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FINITE APPROXIMATIONS TO THE CRITICAL
REVERSIBLE NEAREST PARTICLE SYSTEM

BY THOMAS MOUNTFORD1 AND TED SWEET 2

University of California, Los Angeles

Approximating a critical attractive reversible nearest particle system
on a finite set from above is not difficult, but approximating it from below
is less trivial, as the empty configuration is invariant. We develop a finite
state Markov chain that deals with this issue. The rate of convergence for
this chain is discovered through a mixing inequality in Jerrum and
Sinclair; an application of that spectral gap bound in this case requires
the use of ‘‘randomized paths from state to state.’’ For applications, we
prove distributional results for semiinfinite and infinite critical RNPS.

1. Introduction. We consider attractive reversible critical Feller near-
Ž .est particle systems NPS . Nearest particle systems were introduced by

Ž . � 4ZSpitzer 1977 . They are spin systems on 0, 1 with transitions as follows:
Ž . Ž .if � x � 1�that is, if site x is occupied�then the flip rate c � , x is 1; if

Ž .� x � 0�that is, if site x is vacant�then

c � , x � f ll , r ,Ž . Ž .xx

where
ll � x � sup y � x : � y � 1� 4Ž .x

and
r � inf y � x : � y � 1 � x .� 4Ž .x

We are interested in processes that are reversible, attractive, Feller and
critical. We now explain what each of these properties requires of the flip rate

Ž .function f ll , r .
Ž .Reversible. A NPS is called reversible if f ll , r is of the form

� ll � rŽ . Ž .
1.1 f ll , r �Ž . Ž .

� ll � rŽ .
Ž . Ž . Ž .with f �, r � f r, � � � r . Notice that if our initial configuration � has0
Ž . Ž . Ž . Ž .Ý � x � Ý � x � �, then f �, r and f r, � are irrelevant andx � 0 0 x � 0 0

Ž . Ž .requiring the reversibility condition 1.1 does not fully specify � � .
Ž .Attractive. It is easily seen that our process will be attractive iff � n �

Ž .� n � 1 is a decreasing function on n and it decreases to a limit greater
than or equal to one.
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Ž � 4ZFeller. For an attractive reversible NPS to be Feller for 0, 1 equipped
.with the usual product topology , it is necessary and sufficient that

� nŽ .
� 1.

� n � 1Ž .
Critical. Under the above conditions, there exists a nontrivial stationary

Ž . Ž .distribution for the NPS if and only if either Ý � n � 1 or Ý � n � 1n�1 n�1
Ž .and Ý n� n � �. In the former case, the NPS is called supercritical, whilen�1

in the latter case, it is called critical. In the critical case, the upper invariant
� 4Zmeasure is the renewal measure on 0, 1 associated with the probability

density � and will be denoted by � .�

Ž .Detailed discussion of the above issues can be found in Liggett 1985 . To
� 4Zsummarize, we will consider spin systems on 0, 1 with the following flip

Ž . Ž . Ž .rates: if � x � 1, then c � , x � 1; if � x � 0, then

� ll � rŽ .Ž . xxc � , x � ,Ž .
� ll � rŽ .xx

where
� nŽ .

1.2 � 1,Ž .
� n � 1Ž .

�

1.3 � n � 1Ž . Ž .Ý
n�1

and
�

n� n � �.Ž .Ý
n�1

In addition, we will impose a strong regularity condition on � : there exists
Ž .an increasing function L n such that

n � nŽ .
1.4 lim � 1 � 1Ž . ž /L n � n � 1n�� Ž . Ž .

and
L 1 � 5.Ž .

Ž . c�1 Ž .The condition L 1 � c implies the moment condition Ýn � n � �. Notice
Ž . Ž .that requiring such a function L n with L 1 � c is the same as requiring

Ž . Ž . Ž .such an L n with lim L n � c. We denote the limit of L n by L.n��

Ž .Condition 1.4 is by no means the weakest to allow our arguments to work,
Ž . p Ž .but it is natural, as it includes the cases � n � ��n for large enough p ,

and it allows a clear exposition of the underlying ideas.
Ž .It is natural to consider critical NPS as Mountford 1997a provides a

complete convergence theorem for supercritical reversible attractive NPS,
Ž .while Mountford 1995 shows that subcritical attractive reversible NPS

converge exponentially in distribution to 	 , where 0 is the null configuration0
Ž .given by 0 i � 0. For the critical case, long term distributional behavior was
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Ž .unresolved in the case where � is Bernoulli p for small p, for instance. Our0
Žfinite approximations allow one to prove under strong moment conditions

. � Ž .�on � that the limiting distribution is � in that case Mountford 1997b .�

Ž .In considering a NPS � on the a site interval �n, n , one can make at
simple comparison with a finite state Markov chain Zn whose initial state ist
given by

� �1, if x � n ,nZ x �Ž .0 ½ � �� x , if x � nŽ .0

and where the evolution proceeds according to the Harris construction of � t
nŽ . � �subject to the values of Z x remaining fixed through time for x � n. Byt

the Harris construction of the process, we mean the following: each integer
has a Poisson process of rate 1 corresponding to deaths at that site if a
particle is there at the time. Each integer has an independent Poisson process

Ž .2 Ž .of rate � 1 �� 2 �the maximum flip rate�or of rate 1, whichever is larger;
each integer also has an independent sequence of uniform i.i.d. r.v.’s over
� �0, 1 . If, at the ith point of the Poisson process, the site is vacant and the ith
uniform r.v. is less than the ratio between the flip rate at that site and the
Poisson process rate, the site becomes occupied. By attractiveness, the pro-

n �cesses are coupled in this standard construction so that � � Z in thet t
Ž . nŽ . �pointwise sense that � x � Z x for all x for all t.t t

For a fixed finite interval I we can take n so large that the stationary
distribution of Zn, restricted to I, is as close to � as required. The natural�

question ‘‘For fixed n, how large does t have to be so that Zn has distributiont
close to its stationary distribution?’’ was essentially answered in Sweet
Ž .1997 .

To meaningfully approximate � on I from below by a finite state NPS ist
not so easy since 	 is invariant. To create such a finite system, we must keep0
the nearest particles to points in the interval inside the interval. To do this,
we fix particles at �n and n. In creating Zn, this is all that is done. It has the
effect of ‘‘moving the nearest particle closer’’ which leads to an upper approxi-
mation. What we would like to do here is ‘‘move the nearest particle further
away’’ which would lead to a lower approximation. To do this, we ignore
the particles near the boundary on the inside of the interval. That is, while

Ž 
 .we ignore deaths on �n and n, we also ignore births on �n, �n � n 	
Ž 
 .n � n , n .

�Specifically, the approximation that we explore here is the following for
Ž .� Ž . Ž .I 
 �n�2, n�2 : fix 
 � 0, 1�2 we will discuss this parameter shortly

and let X n be given by:

nŽ . � �1. X x � 1 for all x � n and all t � 0;t
nŽ . Ž 
 . Ž 
 .2. X x � 0 for all x � �n, �n � n 	 n � n , n and all t � 0;t
nŽ . Ž . � 
 
 �3. X x � � x for all x � �n � n , n � n ;0 0
n � 
 
 �4. X evolves on �n � n , n � n according to the Harris construction oft

� for t � 0.t
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n Ž n.At times, it will be convenient to regard X or Z as a process on
� 4�� n, n �0, 1 , which we will do without further comment. Obviously, we cannot

n � Ž .�make the global statement X � � on �n, n for all t because the flipt t
n � �rates become better for X if, for example, � becomes empty on �n, n .t

However, attractiveness does tell us that the processes are coupled so that

X n � � on It

for t � � where

 
� � inf t : � � 0 on either �n, �n � n or n � n , n .� 4. Žt

To see this, simply notice that no jump before time � can make a nearest
particle to a point in I closer under X n than under � . In other words, fort t
t � � , the process does exactly what we wanted: it ‘‘moves the nearest

Ž 
 � Žparticle’’ of a point in I to n from somewhere inside n � n , n if the
.nearest particle was there . Once there are no particles to ‘‘move,’’ which

happens at time � , this breaks down.
Of course, if X n gives away too much, then it will not be very useful.

Detailed balance tells us that the invariant measure is simply renewal
measure conditioned on the particular occupancies and vacancies that have
been enforced. If 
 is too large, then we are conditioning on too many
vacancies to expect this invariant measure to look like the � near the origin.�

Specifically, if 
 � 1�2, then the conditioning may persuade the renewal
measure to simply makes one very big jump from �n to n rather than two
big jumps of size at least n
. We choose 
 � 1�2 to avoid this problem.

So, the key now is whether the coupling holds long enough, that is,
whether � is big enough, for X n to serve its purpose. While we need 
 � 1�2
for the stationary measure to be useful, we want 
 as large as possible so
that the coupling will hold for as long as possible. Take � � 0 and let

 � 1�2 � � . In the proofs, we will choose � as small as is necessary.

n ˜nWe will actually require an auxiliary chain to analyze X . Let X be a
� 4�� n, n � � 4 Žsimilar Markov chain on the state space 0, 1 � 0 where in a minor

. Ž . Ž .abuse of notation the null configuration 0 here is given by 0 i � 	 i �n
˜n nŽ .	 i . Then X has identical flip rates to X subject only to the configura-�n

tion 0 being forbidden. This process is introduced because it has good spectral
Ž . Ž .gap properties Proposition 3.1 , which is vital for a temporary lower ap-

proximation to be useful. However, X n does not behave as well; it takes a
long time to leave 0 since the sites that would flip relatively quickly are
forced to remain vacant.

Before ending the section with an outline of subsequent sections, we make
a couple of definitions. Given a configuration  and site x, we let  x be the

xŽ . xŽ .configuration obtained by changing the value of  at x:  y �  y for
xŽ . Ž . Ž . Ž .y � x while  x � 1 �  x . We write f n  g n iff there exists a con-

Ž . Ž . Ž . Ž .stant k such that f n � kg n for all n. We define f n � g n similarly.
Ž . Ž . Ž . Ž .Finally, we write f � g iff f n  g n and f n � g n .

The next section contains a couple of lemmas that relate the finite state
processes to the particle system on Z. Section 3 contains the main result of
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˜n �2the paper; we will prove that the spectral gap for X is at least of order n .
The given order is the correct one; the proof of the converse�the gap is at

�2 Ž .most of order n �is in Sweet 1997 . This means that if the distribution of
˜n ˜n n

2� �X is not too extreme, then X should be very close in distribution to � ,˜0 n
Ž .which is itself by Proposition 2.3 in Section 2 close to � . In Section 4, we�

˜n n njustify the use of X instead of X by establishing that the chance of Xt
2�� Ž .hitting the null configuration 0 in time n starting from stationary is very

small. This and the preceding work will allow us to conclude that X 2� � isn
close to � in distribution when starting from a ‘‘reasonable’’ configuration.�

The last two sections each contain an application of this finite state
approximation and its rate of convergence. It is here that we state results

Ždealing with how long the coupling will hold i.e., lower bounds for � in
.probability . We wait until the application sections to do this because the

particular manner of dealing with this issue will depend on the application at
hand. In Section 5 we use the preceding results to prove the following result.

THEOREM 1.1. Let � be a critical attractive reversible Feller NPS satisfy-t
Ž . Ž . Ž .ing 1.4 with L 1 � 6. Let � be distributed by renewal measure with � on0

Ž � � Ž . � Ž .��, 0 with � 0 � 1 and let � � 0 on 0, � . Then, as t � �,0 0

1 1� � 	 � � .t D 0 �2 2

Ž . ŽThis result was conjectured by Schinazi 1992 though we have made
.large assumptions on the regularity of � and the corresponding moments .

Ž . ŽWith � distributed as in the theorem, Schinazi 1992 proved that if � has0
.a finite second moment the rightmost particle of the process started from � ,0

renewal measure on the half line, has Brownian fluctuations; that is, r 2 �NN t
� Ž . 4converges in distribution to a Brownian motion, where r � sup x: � x � 1 .s s

From this fact it is clear that any limiting measure � of � must bet
1 1stochastically less than 	 � � . The difficulty lies in establishing that if0 �2 2

r � 0 then � looks like � around the origin. Since renewal measure on thet t �

�half line is invariant for the process seen from the right edge Schinazi
Ž .� � 4 Ž . Ž1992 , attractiveness implies that on r � 0 the configuration � x � � xt t t

.� r should be at least renewal measure. However, we are interested in thet
behavior of � around the origin, that is, the configuration � shifted at t
random amount relative to r . To put this another way, we are interested int

Ž� given that r � x; this conditioning event is no longer increasing andt t
.hence the attractiveness argument does not apply .

A second use in applying our comparison methods is to establish that for
� -almost all � , � � � . In Section 6, we sketch a proof of the following.� 0 t D �

THEOREM 1.2. Let � be a critical, reversible, attractive, Feller NPSt
Ž . Ž . Ž .satisfying 1.4 with L 1 � 5. Then for almost all � with respect to � ,0 �

S t � � � .Ž . 0 D �

Ž .where S t is the semigroup for the process.
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Ž . �1 t Ž .If, instead of S t � , we considered t H S s � ds, then soft ergodic0 0 0
arguments yield the desired convergence without the added conditions on �.

Ž .Theorem 1.2 is similar to Theorem 1.13 of Liggett 1991 . Our moment
conditions are weaker and we do not require that � be totally positive of
order 3, but apart from this we require more regularity for �.

2. The finite processes. In this section we present some elementary
calculations concerning the stationary distributions � n and � n for X n and˜
˜nX , respectively. First we require a few definitions. Given a sequence of

Ž . Ž .�-renewal points 0 � z � z � z � ��� , let A i � P � m, z � i . It is well0 1 2 m
Ž . �1 Ž Ž ..�1 Ž .known that lim A i � � � Ýn� n and therefore that sup A i � 1i��

Ž .and inf A i � 0. Let
�

� m � � i .Ž . Ž .Ý
i�m

This notation is useful since

�1� �� � 0 � 1, � x � 0 for x � 1, m � 1 � � � m .Ž . Ž . Ž .Ž .�

Notice that if L � �, then

2.1 m�Ž L�	 .  � m  m�Ž L�	 .Ž . Ž .
and

�Ž L�	�1. �ŽL�	�1.2.2 m  � m  mŽ . Ž .
for any 	 � 0, while if L � �, then

2.3 � m  m�MŽ . Ž .
for any M � 0.

As noted in the Introduction, a configuration � can be identified with its
occupied sites. In the following, given a configuration � , �n � x � x � ���0 1
� x � n will denote the occupied sites of � .r

LEMMA 2.1.
r1

n� � � � x � xŽ . Ž .Ł i i�1C nŽ . i�1


 2 nŽ . Ž . Ž .where C n � � n . A similar statement holds for � � .˜

Ž Ž ..�1 r Ž .PROOF. That C n Ł � x � x is a stationary distributioni�1 i i�1
� Ž . �where C n is the normalizing constant follows simply from the detailed

Ž .balance equations. It only remains to show that normalizing constant C n is
of the order claimed:

C n � � 2n � � ll � n A r � ll � n � r .Ž . Ž . Ž . Ž . Ž .Ý

 
�n�n � ll�r�n�n
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 2Ž .Now the second term on the right-hand side is clearly of order � n and so
we must show that

� 2nŽ .
� 0 as n � �.2
� nŽ .

We will actually prove

� anŽ . ��2.4  nŽ . 2
� nŽ .

Ž . Ž 
 .2 Žfor any fixed a. For simplicity, we will show this for � n �� n though the
.proof for general a is essentially the same .

Now there exists some � so that

21 � � 1 � 
 � 
 1 � � � 1 � 2
 � 9��5 � ��5.Ž . Ž . Ž .

Clearly there exists a positive integer N such that

1 � � L m � m 1 � � L mŽ . Ž . Ž . Ž . Ž .
1 � � � 1 �

m � m � 1 mŽ .

Ž . � Ž . Ž . �for m � N. Since L n �n � 0 as � n �� n � 1 � 1 , we can further as-
sume that

L m 1 � �Ž . Ž .
1 � � 1 � �

2m

and

1 � � L mŽ . Ž .
� 1

m

Ž .for m � N. Now, let � 0 � 1 for temporary convenience and let K be the
i�N�1 � Ž . Ž .�constant 2Ý ln � i � 1 �� i . Then for n � N,i�1

n
�1 � i � 1Ž .

ln � n � lnŽ . Ý

� iŽ .i�1

n
�1 1 � � L iŽ . Ž .
� � ln � 1 � KÝ ž /ii�N

n
�1 1 � � L iŽ . Ž .
� � � KÝ ii�N

n
�1 1

� � 1 � � L n � KŽ . Ž . Ý ii�N

� �
 1 � � L n
 ln n � K ,Ž . Ž . Ž .
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while
n 1 � � L iŽ . Ž .


ln � n �� n � � ln � 1Ž . Ž . Ý ž /i
i�n

2n 1 � � L i 1 1 � � L iŽ . Ž . Ž . Ž .
� � �Ý ž /i 2 i
i�n

n 1 � � L iŽ . Ž .
� � 1 � �Ž .Ý i
i�n

2 
 
� � 1 � � L n ln n � ln nŽ . Ž . Ž . Ž .Ž .
2 
� � 1 � � 1 � 
 L n ln n .Ž . Ž . Ž . Ž .

Hence
2 2
 
ln � n �� n � �K � L n ln n 1 � � 1 � 
 � 
 1 � �Ž . Ž . Ž . Ž . Ž . Ž . Ž .

� ln n�L Žn
 .� �5 � KŽ .
� ln n�� � KŽ .

Ž . n nand so 2.4 follows. This proves the result for � and the proof for � is˜
similar. �

� Ž .LEMMA 2.2. As n goes to infinity, the probability of � : �n, �n�3 is
4 n n�-vacant converges to 0 under � and under � .˜

PROOF. Notice that the result for � n immediately implies the correspond-
ing result for � n. Now by Lemma 2.1,˜

� 2n � Ýn�n
�1 � n � ll RnŽ . Ž .ll�� n �3 lln� �n, �n�3 is vacant � ,Ž .Ž .
C nŽ .

where
n 
R � A r � ll � n � r � � nŽ . Ž . Ž .Ýll


n�n �r�ll


 2Ž . Ž .and C n � � n . So,


 n�n �1� 2n � n Ý � n � llŽ . Ž . Ž .ll�� n �3n 4� �n, �n�3 is vacant � �Ž .Ž . 2 2
 
� n � nŽ . Ž .

� 2n n� 2n�3Ž . Ž .
� � ,2 

 � nŽ .� nŽ .

Ž .which converges to 0 by 2.4 .

² n :PROPOSITION 2.3. Let f be any cylinder function. Then both � , f and˜
² n : ² :� , f converge to � , f as n � �.�
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² n :PROOF. We only write out the proof for � , f . It is only necessary to
Ž . �n , nprove this result for f increasing with f 0 � 0. If � denotes the measure�

� 4Ž�n, n. Ž . Ž .on 0, 1 given by � conditioned on � n � � �n � 1, then by attrac-�

tiveness,
² n : ² �n , n : ² :� , f � � , f � � , f .� �

So it is sufficient to show that
² n : ² :lim inf � , f � � , f .�

n��

Let
ll � � inf i � �n:  i � 1 ,� 4Ž . Ž .
r � � sup i � n:  i � 1 ,� 4Ž . Ž .

² n : n� , f � � d� f �Ž . Ž .H
n ² ll , r :� 1 � d� � fŽ .Ý Ý H ll Ž � .� ll , r Ž � .�r �

r�n�2ll��n�2

n ² :� � � : ll � � �n�2, r � � n�2 � , f� 4Ž . Ž .Ž . �

² :� 1 � o 1 � , f ,Ž .Ž . �

where the third step follows from attractiveness and the last step follows
from Lemma 2.2. �

Ž .PROPOSITION 2.4. Consider � restricted to �n, n , which we now denote�

Ž . nabusing notation also as � . We can couple � and � as the law of� �

Ž . � 4Ž�n, n. � 4Ž�n, n. � 4Ž�n, n.� ,  � 0, 1 � 0, 1 so that there is a set B 
 0, 1 with
Ž . �1�2� B  n such that � �  when � � B.�

�1 Ž .PROOF. Recall that � � lim A i . The chance under � that the interval�

� 
 ��n, �n � n is unoccupied is equal to
�n�1 �1


� �n � n � x � 1  � iŽ . Ž .Ý Ý Ý
� 
x��n x��� i��n�n �x�1

�

� i � n � 1 � iŽ . Ž .Ž .Ý


i�n �2


 
 � n nŽ .
 n
 Ž�L�1�	 .n


 n�1�2 ,
Ž . Ž .where the second to last step used 2.2 and 2.3 and the last step is valid

� Ž . 
using 	 � L � 5 and � � 1�4, for instance. Let B � � : ll � � �n � n or
Ž . 
4 Ž . �1�2r � � n � n . By the above calculation, � B  n . As before we can�

write � conditioned on Bc as the convex sum Ý�n�n


Ý 

n � 1 .� ll�� n r�n�n � ll Ž � .� ll , r Ž � .�r

By attractiveness, � 1 can be coupled stochastically above � n and� ll Ž � .� ll , r Ž � .�r
so the result follows. �
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3. The spectral gap estimate. In this section, we establish the spectral
˜n ˜ngap estimates for the Markov chain X . Recall that X is obtained by

permanently fixing ones at �n and n, permanently fixing zeros on the
Ž 
 . Ž 
 . � 
intervals �n, �n � n and n � n , n and letting the sites in �n � n ,


 �n � n behave according to the nearest particle system, subject to the null
configuration 0 never being hit. Further recall that

r
n �1�  � c � x � x ,Ž . Ž .˜ Łn i i�1

i�1

where �n � x � x � ��� � x � x � n are the occupied sites of  and c0 1 r�1 r n
is the appropriate normalizing constant which satisfies

2
c � � n .Ž .n

˜n ˜nŽ .PROPOSITION 3.1. Let Gap X be the spectral gap of the chain X . Then

˜n �2Gap X � n .Ž .
˜nŽ .As was mentioned in the introduction, the easier upper bound of Gap X

�2 Ž . n when L � � can be found in Sweet 1997 . It uses the well-known fact
� Ž . �see Diaconis and Stroock 1991 , for example that

2x nÝ f  � f  �  c  , xŽ . Ž . Ž . Ž .Ž . ˜ , xn˜3.1 Gap X � inf ,Ž . Ž .
2 Var fŽ .

where the infimum runs over nonconstant f. This paper will only be con-
˜n �2Ž . Ž .cerned with the more significant and difficult bound: Gap X � n . Before

discussing that proof, let us make two remarks. One is that the rate n2 for
˜nthe chain X to reach stationary matches the intuition coming from the

Ž .following result of Schinazi 1992 : starting from renewal measure on the half
Žline, the edge has Brownian fluctuations and, in particular, the time for

2 .particles to reach sites beyond n is of order n . The second remark is that
˜n �2Ž .Gap X can be much smaller than n , which is why we had to introduce a

Ž .process which does not hit the null configuration. To see this, take � ll �
� Ž . n��ll ; apply 3.1 to X with f � 1 ; then�04

�1c cn n 
� 4 � 4 � 4Gap X  c 0 , 0 � 0 � � n ,Ž . Ž .Ž . Ž .
Ž� 4 � 4c.�1where c 0 � 0 is the rate of leaving the null configuration.

Returning to the method of proof for the lower bound, we use the abstract
Ž .canonical paths technique for reversible chains of Jerrum and Sinclair 1990

Ž .as found in Diaconis and Stroock 1991 . In considering critical NPS, it is
natural to make use of this approach. For example, Griffeath and Liggett
Ž .1982 used the Dirichlet principle for reversible Markov chains and clever
comparison arguments to show that a finite reversible NPS dies out almost

Ž .surely iff Ý� n � 1. This approach has also been very successful in yielding
� Ž .�results for the stochastic ising model see, e.g., Schonmann 1994 where

dynamics are hard to describe but the invariant measures and invariant
measures with boundary conditions are known.
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The path argument technique has been around in some form for many
Ž .years, but the paper of Jerrum and Sinclair 1990 has recently made its

usefulness clear. The idea is to create a path from  to � for every ordered
Ž .pair , � of states in the state space. By a path from  to � of length m, we

mean a sequence of states  �  ,  , . . . ,  � � such that q � 0 for0 1 m  Ž i�1. Ž i.
Ž x . xall i � m. We say that an edge �, � is in the path if � �  and � � i�1 i

for some i. If paths which do not create many ‘‘bottlenecks’’ can be chosen,
then the chain should be able to converge quickly. This is formalized into our
setting by the following theorem, one of many similar results, where the
aforementioned paths are randomized.

Ž .THEOREM 3.2 Jerrum and Sinclair . For each pair of configurations in
˜n Ž .the state space of X , choose a set of paths � , � from  to � and as-i

Ž .sign probabilities P i . Then the spectral gap is bounded below byŽ , � .
Ž Ž�, x ..�1max � , where�, x

� n  � n �Ž . Ž .˜ ˜Ž� , x .� � �  , � P i ,Ž . Ž .Ý i Ž , � .n� � c �, xŽ . Ž .˜Ž . , � , i

� �with � denoting the length of the path and with the sum running over
Ž . Ž x . Ž ., � , i such that  � � and that �, � is in the path � , � .i

So, provided that the paths are chosen to have lengths bounded uniformly
by a constant multiple of n, the task here is to show

� n  � n �Ž . Ž .˜ ˜
3.2 sup P �, x  n ,Ž . Ž .Ý Ž , � .n� � c �, xŽ . Ž .˜Ž .� , x Ž . , �

Ž . Ž .where P �, x is the probability that �, x is used in a randomly chosenŽ , � .
path from  to � .

Before starting the proof by explicitly describing the paths to be used, let
Ž .us take a moment to compare this situation to an easier one. In Sweet 1997 ,

similar analysis is done to the Markov chain Zn that just fixes particles on
Ž .�n and n and allows �n, n to evolve. There, the paths from  to � are

deterministic and easily described: move from left to right on the interval of
sites, changing the value of a site if its values on  and � differ.

˜nSuch an approach cannot work on X . First, such a path may pass through
the ‘‘forbidden’’ null configuration. Furthermore, the distance between the
leftmost occupied site of � and that of  can be large for typical  and � . So it

Ž x .is likely that a ‘‘naive’’ path from  to � will pass through an edge �, �
with a configuration that has a single isolated site far to the left of the other

nŽ . Ž . Ž .occupied sites. This would cause � � c �, x to be small and the sum in 3.2˜
to be larger than order n for that edge.

In fact, any method which fixes the sites in some order will potentially
Žhave an edge that changes around a large gap i.e., a large vacant interval

.between two occupied sites next to the boundary. To prevent this, we
Ž .temporarily ‘‘fill the gap’’ with occupied sites that exist in neither  nor �
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until the gap is no longer a problem. It seems reasonable to expect that the
best way to fill the gap is to place particles according to renewal measure
Ž .conditioned on particles at the endpoints .

ŽPROOF OF PROPOSITION 3.1. We begin by describing our method of ran-
.domly selecting a path from  to � . There are three cases to consider. In each

case, the path is formally described and an illustrated example of a sample
Žpath is given. See Figures 1 and 2; the second case does not have an

.associated figure as that case is similar to the first case.

CASE 1. Each occupied site of  lies to the left of the occupied sites of � .
In this case, let

x � sup u � n:  u � 1� 4Ž .
and

y � inf u � �n: � u � 1 .� 4Ž .
Ž .By assumption, x � y. Let the occupied sites of  in �n, n be x � x � ���1 2

Ž .� x � x. Let the occupied sites of � in �n, n be y � y � y � ��� � y .j 1 2 k
Ž .Now, to choose a path, we first use renewal measure with � to pick a

sequence of points
x � z � z � ��� � z � z � y0 1 r�1 r

with probability
r

�1A y � x � z � z .Ž . Ž .Ł i i�1
i�1

Ž .FIG. 1. A realization of a path between two configurations of �n, n ; the vertical lines indicate
occupied sites. All the variables are as they appear in the description of Case 1. In particular, the
sequence z is a realization of the sequence of renewal points between x � x and y � y ,i 2 1
conditioned on points at x and y.
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Ž .FIG. 2. A realization of a path between two configurations on �n, n ; the vertical lines indicate
occupied sites. All the variables are as they appear in the description of Case 3. In particular, the

Ž . Žsequence z resp. z is a realization of the sequence of renewal points between y and x resp. y˜i i 1
. Ž . Ž .and x , conditioned on points at y and x resp. y and x . In this realization, phase a ends1 1 1

Ž .with  and phase b ends with  .6 11

Given this selection, the path  �  ,  , . . . ,  � � is as follows:0 1 2 r�j�k�2

� � 4 	 z , if 1 � i � r ,i�1 i

� 4 	 y , if r � 1 � i � r � k � 1,i�1 i�r�1� �i � 4 � x , if r � k � i � r � k � j � 1,i�1 r�k�j�i� � 4 � z , if r � k � j � i � r � k � j � r � 2.i�1 i�1�Žr�k�j.

CASE 2. Each occupied site of  lies to the right of the occupied sites of � .
Not surprisingly, the paths in this case are chosen in a manner similar to

Ž .Case 1: A sequence of renewal points is added from right to left between the
leftmost site of  and the rightmost site of � ; then the sites of � are added
Ž . Ž .from right to left ; then the sites of  are removed from left to right ; finally,

Ž .the sequence of renewal points is removed from right to left .
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CASE 3. Some occupied sites of  lie to the left of some occupied sites of �
and some occupied sites of  lie to the right of some occupied sites of � .

In this case, the construction of a path from  to � proceeds in three
phases.

Phase a. This phase only takes place if there exists occupied sites of � that
lie to the left of all occupied sites of . In this phase, a sequence of renewal

Ž .points is added from right to left to ‘‘move from leftmost site of  to those
Ž .sites of � to its left.’’ Then those sites of � are added from right to left and

Ž .the sequence of renewal points is removed from left to right . Specifically, let
x be the leftmost occupied site of  and denote the occupied sites of � lying to
the left of x by y � ��� � y � x. Randomly select a sequence of renewals 1

Ž .points y � z � z � ��� � z � z � x as in Case 1 . Then the configura-1 r r�1 1 0
tions  �  ,  , . . . ,  that begin the random path from  to � are0 1 2 r�s�2
given by

� � 4 	 z , if 1 � i � r ,i�1 i� � 4 	 y , if r � 1 � i � r � s � 1, � i�1 i�r�1i � � 4 � z , if r � s � i � 2r � s � 2.i�1 2 r�s�1�i

Phase b. In this phase, the sites from the leftmost site of  to the rightmost
Ž .site of � are considered from left to right and are changed if necessary.

Specifically, let x be the leftmost occupied site of  and let y be the
rightmost occupied site of � . Notice that x � y in this case. Let x � w � ���1

� � Ž . Ž .� w � y be all those sites w � x, y such that  w � � w . Let  �k
 , . . . ,  be the configurations in our random path already obtained from0 K

Ž .phase a . Then the path continues with  , . . . ,  defined by  �K�1 K�k K�i
w i .K� i�1

Phase c. Let  �  , . . . ,  be the configurations in our random path0 K
Ž . Ž .already obtained from phases a and b . If  � � , then we are done and doK

not require this phase. If  � � , then there exist y � x � ��� � x suchK 1 k
that y is the rightmost occupied particle of � and x � ��� � x are all those1 k

Ž . Ž .sites x such that  x � 1 and � x � 0; further, there are no sites where �K
is occupied and  is not. To continue our path, randomly select a sequence ofK

Ž .renewal points as before y � z � ��� � z � x . Then our path ends with˜ ˜0 r 1
 , . . . ,  , whereK�1 K�2 r�k�2

� 	 z , if 1 � i � r � 1,� 4˜K� i�1 i� � 4 � x , if r � i � r � k � 1, � K� i�1 r�k�iK�i � � z , if r � k � i � 2r � k � 2.� 4˜K� i�1 2 r�k�1�i

With the paths now specified, note that their lengths are indeed bounded
uniformly by a constant multiple of n. So, as mentioned before, the task here

Ž .is to show 3.2 . In fact, the following reasoning reduces the supremum in
Ž . Ž . Ž .3.2 to only those �, x with � x � 1. For the moment, consider a second
choice of paths formed from the above method with all notions of ‘‘left’’ and

Ž .‘‘right’’ and, technically, of ‘‘� ’’ and ‘‘� ’’ as well switched. The proof
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� Ž . �provided below for the given choice of paths for � x � 1 only will naturally
work for the second choice of paths. But the second choice of paths can also be

Ždescribed as stepping through the given choice of paths backwards i.e., a
.given path from  to � corresponds to an alternative path from � to  . From

Ž x .this point of view, if a path from  to � uses the edge �, � , then the
Ž x .alternative path from � to  uses � , � . As reversibility tells us that

nŽ . nŽ . nŽ .�1 Ž .�1 nŽ . nŽ . nŽ x .�1 Ž x .�1�  � � � � c �, x � � � �  � � c � , x , it is now˜ ˜ ˜ ˜ ˜ ˜
Ž .clear that the supremum over � x � 1 is the same as the supremum over

Ž .� x � 0.
Ž .We fix a � and x with � x � 1 and proceed to bound

� n  � n �Ž . Ž .˜ ˜
3.3 P �, x ,Ž . Ž .Ý Ž , � .n� �Ž .˜Ž . , �

noting that our bounds will not depend on the choice of �. It is sufficient to
Ž . Ž x .separately consider the sum over , � when using the edge �, � in Cases

� Ž . Ž . Ž .�1, 2 and 3 and phases a , b , and c .
Ž x .Case 1. If edge �, � is used in getting from  to � in Case 1, then there

Ž .exists y � x, n such that

� y � 1 and � � 0 on �n, yŽ . Ž .

Ž .and there exists z � �n, y such that

 z � 1 and  � 0 on z , n .Ž . Ž .

Ž .To analyze the quantity 3.3 , fix �n � z � y � n, consider the sum over
Ž ., � corresponding to z and y as above, and sum over z and y.

Ž .We deal separately with z � x and x � z. See Figures 3 and 4.
� �Subcase 1. If z � x, then denote the occupied sites of � on x, y by

x � x � x � ��� � x � x � y0 1 r�1 r

� �and denote the occupied sites of � on y, n by

y � y � y � ��� � y � n.0 1 s

Ž . Ž x .FIG. 3. A pair , � that uses the edge �, � in its corresponding path with probability
Ž .�1 Ž . Ž . Ž . Ž .A y � x A x � z � x � x � x � x � y � x . The variables are as they appear in Sub-1 2 1 2

case 1 of Case 1. The vertical lines indicate occupied sites, while the horizontal lines indicate a
Ž .contribution to the right-hand side of 3.4 .
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Ž . Ž x .FIG. 4. A pair , � that uses the edge �, � in its corresponding path with probability
Ž .�1 Ž . Ž . Ž .A y � z � z � z � z � z � y � z . The variables are as they appear in Subcase 2 of1 2 1 2

Case 1. The vertical lines indicate occupied sites, while the horizontal lines indicate a contribution
Ž .to the right-hand side of 3.5 .

Notice that there is only one � in the sum and that its occupied sites are
� 4given by y . Then we have the following:i

s
�2n 
� � � � n � y � n � y � y ,Ž . Ž . Ž . Ž .˜ Ł i i�1ž /i�1

� n  z � 1,  � 0 on z , nŽ . Ž .Ž .˜
z

�2
� � n � w � n A z � w � n � zŽ . Ž . Ž . Ž .Ýž /
w��n�n

�1
 � n � n � z ,Ž . Ž .
r s

�2n 
� � � � n � x � n � x � x � y � yŽ . Ž . Ž . Ž . Ž .˜ Ł Łi i�1 i i�1ž /i�1 i�1

and
r

�1xP �, � � A y � z A x � z � x � xŽ . Ž . Ž . Ž .ŁŽ , � . i i�1ž /i�1
r

� � x � x .Ž .Ł i i�1
i�1

So
� n  � n � � y � n � n � zŽ . Ž . Ž . Ž .˜ ˜

3.4 P �, x  ,Ž . Ž .Ý Ž , � .n 
� �Ž . � x � n � n˜ Ž . Ž .Ž . , �

Ž . Ž .where the sum runs over , � associated with z and y. As � y � n �

Ž . Ž . Ž .� x � n and Ý� n � z � � n , we have our bound.

� �Subcase 2. If x � z, then denote the occupied sites of � on z, y by
z � z � z � ��� � z � z � y0 1 r�1 r

� �and denote the occupied sites of � on y, n by
y � y � y � ��� � y � n.0 1 s

Notice that there is again only one � in the sum and that its occupied sites
� 4 � �are given by y . Also notice that any  in the sum is not only fixed on z, ni

� � � �as before, but is also fixed on x, z since  � � on x, z . Denote the occupied
� �sites of  on 0, x by

�n � x � x � ��� � x � x .0 1 k
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Then we have the following:

s
�2n 
� � � � n � y � n � y � y ,Ž . Ž . Ž . Ž .˜ Ł i i�1ž /i�1

n � ��  z � 1,  � 0 on z , n ,  � � on 0, xŽ . Ž .Ž .˜
k

�1
 � n � x � x � n � z ,Ž . Ž . Ž .Ł i i�1
i�1

k
�2n 
� � � � n � x � x � z � xŽ . Ž . Ž . Ž .˜ Ł i i�1 1ž i�1

r s

� � z � z � y � yŽ . Ž .Ł Łi i�1 i i�1 /i�2 i�1

and
r

xP �, � � � z � z .Ž . Ž .ŁŽ , � . i i�1
i�1

Case 2. The argument here is the same as in Case 1.
Ž . Ž x .Case 3 phase a . If edge �, � is used in getting from  to � in phase

Ž .a , then there exists y � x such that

� y � 1,  � � on y , n , and  � 0 on �n, yŽ . Ž .Ž

and

� �� � � on �n, z and � � 0 on z , y ,Ž .

� Ž . 4 Ž .where z � sup i � x: � i � 1 . See Figure 5. To analyze the quantity 3.3 ,
Ž . Ž .fix y � x, n , consider the sum over , � corresponding to y as above, and

Ž .sum over y. It suffices to show the following: the quantity 3.3 , where the
Ž .sum is over , � corresponding to fixed y as above, is less than a constant.

� �Denote the occupied sites of � on �n, z by

�n � w � w � ��� � w � z ;0 1 s

Ž . Ž x .FIG. 5. A pair , � that uses the edge �, � in its corresponding path with probability
Ž .�1 Ž . Ž . Ž . Ž .A y � z A x � z � x � x � y � x . The variables are as they appear in phase a of Case 3.1 1

Ž .The variable l is the dummy variable for a sum in 3.5 . The vertical lines indicate occupied sites,
Ž .while the horizontal lines indicate a contribution to the right-hand side of 3.5 .
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� �denote the occupied sites of � on x, y by

x � x � x � ��� � x � y0 1 r

� �and denote the occupied sites of � on y, n by

y � y � y � ��� � y � n.0 1 k

Then
n �� � � � on �n, z , � � 0 on z , yŽ ..Ž .˜

s �
�1
 � n � w � w � ll � z ,Ž . Ž . Ž .Ł Ýi i�1

i�1 ll�y

k
�2n 
�  � � n � y � n � y � y ,Ž . Ž . Ž . Ž .˜ Ł i i�1

i�1

s
�2n 
� � � � n � w � w � x � zŽ . Ž . Ž . Ž .˜ Ł i i�1ž i�1

r k

� � x � x � y � yŽ . Ž .Ł Łi i�1 i i�1 /i�2 i�1

and
r

xP �, � � � x � x .Ž . Ž .ŁŽ , � . i i�1
i�1

So

� n  � n � � y � n Ý� � ll � zŽ . Ž . Ž . Ž .˜ ˜ ll�y
3.5 P �, x  ,Ž . Ž .Ý Ž , � .n 
� �Ž . � x � z � n˜ Ž . Ž .Ž . , �

Ž . Ž . Ž .where the sum runs over , � associated with y. As � y � n � � x � z
� 
Ž . Ž .and Ý � ll � z � � n , we have our constant bound.ll�y

Ž . Ž x .Case 3 phase b . If edge �, � is used in getting from  to � in phase
Ž .b , then

� � � � on x , n ,

�� � � on �n, x ,.
Ž . �and � has at least one occupied site on x, n . Also notice that every possible

Ž x . Ž . �path from  to � must use �, � in phase b . We seek to show that the
Ž . Ž .quantity 3.3 , where the sum is over , � corresponding to � and x as in

this phase, is less than a constant multiple of n. This is the most standard
phase and case and so the proof here follows a standard path argument
technique. Since � tells us what � looks like below x and what  looks like

Ž . Ž .above x, we can encode in an injective manner the pair , � into a single
configuration �, defined as follows:

� � �� �  on �n, x and � � � on x , n ..



FINITE APPROXIMATION TO PARTICLE SYSTEMS 1769

Then

ˆ� ll � r � ll � llŽ . Ž .Ž .
n n n n n n�  � � � � � � � � � � � � ,Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜ ˜ ˜ ˜ ˜ˆ � ll � rŽ .� ll � r � llŽ . Ž .

where

l̂l � x � sup y � x : � y � 1 ,� 4Ž .
r � inf y � x : � y � 1 � x� 4Ž .�

and

ll � x � sup y � x : � y � 1 .� 4Ž .�

So

� n  � n � � llŽ . Ž .˜ ˜ Ž .�nP �, x � � � ,Ž . Ž .˜Ý ÝŽ , � .n� � � ll � rŽ .˜ Ž .���Ž . , �

Ž . Ž x . Ž .where the left-hand sum runs over , � whose paths use �, � in phase b
and where the right-hand sum runs over � with at least one occupied site on
Ž .x, n . But

n�n
�x x�n�n

� ll � llŽ . Ž .

n n� � � � � � ll , r � rŽ . Ž .˜ ˜Ý Ý Ý � �� ll � r � ll � rŽ . Ž .� r�1 ll�1

n�n
�x � x � nŽ .
n� � ll � x � n , r � r˜ Ž .Ý ��� x � n � rŽ .r�1

n�n
�x x�n�n

� llŽ .

 � ll � rŽ .Ý Ý
� ll � rŽ .r�1 ll�1

n�n
�x � x � n � x � n � rŽ . Ž .
� Ý 
� x � n � rŽ . � nŽ .r�1

n�n
�x

 2Ý
r�1

 n.

Ž . Ž .Case 3 phase c . The argument here is similar to that of phase a . So
Ž .3.2 has been justified and Proposition 3.1 follows. �

This section concludes with a few corollaries. The first corollary is a direct
application of typical spectral gap bounds on convergence rates. The other
two corollaries adjust the first one to suit the needs of the application in
Section 5; it is Corollary 3.5 that will be used in the proof of Theorem 1.1.

˜ ˜In what follows, E denotes expectation under the Markov chain X.
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COROLLARY 3.3. Let f be a cylinder function, that is, assume f depends on
only finitely many sites. Then

n n n �˜² : 2� �� d� � , f � E f �  exp �cnŽ . Ž . Ž .˜ ˜H � n

where c � 0 is independent of n.

PROOF. We know that the spectral gap has the following property:

2 2n n n n 2��˜ ˜² : � �2� �� d� � f � E f � � f exp �Gap X n .Ž . Ž . Ž .˜ ˜ Ž .H 2ž /� n

By Proposition 3.1, we have

2
n n n �˜² : 2� �� d� � f � E f �  exp �cnŽ . Ž . Ž .˜ ˜H ž /� n

for some c � 0 independent of n. The result now follows from Cauchy�
Schwarz. �

Ž . � 4Z � 4ZLet � be the shift operators on 0, 1 . For f : 0, 1 � R, definet t � Z
Ž . Ž .� f � � f � � .t t

COROLLARY 3.4. Let f be a cylinder function. Then for sufficiently large n,
n � �the chance under � that there exists t � 2n�3 such that˜

1
n n˜ ² :2� �E � f � � � , � f �Ž . ˜� t n t n

Ž � .is less than K exp �cn �2 , where c is as in Corollary 3.3.

PROOF. The probability of the event in the corollary is bounded above by

� n d� 1 n n .Ž .˜ ˜Ý H 1� n� ²� , � f :�E � � f Ž � .�2� �˜ t � t n
� �t �2 n�3

However,

� n d� 1 n nŽ .˜ ˜Ý H 1� n� ²� , � f :�E � � f Ž � .�2� �˜ t � t n
� �t �2 n�3

n n n˜² : 2� �� n � d� � , � f � E � f �Ž . Ž .˜ ˜Ý H t � t n
� �t �2 n�3

 n exp �cn�Ž .Ý
� �t �2 n�3

 exp �cn��2 . �Ž .
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The next corollary is the same as the previous one except that the
probability is under � instead of � n. This creates a potential technical˜�

˜nŽ .problem as E � has no meaning. However, the chance of this problem0
˜nŽ .occurring is small and so we simply define E � arbitrarily, bound the event0

that it comes up, and avoid dealing with that event thereafter.

ŽCOROLLARY 3.5. Let f be an increasing cylinder function. Let � on �n �

 
 . � �n , n � n be chosen according to � . The probability that for some t � 2n�3,�

n n˜ ² :2� �E � f � � � , � f � 1�nŽ . ˜� t n t

� Ž .is less than K�n where K is independent of n .

Ž . Ž Ž .. nPROOF. Let � ,  be a coupling of � on �n, n and � as in Proposi-�

Ž . �1�2tion 2.4 and let B be the event with � B  n such that � �  for � � B.�

Let � be distributed according to � n and coupled with  so that  � � unless˜
Ž . Ž . � 0. So � � � outside of probability P B � P  � 0 . By attractiveness,

the probability of the event in Corollary 3.5 is bounded by the probability of
Ž . Ž . �the event in Corollary 3.4 plus P B � P  � 0 . However, by Lemma 2.1

Ž .� Ž . Ž . �1�2 �� ��and 2.4 P B � P  � 0  n � n  n . The result now follows us-
ing Corollary 3.4. �

4. Hitting the null configuration. As the section title suggests, the
next proposition bounds the chance that X n � 0 for t � n2��. The reason fort
wanting to stay away from 0 is as mentioned before: it takes a long time to
leave 0. But it is exactly that fact that we will use to prove that with huge
probability we do not hit it. If we hit the null configuration in some interval,
then a significant portion of that interval will be spent there; but the
expected amount of time spent there is low. The proof below makes this
precise.

PROPOSITION 4.1. If X n � � n, the stationary distribution, then the proba-0 D
n � 2�� � � Žbility that X � 0 for some t � 0, n is less than K�n where K ist

.independent of n .

PROOF. The mass assigned to 0 by the stationary distribution � n is

 �2Ž . Ž . Ž . Ž .by Lemma 2.1 less than K� 2n � n where K is independent of n .

Consequently, the expected total amount of time spent by X n at 0 during the
2�� 2�� 
 �2� � Ž . Ž .time interval 0, 2n is less than Kn � 2n � n .

n� Žn
�1 . Ž . Ž . Ž .�1 n

Let � � Ý � ll � n � n � ll � 2n be the total flip rate of X at�n�n �1

the null configuration 0. Once X n hits 0 it will remain there for an exponen-
tially distributed amount of time with mean 1�� . Consequently if X n hits 0

� 2�� �in the time interval 0, n , then the conditioned expected amount of time
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� 2�� � Ž 2�� . Žspent at 0 in the time interval 0, 2n is at least C min n , 1�� where
.C is independent of n . Therefore by Markov’s inequality,

� n n � 2�� �P X hits 0 in time interval 0, nŽ .
� 2n 1Ž .

2�� n max , �2 2��ž /
 n� nŽ .
2�� n�n
�1� 2n nŽ .

 max , � n � ll � n � l .Ž . Ž .Ý2 2
 
ž /
� n � nŽ . Ž . ll��n�n �1

Ž .We have already seen in 2.4 that

� 2n 1Ž .
 .

�2
 n� nŽ .
Meanwhile

2�� n�n
�1 2��n n � nŽ .
� ll � n � n � ll  .Ž . Ž .Ý2 




 � nŽ .� nŽ . ll��n�n �1

Ž . Ž .If L � �, then by 2.4 and 2.3 ,

n2��� nŽ .
2 
 �1000 n � n  n ,Ž .


� nŽ .
Ž . Ž .while if L � �, then by 2.1 and 2.2 ,

n2��� nŽ .
2�� �ŽL�	 . 
 ŽL�	�1. �1�2 n n n  n ,


� nŽ .
Ž .using 	 � L � 5 �3 and � � 1�4 for instance. �

n Ž 
 
 .COROLLARY 4.2. If X is distributed as � restricted to �n � n , n � n ,0 �
n � 2�� � �then the probability that X � 0 for some t in 0, n is less than K�n .t

Ž nPROOF. This simply follows from Proposition 2.4 and the fact that P X� t
� 2�� ..hits 0 in 0, n is a decreasing function of � . �

5. Proof of Theorem 1.1. This section contains the first of two applica-
˜n Žtions of the work on X . Recall Theorem 1.1 appearing in the introduction as

.well as the two subsequent paragraphs . The proof considers the event where
Ž .the edge r has moved far to the right. Under this increasing event, varioust

copies of X n are started on various intervals of the integer line, relative to r .t
One copy�we don’t know which one unless we condition on the location of rt
�will be centered near the origin. The starting configuration of this version
of X n will be very close to � , since � and the invariant measure for the� �

process seen from the edge look arbitrarily alike far away from the edge
� Ž .�Schinazi 1992 . So, Corollary 3.5 and Corollary 4.2 will imply the following:
under ‘‘most’’ starting configurations, the expected behavior of this process at
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time n2�� should be close to what we want, even when the starting configu-
ration is conditioned on this copy of X n being the relevant one.

The sketch given above ignores one key issue: Will the coupling hold long
enough? We begin this section with a proposition that answers that question
affirmatively. Proposition 5.1 considers the probability that there is a large

�gap of vacancies in the process � ‘‘close’’ to the rightmost particle r � sup x:s s
Ž . 4 Ž . x � 1 . After the proof of the proposition and a lemma it requires , we

prepare for, and then provide, the proof of Theorem 1.1.

PROPOSITION 5.1. Let � , M be constants strictly greater than zero. Let
Ž . � �3� 2 L � � � 1�2. The probability that in time interval 0, t that there exists

Ž . � � 1�2 1�2 �a � -gap of size at least t intersecting the interval r � Mt , r � � ts s s
tends to zero as t tends to infinity.

PROOF. Case 1. L � �. In this case we bound the probability that for some
� � � � 1�2 1�2 �s � 0, t there is a gap of size t in the interval r � Mt , r � � t bys s

P A ,Ž .Ý n , t
Ž .n�� log t2

where

� �A � � s � 0, t , � has a gap with size in�n , t s

n n�1 1�2 1�2�2 , 2 intersecting r � Mt , r � � t .4. s s

� n n�1.For fixed time s, the probability that a gap with size in 2 , 2 intersects
� 1�2 1�2 �r � Mt , r � � t is less than the probability that such a gap intersectss s
� 1�2 � 1�2 n Ž n.r � Mt , r . That probability is bounded by Mt 2 � 2 since renewals s
measure on the half line is invariant for the process seen from the edge
� Ž .�Schinazi 1992 . Thus if

t�1n , t
n n�1 1�2I � 1 ds,H there is a gap with size in �2 , 2 . intersecting � r �M t , r �s s

0

Ž n, t . 3�2 n Ž n.then E I  t 2 � 2 .
� n n�1.Let � be the infimum of times where a gap with size in 2 , 2

� 1�2 �intersects r � Mt , r . Then after � such a gap will continue to exist ats s
least until:

Ž .a there is a flip from 0 to 1 within the gap;
Ž .b there is a flip from 1 to 0 at boundary of gap;
Ž .c or r changes.s

Ž . n�1Ž Ž ..2 Ž .Now, the total flip rate for a is less than 2 � 1 �� 2 , the total flip rate
Ž . Ž . Ž .for b is 2 and the total flip rate for c is 1 � Ý� m � 2. So the total flip

n�1 � n, t � � �Ž n�1.rate is less than C2 for some C. We conclude E I � � t � 2 .
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Ž .Thus by Markov’s inequality and 2.3 ,

t 3�2 2n� 2 nŽ .
3�2 �1000 nP A � P � � t   t 2 .Ž . Ž .n , t �Žn�1.2

Case 2. L � �. We define

t�t �

� 1�2I � 1 ds.Ht � has a gap of size t �2 intersecting � r �ŽM�� .t , r �s s s
0

n, t t 3�2 �Ž . Ž .Notice that, similarly to I in the first case, E I  t � t . Let � be the
� � 1�2 1�2 �infimum of times where a gap of size t intersects r � Mt , r � � t .s s

� 4 � � 1�2Now on � � t , � has a gap of size t intersecting the interval r � Mt ,� �
1�2 � �r � � t . For s � � , � will continue to have a gap of size t �2 intersecting� s

� Ž . 1�2 �r � M � � t , r at least until:s s

Ž .a sites in the gap become sufficiently occupied to reduce its size;
Ž . � � 1�2b or r � r � � t �4s �

provided t is sufficiently large. We wish to analyze the chance that � � t. We
Ž . � � � � � � � �

�deal with possibility b first. Let B be the event sup r � r : s � s � t , 0s s
� 4 1�2 4� s, s � t � � t �4 . Then by the Brownian behavior of the right edge

� Ž .� Ž .Schinazi 1992 , lim P B � 0. Hence the expected time for possibilityt ��

Ž . � Ž .b to occur is greater than t �2. For possibility a , we use the following
lemma, which is proved below.

LEMMA 5.2. Assume L � �. Let J be a stochastic process on intervalss
Ž .coupled with our nearest particle system in the following way: let J � 0, m0

Ž .and if lim J � u, v and there is a birth in the particle system ats� s s0
Ž . Ž . Ž . Žw � u, v , then J is equal to the larger of w, v and u, w or a randoms

.choice if they are equal in size . Let � be the expected time for the size of J to
be smaller than m�2. Then

E� � m.

Ž .Compare the event in a with � in the lemma; clearly the expected time
Ž . � � 4 tfor possibility a to occur is at least E� where m � t . Now on � � t , I is

Ž . Ž .at least the time for a or b to occur. So
t �E I � tŽ . Ž .

3�2P � � t   t � 0Ž . � �t t
Ž . Ž .by 2.2 and since 3� 2 L � �.

PROOF. Let J and � be as in the statement of Lemma 5.2. Let u � vs s s
Ž . Ždenote the endpoints of J . Then u jumps to u � a at a rate � a � v �s s s s

. Ž . Ž . �u � a �� v � u for a � v � u �2 and half that amount for a �s s s s s
Ž . � Ž . Ž .v � u �2 . Let K � sup � m �� 2m . As L � �, K � �. Thens s

� a � v � u � aŽ . Ž .s s � K� aŽ .
� v � uŽ .s s
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Ž .for a � v � u �2. That is, u is stochastically less than a process thats s s
Ž . Žincreases at rate K by a random amount distributed according to � � and

.similarly for �v . So the size of J is stochastically greater than a processs s
Ž .that decreases at rate 2 K by an amount given by � � , from which the result

follows. �

In preparation for the proof of Theorem 1.1, fix 0 � � � M � �. Given t,
choose n to be the largest integer such that t1�a � n2�� where a �

Ž . �Ž1 �� . 1�2��4 � � 2 . The exact value of a is irrelevant; the point is that n t
converges to 0, while n�Ž2 �� .t converges to �. We introduce random intervals

Ž .I , i � Z though we really only care about i � 0 , defined byi

2� � 2��I � r � i � 2 n , r � in .Ž .i t�n t�n

We are interested in the random interval that contains the origin ‘‘reasonably
close’’ to its center.

Ž . � � � Ž . � 442� �Let A t, i, n � i � min j: r � j � 1 n � 2n�3 . Fix 	 � 0 suffi-t�n
ciently small. Let

	 n
1�2 1�2G � i : in � � t �2, 2 Mt , P A t , i , n � .Ž .Ž .Ž . 1�2½ 5t

From this definition, the following lemma is obvious.

LEMMA 5.3. For sufficiently large t,

P r 2� � � � t1�2 , Mt1�2 , A t , i , n occurs for i � G � 2 M � ��2 	 .Ž . Ž .Ž .Ž .t�n

Ž . 2� �This means we can neglect the event � A t, i, n for r �i� G t�n
Ž 1�2 1�2 . Ž .� t , Mt . Its importance is that when conditioning on A t, i, n for
i � G the distribution of � around the origin cannot deviate too extremelyt
from � .�

i, n 2�� � 4 IiFor i � G we define the Markov process X , 0 � s � n on 0, 1 ass
follows:

i, nŽ . i, nŽ Ž . .2� � 2��1. X r � in � X r � i � 2 n � 1;0 t�n 0 t�n
2. X i, n � 0 within n
 of the endpoints of I ;0 i

Ž Ž . 
 
 . i, n
2� � 2�� 2��3. on r � i � 2 n � n , r � in � n , X � � ;t�n t�n 0 t�n

i, n � 2�� �4. X evolves on 0, n according to the Harris construction of � overs t
� 2�� �the time interval t � n , t .

It follows that X i, n � � 2� � on I at least until there is a � gap of sizes t�n �s i
n
 intersecting I . So X i, n � � 2� � on I at least until either:i s t�n �s i

� � 1�2
2� � 2��1. r � r � � t �4, ort�n �v t�n

2. � 2� � has a gap of size n
 intersectingt�n �v

1�2 1�2
2� � 2��r � 2 M � � t , r � � t �4 .Ž .t�n �v t�n �v

˜n n ˜ i, n i, nJust as we defined X from X , we now define processes X to be Xs s
˜ i, n

2� �conditioned off 0. Of course, X could itself be 0; that is, � could be0 t�n
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Ž Ž . 
 
 .null on r i � 2 n � n , r � in � n , which creates a potential problemt t
similar to the one mentioned before Corollary 3.5. Again we arbitrarily define
˜ i, n ˜ i, nX where X � 0 in the same way we did there. Notice that the distribu-s 0

i, n ˜ i, n Žtion of X � X is arbitrarily close to � despite the randomness of the0 0 �
i, n ˜ i, n. Ž .interval on which it lives and that the evolution of X resp. X has

n ˜nŽ .the same behavior as X resp. X .

PROOF OF THEOREM 1.1. It is sufficient to show the convergence with an
Ž .increasing, cylinder function f satisfying f 0 � 0. Using the Brownian be-

havior of the right edge, it is easy to see that

' '�lim sup E f � � lim sup P r � �k t E f � r � �k tŽ . Ž .ž /' 't t� t t t� t
t�� t��

' '�� P r � �k t E f � r � �k tŽ .ž /' 't� t t t� t

1 �� 0 � lim sup E f � � x � 1, � xŽ . Ž .'t t� t2
t��

1² :� � , f .�2

So we seek to prove
1² :lim inf E f � � � , f .Ž .t �2

t��

By the above discussion

Ef � � E f � IŽ . Ž .Ýt t AŽ t , i , n.
i�G

i , n �2� �� E f X A t , i , n P A t , i , nŽ . Ž .Ž .Ž .Ý n
i�G ,

1�2 1�2Ž .in� � t , Mt

� � � � 1�2
2� � 2��� f P sup r � r � � t �4� t�n �v t�nž /

2��� �v� 0, n

� � 
� f P there exists a gap of size n intersectingŽ�

1�2 1�2 � �r � M � 1 t , r � � t �4 for some s � 0, t .Ž .Ž . .s s

Ž .By Schinazi 1992 , the second term converges to 0 as t � �. For the third
term, we will apply Proposition 5.1 to say that it converges to 0. The condition

Ž . Ž .3� 2 L � � in that proposition corresponds to the condition 
� 2 � � �
Ž .3� 2 L which is true if

L � 6
� � .

2 L � 3

Ž Ž . .The condition � � L 1 � 6 �100 � 1�4 guarantees the above inequality
and so Proposition 5.1 does apply.

� Ž i, n . � Ž .�2� �It remains to examine E f X A t, i, n for i � G. By our definition ofn 'Ž .G, the conditioning event A t, i, n has probability at least 	 n� t . Thus by
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i, n � 2�� � �Corollary 4.2, the probability that X hits 0 in time 0, n conditioneds
�� �1'Ž .� Ž . Ž .on A t, i, n is less than Kn t 	 n � o 1 for large t. Therefore,

i , n i , n˜� �2� � 2��5.1 E f X A t , i , n � E f X A t , i , n � o 1Ž . Ž . Ž . Ž .Ž . Ž .n n

as t � �.
Ž .By Corollary 3.5, conditioning on A t, i, n ,

˜i , n ˜ i , n n² :2� �S f X � � , f � 1�n,˜Ž .n 0

�� �1 i, n˜' Ž . Ž .outside of probability Kn t 	 n � o 1 where S is the semigroup for
˜ i, n i, n ˜ i, nX and � is the stationary distribution for X . It follows from Proposi-˜
tion 2.3 that

i , n˜ � ² :2� �E f X A t , i , n � � , f 1 � o 1Ž . Ž .Ž .Ž .n �

Ž .and so by 5.1 ,
i , n � ² :2� �E f X A t , i , n � � , f 1 � o 1 .Ž . Ž .Ž .Ž .n �

Thus

² :Ef � � P A t , i , n � , f � o 1Ž . Ž . Ž .Ž .Ýt �
i�G ,

1�2 1�2Ž .in� � t , Mt

1�2 1�2 ² :2� �� P r � � t , Mt � 2 M � ��2 	 � , f � o 1 ,Ž . Ž .Ž .Ž .Ž .t�n �

where the last step uses Lemma 5.3. This is enough by the Brownian
behavior of the right edge and as 	 , � and M are arbitrary. �

6. Proof of Theorem 1.2. In this section we consider the NPS starting
with initial configuration � distributed according to � . We wish to show0 �

Ž . Ž .Theorem 1.2: for almost all � with respect to � S t � � � . Since the0 � 0 D �

� 4Zspace of continuous functions on 0, 1 is separable, it is sufficient to show
Ž . Ž . ² :that, for any fixed continuous function f , S t f � � � , f for almost all0 D �

� . Obviously it is sufficient to restrict attention to a fixed increasing cylinder0
Ž . Ž . Ž . Ž .function f. For such f , S t f � � S t f 1 where 1 is the completely0

Ž . Ž . Ž .occupied configuration given by 1 i � 1; therefore, as S t f 1 converges to
² :� , f , we need only show that for almost all � ,� 0

² :6.1 lim inf S t f � � � , f .Ž . Ž . Ž .0 �
t��

n 2 n ˜n ˜2 n
In this section we consider Y � X and Y � X . As before we havet t t t

˜nY x � � xŽ . Ž .t t

� � nfor x � 2 and for t � � � � , wheren n

� � inf t : � � 0 on either �2n , �2n � 2 
 n or 2 n � 2 
 n , 2 n� 4Ž . Ž .n t

and
� � inf t : Y n � 0 on �2n , 2 n .� 4Ž .n t
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We now present two propositions. The first deals with the time � , beforen
which the coupling between Y n and � will hold. The second deals with the

n ˜ntime � , before which Y and Y are the same. They are analogous to earliern
results and so one proof is merely sketched and the other is omitted.

PROPOSITION 6.1. The random time � satisfiesn

P �� � � 2Ž2�� .n  2�� n .Ž .n

ŽSKETCH OF PROOF OF PROPOSITION 6.1. First suppose L � �. This proof
follows the proof of Proposition 5.1 closely; the case L � � follows it even

.more closely and so we do not address it here. The probability under � that�

either

J � �2n � 1�3 2 
 n , �2n � 2�3 2 
 nŽ . Ž .Ž .
or

J � � 2 n � 2�3 2 
 n , 2 n � 1�3 2 
 nŽ . Ž .Ž .
0 � Ž .
 nis completely vacant is bounded by kÝ Ý � i � x , which itself isx��� i�2 �3

�Ž 
 n.ŽL�2�	 . Ž .bounded by K 2 using 2.1 where 	 � 0 will be chosen later. Let I
Ž .be the expected Lebesgue amount of time under � in the time interval�

� Ž2�� .n � �0, 2 � 2 that � spends with J or J completely vacant. Thent

E I � 2 K 2Ž2�� .n2�Ž 
 n.ŽL�2�	 . .Ž .
On the other hand, we can apply Lemma 5.2 to conclude

Ž2�� .n 
 n�E I � � 2 � 2 .n

Hence

2Ž2�� .n2�Ž 
 n.ŽL�2�	 .
� Ž2�� .n�P � � 2  .Ž .n 
 n2

� Ž . Ž . Ž .By choosing 	 and � appropriately 	 � 5 � L �2 and � � L � 5 �4 2 � L
�will suffice and recalling that 
 � 1�2 � � , we have

2 � � � 
L � 1�2 � 	�2 � �� ,

which certainly implies

P �� � � 2Ž2�� .n  2�� n . �Ž .n

The next proposition is similar to Proposition 4.1.

PROPOSITION 6.2. The random time � satisfiesn

P �� � � 2Ž2�� .n  2�� n .Ž .n

Just as the propositions in Sections 4 and 5 led to the proof of Theorem 1.1,
the above propositions lead to the proof of Theorem 1.2.
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� 4ZPROOF OF THEOREM 1.2. Define B 
 0, 1 byn

B � : P � � � � � 2Ž2�� .n � 1�n .� 4Ž .n n n

Ž . �� nBy the preceding propositions, � B  n2 . On the other hand, our� n
˜ncoupling of � and Y tells us thatt t

˜n � 0 Ž2�� .n� �nS t f � � S t f Y � 2 f P � � � � 2 ,Ž . Ž . Ž . Ž .Ž .˜ �0 Y 0 n n

˜n
nwhere S denotes the semigroup for Y . SoỸ

˜n � �n6.2 � t , S t f � � S t f Y � 2 f �n � � � B .Ž . Ž . Ž . Ž . Ž .˜ �0 Y 0 0 n

Now, define times t n byi

t n � 2Ž2�� �2.n
0

Ž Ž2�� .n Ž2�� �2.n.and for i � 1, 2, . . . , n 2 � 2 ,

t n � t n � 1�n.i i�1

2 n ˜n
nLet � � � be the stationary distribution for Y . By Corollary 3.3 and˜Ỹ

˜nŽ . nsince Y � is stochastically larger under � than under � , we have that˜0 0 � Y
for each fixed t n,i

n ˜n � n² :n n6.3 � S t f Y � � , f � 1�n � kn exp �c2 ,Ž . Ž .Ž . Ž .˜ ˜ž /� Y i 0 Y

where k is independent of n and i.
Ž . Ž . Ž � � .Therefore, by 6.2 and 6.3 and letting a � 2 f � 1 ,�

n n ² :n� � t , S t f � � � , f � a�nŽ .Ž .Ž .˜� i i Y

Ž Ž2�� .n Ž2�� �2.n.n 2 �2
� n P B � n exp �c2Ž . Ž .Ýn

i�0

 n2�� n � n2 2Ž2�� .ne�c 2 � n
.

� Ž2�� �2.n Ž2�� .n � � n n �Now, choose t � 2 , 2 . Then for some i, t � t , t � 1�n andi

tnS t f � � S t f � � S s � f � dsŽ . Ž . Ž . Ž . Ž .Ž . Hi 0 0 0
nti

 1�n,

Ž .where � is the generator for S t ; notice that � f is bounded as f depends on
only finitely many sites. Therefore

² : Ž2�� �2.n Ž2�� .n� �nS t f � � � , f � c�n for each t � 2 , 2Ž . Ž . ˜0 Y

�� n 2 Ž2�� .n Ž � n. Žoutside of � probability kn2 � kn 2 exp �c2 where k is some�

� � . ² :nconstant independent of n and c � 2 f � 2 . Since lim � , f �˜� n�� Y
² : Ž .� , f , 6.1 now follows from Borel�Cantelli. ��
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