since for each G ∈ �m, Vm�G�m
 ·�� is continuous in m, for each m0 ∈ �0
1�,
there exists a neighborhood Nm0

of m0 such that for m in Nm0
,

Vm

(
Zm
i�η� −

∑
j

Ri
j�m0� ∇ej
η�0� −LHi�m0
 η�

)
≤ 2σ�

The family �Nm0
�m0∈�0
1� constitutes an open covering of �0
1�. We may there-

fore find a finite open subcovering and, by interpolation, construct continuous
functions Rσ

ij�m� and a function Hσ
i �m
η� in � such that

Vm

(
Zm
i�η� −

∑
j

Rσ
i
 j�m� ∇ej

η�0� −LHσ
i �m
η�

)
≤ 4σ�

From the triangle inequality, we obtain

Vm

(
−∑

j

�Rσ
i
j�m� −Ri
j�m�� ∇ej

η�0�
)

≤ Vm

(
−∑

j

�Rσ
i
j�m� −Ri
j�m�� ∇ej

η�0� −L�Hσ
i �m
η� −Hi�m
η��

)

≤ 2Vm

(
Zm
i�η� −

∑
j

Rσ
i
 j�m� ∇ej

η�0� −LHσ
i �m
η�

)

+ 2Vm

(
Zm
i�η� −

∑
j

Ri
j�m� ∇ej
η�0� −LHi�m
η�

)

≤ 2�4σ� + 2σ = 10σ�
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Since

Vm

(
−∑

j

�Rσ
i
j�m�−Ri
j�m�� ∇ej

η�0�
W0
 el

)
=�Rσ

i
 l�m�−Ri
 l�m��m�1−m�


by the Schwarz inequality and the previous bound, we obtain

∣∣Rσ
i
 l�m� −Ri
 l�m�∣∣ ≤

√
10σVm�W0
 el�
m�1−m� =

(
10�1+ 2αm�
m�1−m�

)1/2√
σ�

This expression is uniformly bounded by C
√
σ on each compact subset of �0
1�.

This proves that Rij can be uniformly approximated by smooth functions on
each compact subset of �0
1� and is therefore continuous in �0
1�. ✷

Proof of Lemma 9�1. Fix 1 ≤ i ≤ d and ε > 0. From the proof above, we
know there exist H�m
η� ∈ � such that

sup
δ≤m≤1−δ

Vm

(
Zm
i�η� −

∑
j

Ri
j�m� ∇ej
η�0� −LHi�m
η�

)
≤ ε�

Fix a positive integer l and set hi�η� = Hi�ηl�0�
 η�. We defined h in such a
way that h ∈ � . By the triangle inequality,

sup
δ≤m≤1−δ

Vm

(
Zm
i�η� −

∑
j

Ri
j�m� ∇ej
η�0� −Lhi�η�

)

≤ 2ε+ 2 sup
δ≤m≤1−δ

Vm

(
Lhi�η� −LHi�m
η�)�

(10.3)

By the sixth property of the bilinear form Vm�·
 ·� with β = 0,

Vm

(
Lhi −LHi�m
η�)

=
d∑
i=1

〈
r0
 ei

(
∇0
 ei

∑
x

τx
[
Hi�ηl�0�
 η� −Hi�m
η�]

)2〉
m

�

Since ∇0
 eiτx = τx∇−x
−x+ei , the previous expression is equal to

d∑
i=1

〈(√
r0
 ei

∑
x

τ−x∇x
 x+ei
[
Hi�ηl�0�
 η� −Hi�m
η�]

)2〉
m




which can be rewritten, since νm is translation invariant, as

d∑
i=1

〈( ∑
x

√
rx
x+ei∇x
 x+ei

[
Hi�ηl�0�
 η� −Hi�m
η�]

)2〉
m

�

Since Hi belongs to � , there exists a cube 7 such that we can restrict the
sum above x to x ∈ 7. The error term comes from jumps of a particle from 7l
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to 7c
l or from jumps in the opposite direction. Since H ∈ � , the error term

is of O�l−1�. By the Schwarz inequality and since for every bond b and every
L2�νm� function g, ��∇bg�2�m ≤ 4�g2�m, we obtain that the second term on
the right-hand side of (10.3) is bounded above by

sup
δ≤m≤1−δ

{
C�H�〈[Hi�ηl�0�
 η� −Hi�m
η�]2〉

m
+O�l−2�}


which vanishes as l goes to ∞ by the law of large number.
This concludes the first part of the lemma: we proved there exists a sequence

of functions hi
k�η� in � such that

lim
k→∞

sup
δ0≤m≤1−δ0

Vm

(
Zm
i�η� −

∑
j

Ri
j�m�∇ej
η�0� −Lhi

k�η�
)
= 0�

By the Schwarz inequality,∣∣∣∣Vm

(
Zm
i�η� −

∑
j

Ri
j�m�∇ej
η�0� −Lhk

i �η�
W0
 el

)∣∣∣∣


which is equal to ∣∣∣∣
∑
j

Rij�m�m�1−m�δjl − Vm

(
Lhk

i 
W0
 el

)∣∣∣∣
because Vm�Zm
i�η�
W0
 el� = 0 is bounded above by ok�1�

√
Vm�W0
 el�. Hence,

lim
k→∞

�W0
 el 
 h
k
i �m
0 = −Ril�m�m �1−m�� ✷
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