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Madison

A universal large deviation lower bound is proved for sums of Banach
space valued functions of an irreducible, general state space Markov

Žchain. There are no restrictions on the functions other than measur-
.ability .

1. Introduction.

1a. Summary. The purpose of this paper is to prove the following.

� 4 Ž .THEOREM. Let X , i � 1, 2, . . . be an irreducible Markov chain MCi
Ž .taking values in a countably generated general measurable space S, SS , E be

a separable Banach space, endowed with its Borel �-algebra EE, f : S � E be a
measurable function and � be an initial measure for the MC. Then for any
open set G � E,

n1 1
1.1 lim inf log � f X � G � � inf I u ,Ž . Ž . Ž .Ý� i½ 5n n u�Gi�1

� � Ž .where I: E � 0, � is convex and lower semicontinuous lcs , and is explicitly
Ž .identified in 1.13 below.

� n Ž .4Following standard terminology, Ý f X is said to satisfy the large1 i
Ž . Ž . Ž .deviation principle LDP with rate function I under � if 1.1 is matched�

by the upper bound

n1 1
1.2 lim sup log � f x � F � � inf I xŽ . Ž . Ž .Ý� i½ 5n n x�Fi�1

Ž . Ž .for closed F � E. If 1.1 holds and 1.2 only holds for compact F � E, one
Ž . Ž .says that the weak LDP holds. We will abbreviate inf I x � I � forx � �

� � EE.
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There is an extensive literature on LDP’s for MC’s under various special
� �models and hypotheses. The earliest work appears to be due to Miller 19 ,

who considered finite state spaces SS , and identified I as the convex conju-
Ž .gate of the Perron�Frobenius PF root of a related ‘‘transform matrix’’

Ž .defined below .
An important class of additive functionals that has received much atten-

tion are the empirical measures of the MC, which are studied in the seminal
� �papers of Donsker and Varadhan 14 . They gave an explicit representation

for the rate function by a variational formula. Subsequent contributions and
� �improvements on this subject were made by de Acosta 1, 3, 4 , Bolthausen

� � � � � � � �8 , Jain 16 , Dinwoodie and Ney 13 , Stroock 23 .
Results are less complete for general additive functions f. The case of

� � d � �bounded f has been treated in 3 , while the case when E � � is in 20
subject to a further irreducibility condition. Our goal in this paper is to
establish a universal lower bound in terms of a rate function which is a
natural structural object associated with the transition function of the chain
and f. The bound is tight for large classes of cases in the sense that there is a
corresponding upper bound with the same rate function. The issue of tight-
ness, with some examples and counterexamples, will be discussed in Sec-
tion 4. Our lower bound is ‘‘universal’’ in the sense that there are no

Ž . Žrestrictions on f other than measurability , and only irreducibility which is
. � 4clearly necessary is assumed on the MC X . In particular, there are non

� 4recurrence, ergodicity, or uniformity requirements on X .n
In addition to proving the above theorem, we start in Section 2 with a new

Ž .and streamlined proof of 1.1 when f is bounded. The idea is to take
advantage of the regeneration property of the MC to yield a subadditivity and
other properties of the chain, without requiring anything other than irre-

� �ducibility of the chain. Identification of the rate function draws on 12 . The
� �argument is roughly along the lines developed in 13 for the empirical

measure case.
The proof of the general result via a smoothing and truncation argument is

in Section 3. A key point in the proof is to develop a scheme in which
� 4truncations of the state space of an extension of the MC X , do not destroyn

irreducibility. Another important issue that has to be dealt with is the
convergence of the rate functions for the truncated chains.

1b. Background remarks on Markov chains and nonnegative kernels. We
� �summarize notation and some known facts about Markov chains. See 21 for

more details on definitions and proofs of the following assertions.
Ž .1 Let

P � P x , A , x � S, A � SS� 4Ž .
� 4 Ž .denote the transition kernel of X stochastic or substochastic . Irreducibil-n

Ž .ity means that there is a �-finite measure � on S, SS such that
�

n1.3 � A � 0 implies P x , A � 0 for all x � S.Ž . Ž . Ž .Ý
n�1
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There always exists a maximal irreducibility measure � , namely an irre-
ducibility measure with respect to which all irreducibility measures are
absolutely continuous.

Irreducibility of P implies the existence of a probability measure � on0
Ž . Ž .S, SS , a set C � SS , with � C � 0, an integer m � 0 and a 0 � 	 � 1 such0
that

1.4 	 1 x � A � P m0 x , A , x � S, A � SSŽ . Ž . Ž . Ž .C 0

Ž� � . Ž . Ž .21 , Theorem 2.1 . We call � , C, m , 	 a minorization for P. If 1.4 is0 0
satisfied with m � 1, we say that P satisfies a strong minorization.0

Ž . � Ž . 42 Irreducibility of a nonnegative kernel K x, A ; x � S, A � SS is de-
Ž .fined as in 1.3 . An irreducible kernel K, may satisfy a minorization

1.5 	 1 x � A � K m0 x , A .Ž . Ž . Ž . Ž .C 0

Ž .In this case the convergence parameter of K, say R K , is defined to be the
radius of convergence of the power series

�
n n1.6 r � K C .Ž . Ž .Ž .Ý 0

n�1

Ž � �This definition is independent of the choice of � and C see 21 , Proposi-0
.tion 3.4 .

In the present work we will be concerned with the transform kernel

² :1.7 K x , A � P x , dy exp 
 , f y , 
 � E*, A � SS ,Ž . Ž . Ž . Ž .Ž .H

A

where E* is the dual space of E. K is clearly irreducible since


K n x , A � 0 � P n x , A � 0.Ž . Ž .


Ž . Ž .3 The definition 1.6 of the convergence parameter depends on the
Ž . � �existence of the minorization 1.5 . This minorization is proved in 21 ,

Theorem 2.1 for any non-negative irreducible kernel under the assumption
� n4 Ž � � .that all powers K are �-finite see 21 , page 2 . The definition and

relevant properties of the convergence parameter depend only on irreducibil-
Ž . � n4ity and 1.5 , not directly on the �-finiteness of K . If K does not itself have

n� 4�-finite powers but is minorized by an irreducible kernel K with K
Ž .�-finite, then 1.5 will also hold for K, and the properties of the convergence

� �parameter developed in Chapters 2�4 of 21 apply to K.
� n 4 Ž .In the present context K , n � 1, 2, . . . defined in 1.7 may not be


�-finite, but K is minorized by the bounded irreducible kernel


² :1.8 K x , A � exp 
 , f y 	 1 P x , dy .Ž . Ž . Ž . Ž .Ž . .H

A

The previous remarks apply to K , which thus satisfies a minorization


1.9 	 1 x � A � K m0 x , A ,Ž . Ž . Ž . Ž .C 0 


Ž . Ž .with � C � 0, � S � 0.0
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Ž . Ž . Ž . �4 An alternative equivalent form of the minorization 1.5 and simi-
Ž .�larly 1.9 is the existence of a small function s: S � � such that

1.10 s x � A � K m0 x , A ,Ž . Ž . Ž . Ž .0

� � Ž .where Hsd� � 0 21 . Then the convergence parameter R K is the radius of
convergence of
1.11 r n � K ns .Ž . Ž .Ý 0

n

Ž .Finally, the rate function I in 1.1 will be identified as follows. Let

1.12 � 
 � log R�1 K .Ž . Ž . Ž .


Then
1.13 I u � �* u ,Ž . Ž . Ž .

where
² :�* u � sup 
 , u � � 
 .Ž . Ž .


�E*

Ž .�* is the convex conjugate of �.

Ž .2. Bounded f . In this section we prove the lower bound 1.1 for irre-
� 4 � �ducible X when f : S � E is bounded. This result is known 3 , but we given

a new and streamlined proof along lines developed in a different context in
� �13 . This is based on a subadditivity argument stemming from the regenera-
tion structure of the chain, and an identification of the rate function via

� � � �Varadhan’s theorem 24 , Theorem 2.2 and Dinwoodie’s 12 Theorem 3.1. A
large deviation upper bound for compacts is a byproduct. Subadditivity

� � � � � �arguments were introduced in 17 and 7 in the i.i.d case, and in 23 for
Ž .Markov chains under a strong upper and lower bound condition on the

transition kernel. We use regeneration to avoid these restrictions.

REMARK. Note that the arguments and conclusions of this section hold for
�Ž Ž . 4substochastic transition kernels P � P x, A , x � S, A � SS .

Ž .Recall that R K is the convergence parameter of the kernel


² :K x , A � exp 
 , f y P x , dy , x � S, A � SS , 
 � E* andŽ . Ž . Ž .Ž .H

A

² :� 
 � �log R K , �* v � sup 
 , v � � 
 , v � E.Ž . Ž . Ž .Ž .


�E*

2.1Ž .

Ž . Ž .Let S � f x 
 ��� f X .n 1 n

� 4PROPOSITION 2.1. If X is irreducible, f is bounded, � is any initialn
Ž .distribution of X and G is an open set, then1

1 Sn
lim inf log � � G � ��* G ,Ž .�½ 5n n

Ž . Ž .where �* G � inf �* u .u� G

The proof of this proposition will follow from several lemmas.
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� 4Let � be the maximal irreducibility measure of X . Then we haven
Ž .remarked that there exists a minorization � , C, m , 	 , namely,0 0

2.2 	 1 x � A � P m0 x , A , x � S, A � SS ,Ž . Ž . Ž . Ž .C 0

Ž . Ž .with � S � 0 and � C � 0.0
Hence for any n � 0,

	 1 x � P n A � P m0
n x , A .Ž . Ž . Ž .C 0

nŽ .Now irreducibility implies that � P C � 0 for some n, and hence letting0
n Ž .� P � � and m 
 n � m, we always have a minorization � , C, m, 	 ,0 0

namely,

2.3 	 1 x � A � P m x , A , x � S, A � SS with � C � 0.Ž . Ž . Ž . Ž . Ž .C

We first prove the proposition under the strong minorization hypothesis

2.4 	 1 x � A � P x , AŽ . Ž . Ž . Ž .C

� Ž .�i.e., m � 1 in 2.3 , and the further restriction that

2.5 � A � 0 implies P x , A � 0 for all x � S.Ž . Ž . Ž .
� Ž . Ž . � 4 �Note that 2.4 and � C � 0 implies that X is aperiodic. These restric-n
tions will later be removed.

Ž . � 4Under 2.4 there is a regeneration structure associated with X . Namely,n
� 4 � 4 � 4a sequence of r.v.’s Y , n � 1, 2, . . . � 0, 1 is adjoined to X , such thatn n

�Ž .4 � 4 � 4X , Y is a MC on S � 0, 1 , the marginal sequence Y is i.i.d. withn n n
� 4P Y � 1 � 	 andn

� � 4� X � A , Y � e X � C , Y � 1 � � A P Y � e ,� 4 Ž .n
1 n
1 n n 1

� 4 � 4where e � 0 or 1. We abbreviate the event X � C � Y � 1 by R , andn n n
say that regeneration occurs at time n. Intuitively, if R occurs, then X isn n
1

Ž � � � � � � � �.distributed by � , independent of the past. See, e.g., 21 , 18 , 20 or 5 . Let
Sn

2.6 � � � � � � R ,Ž . n � nž /ž /n
and
2.7 a � � B  ,Ž . Ž .Ž .n n v

Ž . � � � 4where B  � u � E: u � v �  .v

REMARK. When we write
Sn

2.8 � � �, X � A , Y � e ,Ž . � n n½ 5n
� 4the initial measure � should really be on S � 0, 1 . However, since the

conditional probabilities

� � 42.9 � X � A , Y � e X � x , Y � e� , e, e� � 0, 1� 4Ž . n n 0 0

are independent of e�, it is only the marginal part of the measure � on S that
Ž .is relevant. Hence with some abuse of notation , if we take � to be a measure

Ž . Ž .on S, SS , 2.8 will still be well defined.
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Ž . Ž .LEMMA 2.2. Assume 2.4 and 2.5 . Then:

Ž .i �log a � �log a � log a ;m
 n m n
Ž .ii if a � 0 for some n , then a � 0 for all sufficiently large n;n 0 n0
Ž . Ž . Ž . Ž .iii lim 1�n log a � l v,  say exists.n

Ž . Ž .PROOF. Write S � f X 
 ��� 
f X , S � S . Thenm , n m n 1, n n

a � � S � mB  , S � nB  � R � R� 4Ž . Ž .Ž .m
 n � m v m
1, m
n v m m
n

� � S � mB  � R � S � nB  � R� 4 � 4Ž . Ž .Ž . Ž .� m v m � n v n2.10Ž .
� a a proving i .Ž .m n

Ž .For part ii , suppose a � 0 for some n , and define k byn 00

2.11 n � kn 
 d , 0 � d � n .Ž . 0 0

Ž .Since B  is open, there is an r � 1 such thatv

2.12 � B r � 0.Ž . Ž .Ž .n v0

Ž .Take r � � r, 1 . Then for n sufficiently large and 	 sufficiently small

2.13 n�kn B   B r �  B r 
 B 	 .Ž . Ž . Ž . Ž . Ž . Ž .0 v v v 0

Ž .Hence for such n, 	 , and d as in 2.11 ,

a � � S � nB  � R� 4Ž .Ž .n � n v n

� � S � kn B r 
 kn B 	 � R � R� 4Ž . Ž .Ž .� n 0 v 0 0 k n n0

� � S � kn B r � RŽ .� 4ž /� k n 0 v k n0 0

2.14Ž .

�� S � kn B 	 � R .� 4Ž .Ž .� d 0 0 d

� � � �Now kn � d kn �d , where t is the largest integer in t, and hence the last0 0
Ž .factor in 2.14 is greater than or equal to

kn0
� S � d B 	 � RŽ .� d 0 d½ 5ž /d

2.15Ž . dkn0� � S � B 	 � R .Ž .� 1 0 1½ 5ž /ž /d

Ž . Ž . � � � Ž .4But now � C � 0 implies � R � 0 and � S � kn �d B 	 � 1 as n �� 1 � 1 0 0
Ž .�. Hence 2.15 � 0 for large n. Finally, regeneration implies that the first
Ž .factor in 2.14 is greater than or equal to

k k0 02.16 � S � n B r � R � � B r � 0 by 2.12 .Ž . Ž . Ž . Ž .� 4 Ž .Ž .ž /ž /� n 0 v n n v0 0 0

Ž .This proves ii .
Ž . Ž . Ž . Ž � � .Finally i and ii � iii . See, e.g., Lemma 6.1.11 of 11 . �
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DEFINITION. Let

2.17 I v � � lim l v ,  .Ž . Ž . Ž .
�0

� 4We can now draw some conclusions about the measures � .n

Ž . Ž .LEMMA 2.3. Assume 2.4 and 2.5 . Then:

Ž . � 4i The measures � satisfy the weak LDP with convex, l.s.c. rate func-n
Ž .tion I � .

Ž .ii If � � � is closed and convex, then
2.18 � � � exp �nI � .Ž . Ž . Ž .Ž .n

Ž .PROOF. The proof of part i is a standard argument, exactly as in Proposi-
� � Ž .tions 4.5 and 4.7 of 6 . For part ii note that the subadditivity in Lemma 2.2

works if balls are replaced by any measurable convex set. Then for compact,
convex K � �,

1 1
2.19 log � K � log � K ,Ž . Ž . Ž .n m nn mn

and for fixed n � 1,

1 1
2.20 log � K � lim sup log � K � �I K � �I � .Ž . Ž . Ž . Ž . Ž .n m nn mnm��

Now for  � 0, take compact convex K � � such that

2.21 � � �  � � K � exp �nI � by 2.20 .Ž . Ž . Ž . Ž . Ž .Ž .n n 

Finally, let  � 0. �

Let
Sn

2.22 � � � � � � � X � CŽ . Ž . Ž .n � n½ 5ž /n

� 4 � 4and note that since Y is independent of X ,n n�1 n n�1

2.23 	� � � , n � 1.Ž . n n

Ž .In the next lemma we identify the rate function I � . The boundedness of f is
used here for the first time.

Ž . Ž . Ž .LEMMA 2.4. Assume 2.4 , 2.5 and f bounded. Let � 
 be as defined in
Ž .2.1 . Then
2.24 I v � �* v , v � �.Ž . Ž . Ž .

PROOF. We first show that

1
n2.25 lim log � K C � I* 
 , 
 � �*,Ž . Ž . Ž .
nn��
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where
² :2.26 I* 
 � sup 
 , v � I v .Ž . Ž . Ž .

v��

Ž .To this end recall that the measure � and set C are as in 2.4 , and

2.27 � K n C � � dx K n x , CŽ . Ž . Ž . Ž .H
 

S

² :� � dx E exp 
 , S 1 XŽ . Ž .Ž .H x n C n

² :� E exp 
 , S 1 XŽ .Ž .� n C n

² :2.28 � exp n 
 , u � duŽ . Ž .Ž .H n
E

² :� exp n 
 , u � du ,Ž .Ž .H n
Ž .B b0

� Ž .� Ž .where b � sup f x , since the support of � � B b .x � S n 0
Ž Ž .Now we have seen in Lemma 2.3 that the measures � � 	� on B b ,n n 0

Ž .. Ž .EE � B b satisfy the weak LDP and the upper bound inequality 2.18 for0
closed convex sets.

�1Ž . Ž .Since 
 is linear, 
 J � B b is a closed convex set for any closed0
interval J. This suffices to justify the application of Varadhan’s theorem
Ž � �.Theorem 2.2 of 24 to conclude that

1 1
n ² :2.29 lim log � K C � lim log exp n 
 , u � duŽ . Ž . Ž .Ž .H
 nn n Ž .B b0

² :� sup 
 , v � I vŽ .
Ž .v�B b0

² :2.30 � sup 
 , v � I v � I* 
Ž . Ž . Ž .
v�E

Ž . Ž . � Ž .� Ž .since I v � � for v � B b since � is supported on B b , proving 2.25 .0 0
nŽ .Now the power series with coefficients � K C has radius of convergence


�1 �11�n 1�nn nR K � lim sup � K C � lim � K CŽ . Ž .Ž . Ž . Ž .
 
 
2.31Ž .
� exp �I* 
 by 2.25 .Ž . Ž .Ž .

Hence
2.32 � 
 � �log R K � I* 
 .Ž . Ž . Ž .Ž .


Ž .Since I � is known to be convex and lsc,

2.33 I v � I** v � �* vŽ . Ž . Ž . Ž .
Ž � �.see 15 . �

Ž .Summarizing Lemmas 2.3 and 2.4 and taking into account 2.23 , we see
Ž . Ž .that under 2.4 , 2.5 and f bounded,

2.34 The measures � satisfy the weak LDP with rate �*,Ž . n
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which may be of some independent interest. The next step is to replace the
Ž .initial measure � by an arbitrary sub stochastic �.

Ž . Ž .LEMMA 2.5. Assume 2.4 , 2.5 and f bounded. Then

1 Sn
2.35 lim inf log � � G , X � C � ��* GŽ . Ž .� n½ 5n n

for all open G.

� 4 n0�1 Ž .PROOF. Irreducibility of X implies that �P C � 0 for some n � 1.n 0
Ž .With 2.4 this implies that

2.36 	 �� A � �P n0 A ,Ž . Ž . Ž .
n0�1 Ž .with 	 � � 	�P C . Now take any x � G. Then0

� S � nB  � RŽ .� 4ž /� n x n0

� � S � ds, S � nB  � s � R � RŽ .� 4H ž /� n n 
1, n x n n0 0 0 0
E

�� � S � nB  � s � R S � s, RŽ .� 4H ž /� n 
1, n x n n n0 0 0 0Ž � �.B n f0

2.37Ž .

�� S � ds � R .� 4Ž .� n n0 0

Since f is bounded, the regeneration property implies that there is an r � 1
Ž .such that for n sufficiently large, 2.37 is greater than or equal to

2.38 � S � nB r � R � S � ds � R .� 4Ž . Ž .� 4 Ž .H ž /� n�n x n�n � n n0 0 0 0 0
E

Ž .Since the first factor in 2.38 is independent of s, this equals

� R � S � nB r � RŽ .� 4Ž . ž /� n � n�n x n�n0 0 0 0

� � R � S � n � n B r � � RŽ . Ž .� 4Ž . ž /� n � n�n 0 x n�n0 0 0 02.39Ž .
for some r � � r

� � R 	� B r .Ž .Ž . Ž .� n n�n x0 0 0

Now

2.40 � R � 	 � X � C � 	�P n0 C � 		 �� C � 0,Ž . Ž . Ž .Ž . Ž .� n � n0 0

Ž .so applying Lemmas 2.3 and 2.4 to 2.39 we see that

1 Sn
lim inf log � � B  , X � CŽ .� x n½ 50n n2.41Ž .

� ��* B  � ��* x .Ž . Ž .Ž .x 00

Since this holds for all x � G, Lemma 2.5 follows. �0
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Ž .PROOF OF PROPOSITION 2.1. We need to get rid of the restrictions 2.4 and
Ž .2.5 . To that end, define the transition function

�
n n
12.42 P x , A � 1 � t t P x , A , 0 � t � 1.Ž . Ž . Ž . Ž .Ýt

n�0

Ž .Clearly P is a transition kernel. By 2.3 ,t

P x , A � 1 � t t m� 1	 1 x � A ,Ž . Ž . Ž . Ž .t C

Ž . Ž . m� 1and it satisfies 2.4 with 	 replaced by 	 1 � t t . Also, since P is
Ž .irreducible, P satisfies 2.5 . Therefore by Lemma 2.5,t

1 Sn �2.43 lim inf log � � G � �� G ,Ž . Ž .� , t t½ 5n nn��

where � is the measure determined by P with initial measure �, and the�, t t
subscripts t denote the corresponding quantities determined by P .t

We now quote the following lemma.

Ž� � . � 4LEMMA 2.6 3 , Lemma 5.2 . Let � , j � 1, 2, . . . be i.i.d. r.v.’s withj

2.44 � � � k � 1 � t t k , k � 1, 2, . . . , 0 � t � 1.� 4Ž . Ž .j

�� Ž .� 4 � Ž c.Let b � sup f x , x � S . For open G � E,  � 0 let G � v � E: d v, G

4 Ž .�  . Then for any substochastic measure � on S, SS ,

S Sn n
2.45 � � G � � � G 
 r t ,Ž . Ž .� , t  � n½ 5 ½ 5n n

where
n1 

r t � � � � 1 
 .Ž . Ýn j½ 5n 2b1

Ž .Now from 2.45 we see that

1 Sn
lim inf log � � G� , t ½ 5n nn��

1 S 1n� max lim inf log � � G , lim sup log r t .Ž .� n½ 5n n n

2.46Ž .

However, by the classical Cramer theorem,´
1

lim lim log r t � ��.Ž .nnn��t�0

Ž . Ž .Hence by 2.43 and 2.45 ,

1 Sn�lim � � G � lim lim inf log � � GŽ .t  � , t ½ 5n nn��t�0 t�0

1 Sn� lim inf log � � G .�½ 5n nn��
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Now take any u � G, and  sufficiently small so that u � G . Then

1 Sn�2.47 lim � � u � lim inf log � � G .Ž . Ž .t �½ 5n nt�0

However,
�1P � 1 � t P implying R K � 1 � t R K .Ž . Ž .Ž . Ž .t 
 , t 


Thus

2.48 � 
 � � 
 
 log 1 � tŽ . Ž . Ž . Ž .t

and

2.49 �� u � �* u � log 1 � t .Ž . Ž . Ž . Ž .t

Ž .Thus by 2.47 ,

1 Sn��* u � lim inf log � � GŽ . �½ 5n n

for all u � G. This concludes the proof of Proposition 2.1. �

3. Smoothing, truncation and the proof of the theorem. The first
Ž .step is to define a new Markov kernel on S � E, SS � EE which corresponds

� 4to a ‘‘smoothing’’ of the original Markov chain X , by adjoining ann n�1
� � 4independent, identically distributed sequence Z of E-valued Gaussiann n�1

� 4 � � 4vectors with ‘‘small variance’’ which is independent of X ; Z will ben n�1 n
formally introduced later, in the proof of the Theorem. It is important for our

Ž � .purposes that the common Gaussian distribution LL Z have full support.1
For the sake of completeness, we give a simple direct proof of the following
lemma.

LEMMA 3.1. There exists an E-valued centered Gaussian vector Z such that
for every � � 0 and every open set G in E,

� 4� � Z � G � 0.

� 4 Ž .PROOF. Let g be an independent sequence of N 0, 1 random vari-n n�1
� 4ables, let a be a positive sequence such that for all  � 0,n n�1

�

� �� g �  a � 0,� 4Ł 1 n
n�1

� 4 � � 4let b be a positive sequence such that Ý a b � 1 and let u ben n�1 n�1 n n n n�1
a dense subset of the unit ball of E. Define

�

Z � b g u ;Ý n n n
n�1

1Ž . � � � � � �the series converges in L E since Ý � b g u � � g Ý b � �, andn�1 n n n 1 n�1 n
Z is a centered Gaussian vector. Given u � E,  � 0, choose n � �, � � 00
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� �such that u � �u � �2. Thenn0
�

� � � �0 � � g � �4 a � b g � � � �4� 4Ž . � 4Ł n n n n0 0
n	n0

 
� � � �� � g � a � b g � � �� n n n n½ 5 ½ 50 0ž /4 4n	n0


� � b g u 
 b g � � u �Ž .Ý n n n n n n0 0 0½ 52n	n0

� �� 4� � Z � u �  .
Since obviously the same argument applies to � Z, the result is proved. �

Ž .Let � � LL � Z . We introduce the Markov kernel�

P x , u , D � P x , � � � D , x , u � S � E, D � SS � EE .Ž . Ž . Ž . Ž .Ž . Ž .� �

Note that the right side is independent of u. Let f : S � E be an arbitrary
measurable function. We will extend f to S � E in a suitable way and define
the truncations of P at suitable sets of boundedness of the new function. Let�

g: S � E � E be defined by
g x , u � f x 
 u , x � S, u � E.Ž . Ž .

�1Ž Ž ..Let C � g B k for k � 1, and let P be the truncation of P at C :k 0 � , k � k

P x , u , D � P x , u , D , x , u � C , D � SS � EE ,Ž . Ž . Ž . Ž .Ž . Ž . k� , k � k

Ž . � 4where SS � EE � D � SS � EE : D � C ; of course, P is a sub-Markovk k � , k
kernel. The important property of the smoothed kernel P is that irreducibil-�

Ž .ity is preserved by truncations. This property need not be true for P.

LEMMA 3.2. Let � be an irreducibility measure for P. Then:

Ž .i P is irreducible with irreducibility measure � � � ;� �

Ž . Ž . Žii P is irreducible with irreducibility measure � � � , where � �� , k � k
. Ž . � Ž .� � � � � SS � EE .� k � k

Ž .PROOF. i It is easily verified from the definition of P that for all n � 1,�

3.1 P n x , u , D � P n x , � � � D , D � SS � EE .Ž . Ž . Ž . Ž .Ž . Ž .� �

Ž .Ž . Ž .Assume now � � � D � 0; given x, u � S � E, we must prove that�

3.2 P n x , u , D � 0 for some n � 1.Ž . Ž .Ž .�

� Ž . 4 Ž . Ž .Let D � u � E: y, u � D , y � S and let h y � � D . By Fubini’sy � y
theorem,

h y � dy � � � � D � 0.Ž . Ž . Ž . Ž .H �
S

By the irreducibility of P, there exists n � 1 such that

3.3 h y P n x , dy � 0.Ž . Ž . Ž .H
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Ž . Ž .By 3.1 , 3.3 and Fubini’s theorem,

P n x , u , D � P n x , dy h y � 0,Ž . Ž . Ž .Ž . H�

Ž .proving 3.2 .
Ž .ii We first find a convenient expression for the powers of P . Let� , k

Ž . Ž .x , u � C , D � SS � EE . Then0 0 k k

P n x , u , DŽ .Ž .� , k 0 0

� P x , u , d x , uŽ . Ž .Ž .H � , k 0 0 1 1

��� P x , u , d x , u 1 x , uŽ . Ž . Ž .Ž .H H � , k n�1 n�1 n n D n n3.4Ž .

� P x , dx � duŽ . Ž .H 0 1 � 1

n�1

��� P x , dx � du 1 x , u 1 x , u .Ž . Ž . Ž . Ž .ŁH H n�1 n � n C j j D n nk
j�1

Ž . Ž Ž .. Ž . Ž .But 1 x , u � 1 g x , u � 1 u . Therefore by 3.4 ,C j j B j j B �f Ž x . jk k k j

P n x , u , DŽ .Ž .� , k 0 0

� P x , dx ��� P x , dx � duŽ . Ž . Ž .H H H0 1 n�1 n � n3.5Ž .
n�1

� � B k � f x 1 x , u .Ž . Ž . Ž .Ž .Ł � 0 j D n n
j�1

Ž .Ž . Ž .Assume now D � C , � � � D � 0, and by i let n � 1 be such thatk �
nŽŽ . nŽŽ . ..P x , y P x , y , D . Since� 0 0 j 0 0

n�1
n�1� B k � f x � 0 for all x , . . . , x � S ,Ž . Ž . Ž .Ž .Ł � 0 j 1 n�1

j�1

n ŽŽ . .if P x , u , D � 0 we would have� , k 0 0

0 � P x , dx ��� P x , dx � du 1 x , uŽ . Ž . Ž . Ž .H H H0 1 n�1 n � n D n n

� P n x , dx � du 1 x , uŽ . Ž . Ž .H 0 n � n D n n

� P n x , u , D ,Ž .Ž .� 0 0

a contradiction. �

We will need the following analytical property of the convergence parame-
Ž .ter R K of the transform kernel K associated to an irreducible sub-Markov
 


� �kernel. Lemma 3.3 generalizes Corollary 4.3 of 3 .
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LEMMA 3.3. Let P be an irreducible sub-Markov kernel. Let f : S � E be a
bounded measurable function, and for 
 � E* define

² :K x , A � exp 
 , f y P x , dy , x � S, A � SS .Ž . Ž . Ž .Ž .H

A

Ž .Let R K be the convergence parameter of K and define �: E* � � by
 


Ž . Ž .� 
 � �log R K .


Then � is a proper, convex, w*-lower semicontinuous function.

� �PROOF. The fact that � is a proper convex function is proved in 3 ,
Lemma 4.1.

Ž . � �I Since P is irreducible, by Theorem 2.1 of 21 there exists m � 1, a
Ž .small function s on S and a small probability measure � on S, SS such that

P m x , A � s x � A , x � S, A � SS ;Ž . Ž . Ž .
m Ž � � .moreover, m can be chosen so that P is irreducible see 21 , pages 20�22 .

� Ž . Ž . �Note that one can take s x � 	 1 x with 	 , C as in Section 2.C
� � � � 4 �Let B � 
 � E*: 
 � r , r � 0. If 
 � B , thenr r

K m x , A � P x , dx ��� P x , dxŽ . Ž . Ž .H H H
 1 m�1 m

² :�exp 
 , f x 
 ��� 
f x 1 xŽ . Ž . Ž .Ž .1 m A m3.6Ž .
� exp �mrc P m x , AŽ . Ž .
� t x � A uniformly for 
 � B� ,Ž . Ž . Ž .r

� Ž .� Ž . Ž .where c � sup f x and t � exp �mrc s. The argument leading to 3.6x � S
also shows: for all f � B�, K has the same period as P and therefore K m isr 
 


Ž� � .irreducible 21 , page 20�22 .
Ž . Ž . �II For fixed r � 0 and t as in 3.6 , we define on B ,r

nmh 
 � � K � t � � t , n � 1.Ž . Ž .n 


ŽThen h is w*-continuous, for, by the Banach�Alaoglu theorem see, e.g.,n
� � . �10 , page 138 B endowed with the w*-topology is a compact metrizabler

� 4 �space and therefore it is enough to prove that if 
 is a sequence in B ,k k �1 r
then

w*
3.7 
 � 
 implies lim h 
 � h 
 .Ž . Ž . Ž .k n k n

k

Ž .However, 3.7 is easily proved by induction on n and repeated applications of
the dominated convergence theorem.

Ž . Ž . Ž .III It follows from II that for each � � 0, the function b �, � defined on
B� byr

�
n
13.8 b 
 , � � � h 
Ž . Ž . Ž .Ý n

n�0

is w*-lower semicontinuous.
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Ž . � Ž . Ž m.IV Next, on B , define � 
 � R K . Then � is w*-upper semicontinu-r 


Ž .ous. For, arguing as in II , it is enough to show that
w*�
 � B , 
 � 
 imply lim sup � 
 � � 
 .Ž . Ž .k r k k

k

Let us recall that by an equivalent formulation of the definition of conver-
Ž � �.gence parameter Proposition 4.2 of 21 ,

R K m � sup � � 0: b 
 , � � 1 .� 4Ž .Ž .


Ž Ž . . Ž .Let  � 0. Then b 
 , � 
 
  � 1 and by III we have

lim inf b 
 , � 
 
  � b 
 , � 
 
  � 1,Ž . Ž .Ž .Ž .k
k

Ž Ž . .which implies that there exists k �1 such that for k�k , b 
 , � 
 
 �0 0 k
Ž . Ž .1, and therefore � 
 � � 
 
  . It follows thatk

lim sup � 
 � � 
 
  .Ž . Ž .k
k

However,  is arbitrary. This proves the w*-upper semicontinuity of � .
Ž . � �V � B is w*-lower semicontinuous, for, by the proof of Proposition 3.5r

� � Ž m. Ž Ž ..mof 21 , R K � R K and therefore
 


11�mm� 
 � �log R K � � log � 
 .Ž . Ž .Ž .Ž .
 m
Ž .The claim now follows from IV .

Ž .VI Finally we prove that � is w*-lower semicontinuous on E*. By the
� Ž . 4convexity of �, the sets L � 
 � E*: � 
 � a are convex for each a � �a

Ž . �and by V , L � B is w*-closed for each r � 0. By the Krein�Smulyana r
Ž � � .theorem see, e.g., 10 , page 163 it follows that L is w*-closed for all a � �;a

that is, � is u*-lower semicontinuous. �

Ž . Ž .For x, u � S � E, D � SS � EE , 
 � E*, let

² :K x , u , D � exp 
 , g y , v P x , u , d y , v .Ž . Ž . Ž . Ž .Ž . Ž . Ž .H
 , � �
D

Ž .The kernel K is irreducible since P is so; let R K be its convergence
 , � � 
 , �

Ž . Ž . Ž . Ž .parameter and � 
 � �log R K . Also, for x, u � C , D � SS � EE ,� 
 , � k k

 � E*, let

² :K x , u , D � exp 
 , g y , v P x , u , d y , v .Ž . Ž . Ž . Ž .Ž . Ž . Ž .H
 , � , k � , k
D

Ž .Then K is irreducible since P is so; let R K be its convergence
 , � , k � , k 
 , � , k
Ž . Ž .parameter and � 
 � �log R K .� , k 
 , � , k

� 4LEMMA 3.4. Let Y be an S � E-valued Markov chain with transitionn n�1
kernel P and initial distribution �. Then for every open set G in E,�

n1 1
�lim inf log � g Y � G � � inf � u .Ž .Ž .Ý� j �½ 5n nn u�Gj�1
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� Ž . Ž .PROOF. Let � � � SS � EE . Since g is bounded on C , we have fork k k
Ž .each k � 1, by Lemma 3.2 ii and Proposition 2.1 that
n1 1

lim inf log � g Y � GŽ .Ý� j½ 5n nn j�1

1
� lim inf log � d x , u P x , u , d x , uŽ . Ž . Ž .Ž . Ž .H Hk 1 1 � , k 1 1 2 2nn3.9Ž .

n1
��� P x , u , d x , u 1 g x , uŽ . Ž . Ž .Ž . ÝH H � , k n�1 n�1 n n G j jž /n j�1

� � inf �� u .Ž .� , k
u�G

ŽŽ . . ŽŽ . .Since clearly K x, u , D � C � K x, u , D as k � � for all
 , � , k k 
 , �

Ž . � �x, u � S � E, D � SS � EE, it follows from Theorem 2.1 of 3 that

R K � R K , � 
 �� 
 .Ž . Ž .Ž . Ž .
 , � , k 
 , � � , k �

Ž . � Ž . �Now � 0 � 0 because R K � 1 and since the convergence parameter� 0, �

Ž� � .is always finite 21 , Theorem 3.2 , the function � is proper. By Lemma 3.3,�

� �the functions � satisfy the assumptions of Theorem B.3 of 3 and hence� , k
� 4 Žby that theorem, given u � G, there exists a sequence u in E hence0 k k �1

.eventually in G such that u � u andk 0

3.10 lim sup �� u � �� u .Ž . Ž . Ž .� , k k � 0
k

Ž . Ž .Therefore by 3.9 and 3.10 ,
n1 1

�lim inf log � g Y � G � �� u . �Ž .Ž .Ý j � 0½ 5n nn j�1

LEMMA 3.5. For all 
 � E*, � � 0,

� 
 � � 
 
 � 2V 
 ,Ž . Ž . Ž .�

1 2Ž . ² : Ž .where V 
 � H 
 , u � du .12

PROOF. Let

² :� B � exp 
 , u � du , B � EE ,Ž . Ž .Ž .H
 , � �
B

² : 2� 
 � exp 
 , u � du � exp � V 
 .� 4Ž . Ž . Ž .Ž .ˆ H� �

Then it is easily verified that for all n � 1, D � SS � EE,
n�1n nK x , u , D � � 
 K x , � � � D .Ž . Ž . Ž . Ž .Ž . Ž .ˆ Ž .
 , � � 
 
 , �

As remarked in the Introduction, there exists m � 1 such that the kernel K


has the minorization

K m x , A � s x � A , x � S, A � SS ,Ž . Ž . Ž .
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for a certain small function s and a certain small probability measure � .
Then it is easily verified that

m� 1mK x , u , D � � 
 s x � � � D ,Ž . Ž . Ž . Ž .Ž . Ž .ˆ Ž .
 , � � 
 , �

x , u � S � E, D � SS � EE .Ž .
� � Ž . � Ž .�By 21 , Proposition 3.4, R K resp., R K is the radius of convergence
 , � 


of the power series with coefficients
nn n3.11 � � � K s � � K s � 
Ž . Ž .Ž .ˆŽ . Ž .
 , � 
 , � 
 �

Ž n . Ž .resp., � K s . It follows from 3.11 that


�1R K � R K � 
 ,Ž .Ž .ˆŽ . Ž .
 , � 
 �

which implies the conclusion. �

PROOF OF THEOREM. Let � be the Markovian probability measure on�

Ž .� � 4S, SS associated to P and the initial distribution �, and let X be then n�1
� � 4coordinate projections. Let Z be an independent sequence of E-valuedn n�1

Ž .Gaussian vectors with common law � , defined on �, AA, � . We regard�

� 4 � � 4 �X and Z as being defined on S � �, endowed with �� � � � �;n n�1 n n�1 �

Ž � . � 4also, let Y � X , Z . It is easily verified that Y is an S � E-valuedn n n n n�1
Markov chain with transition kernel P and initial distribution � � � .� �

Given an open set G in E and u � G, let  � 0 be such that u � G , where

� Ž c. 4 Ž . Ž . �G � u � E: d u, G �  . Then, since g Y � f X 
 Z , we have for all j j j
n � 1,

n n n1 1 1
��� g Y � G � � f X � G 
 � Z � Ž . Ž .Ý Ý Ýj  � j j½ 5 ½ 5 ½ 5n n nj�1 j�1 j�1

and by Lemma 3.4,

n1 1
�� � u � lim inf log �� g Y � GŽ . Ž .Ý� j ½ 5n nn j�1

n1 1
� max lim inf log � f X � G , l  , � ,Ž .Ž .Ý� j½ 5ž /n nn j�1

3.12Ž .

Ž . Ž . ��Ž . n � � 4where l  , � � lim sup 1�n log � 1�n Ý Z �  . By the well-knownn j�1 j
Ž � �.large deviation theorem for Gaussian measures see, e.g., 6 ,

1
l  , � � � inf V * u ,Ž . Ž .2� � �u �

1 2Ž . ² : Ž . Ž .where V 
 � H 
 , u � du . Since inf V * u � 0, as is easily seen, we1 � u � � 2

have
3.13 lim l  , � � ��.Ž . Ž .

��0
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On the other hand, by Lemma 3.5

� 2² :lim � u � lim sup 
 , u � � 
 
 � V 
Ž . Ž . Ž .Ž .�
��0 ��0 


2² :� sup sup 
 , u � � 
 
 � V 
Ž . Ž .Ž .
� 


2² :� sup sup 
 , u � � 
 
 � V 
Ž . Ž .Ž .
�


3.14Ž .

² :� sup 
 , u � � 
Ž .



� �* u .Ž .
Ž . Ž .The conclusion of the Theorem follows now from 3.13 and 3.14 by letting

Ž .� � 0 in 3.12 . �

4. Examples, comments.

� � � � � �4a. The Cramer theorem for Banach space valued r.v.’s 14 , 7 , 2 . In´
the i.i.d. case, the argument in Section 2 simplifies, and applies without any

Ž .restriction on the r.v.’s. By subadditivity � � LL S �n satisfies the weakn n
LDP and the upper bound in Lemma 2.5. Then by the modification of

� � Ž .Varadhan’s theorem in Theorem 1.1 of 12 and discussion with the author ,
for every M � 0,

1
² :� �lim log exp n 
 , u 	 M d�Ž .H nnn��4.1Ž .

² :� sup 
 , u 	 M � I u , 
 � E*Ž .
u�E

and hence

1
² :� �4.2 lim lim log exp n 
 , u 	 M d� � I* 
 .Ž . Ž .ŽH nnn��M��

Clearly

1
² :I* 
 � lim log exp n 
 , u d� � � 
 .Ž . Ž .Ž .H nn

Ž .In the other direction, by 4.2 ,

n² :1 Ý X , 
 	 M1 i
I* 
 � lim lim log � exp nŽ . ½ 5n mn��M��

² :� lim � exp X , 
 	 M1
M��

² :because X , 
 	 M , i � 1, 2, . . . are i.i.d.i

� � 
 .Ž .
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Ž . Ž .Thus I u � �* u and the weak LD theorem with rate �* follows. As is well
Ž � �.known see, e.g., 2 , if furthermore

� �E exp t X � � for all t � 0,Ž .1

� 4then � is exponentially tight, and the full LDP holds.n

4b. � is w*-lsc. It follows from Lemma 3.5 that � is w*-lower semicon-
Ž .tinuous even if f is not bounded . For, by the proof of Lemma 3.4, � is�

w*-lower semicontinuous on E*. On the other hand, it is easy to show that
� � ŽV B is sequentially w*-continuous using the integrability of Gaussianr

. � � � �vector , and therefore V B is w*-continuous. By Lemma 3.5, � B isr r
w*-lower semicontinuous for each r � 0. Applying the Krein�Smulyan theo-
rem as in the proof of Lemma 3.3, we conclude that � is w*-lower semicontin-
uous.

4c. Upper bounds and tightness. In large classes of cases, the rate I � �*
in the lower bound in our theorem is tight in the sense that it is matched by

Ž .an upper bound 1.2 with the same rate function �*. A general upper bound
� � Ž . Ž .is given in Theorem 4.2 of 1 in terms of � *, where � 
 � log r K ,


Ž .r K � the spectral radius of K . It is always the case that
 


4.3 � * � �*,Ž .
� �but there may be strict inequality. See also 22 . Thus there may be a gap

between the lower bound given via the convergence parameter and the upper
bound given via the spectral radius. There remain unsettled questions about
the validity of the full LDP at the level of generality of this paper. Here are
some special cases where upper and lower bound rate functions are the same
function �* as in our theorem.

1. If the state space S is finite, then the full LDP holds with rate I � �* for
any f.

� 42. Conditions under which the empirical measure of X satisfies the fulln
� � � � � � � �LDP are given in the original papers 14 and later in 22 , 4 , 16 and

� �13 . In this case a more explicit formula for the rate function is given.
3. If E � � d then a class of sets, called s-sets is characterized in Section 4 of

� � � � Ž .21 . If A is an s-set, then it is shown in 21 for arbitrary f that

1 Sn
4.4 lim sup log � � F , X � A � ��* FŽ . Ž .n n½ 5n n

Ž . Ž .for compact F. If also O � Interior Dom � , then 4.4 holds for closed F. If
� 4the whole space S is an s-set, then taking A � S we see that � S �n � �x n

satisfies the LD upper bound with rate �*, hence the full LDP. In particu-
lar, if f is bounded and if for some minorization set C and some n � 1,

nŽ . � 4P x, C � 	 � 0 for all x � S, then S is an s-set and � S �n � �x n
satisfies the upper bound with rate �*. Weaker conditions can be derived
from the above reference.
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� 4For example, if the state space is countable and X is irreducible andn
Ž .uniformly recurrent in the sense that p x, x � 	 � 0 for all x � S and0
Ž .some x � S, and if f is bounded, then � S �n � � satisfies the full LDP0 x n

with rate �*. Of course such results hold much more generally.

4d. Examples and counterexamples.
Ž . � 4A There are many easily described examples for which P S �n � an

decays superexponentially, so that

1 Sn
lim log P � a exists and � ��.½ 5n n

Clearly there are also examples with large tails where this limit exists and
equals 0. In these cases the convergence parameter and spectral radius
Ž . Ž .respectively give correct but trivial answers.

However, as the following example shows, there are cases where the
convergence parameter and spectral radius give trivial bounds, but where
the correct limit exists and lies strictly in between these bounds. Namely, this

� 4is an example of a uniformly ergodic chain on S � 0, 1, . . . with f : S � �,
for which these rate candidates only enable us to conclude that for 0 � a � �,

1 S 1 Sn n�� � lim inf log � � a � lim sup log � � a � 0.� �½ 5 ½ 5n n n n

Nevertheless, the exact asymptotics can be worked out directly.
� 4 � Ž .4Let X ; n � 0 have transition function P i, j given byn

P 0, 3 j � p � 0, j � 1, 2, . . . , P 0, 0 � p � 0,Ž . Ž .j 0

P 3 j, 3 j � 1 � P 3 j � 1, 3 j � 2 � P 3 j � 2, 0 � 1, j � 1.Ž . Ž . Ž .
Ž .Take f 3 j � j, j � 0, 1, . . . ,

f 3 j � 1 � �2 j, f 3 j � 2 � j, j � 1, 2, . . . .Ž . Ž .
� 4Now we can take the minorization measure � and set C to be C � 0 ,

Ž . Ž . Ž .� j � 	 j , 	 � P 0, 0 . Then it can be easily checked that0

n n n4.5 � K C � K 0, 0 � E exp 
 S , X � 0 
 P 0, 0 .Ž . Ž . Ž . Ž . Ž .
 
 0 n n

� Ž .4Furthermore P i, j has invariant measure � given by
�1

� 0 � 4 � 3 p ,Ž . Ž .0
4.6Ž . �1

� 3 j � � 3 j � 1 � � 3 j � 2 � 4 � 3 p p , j � 1, 2, . . . .Ž . Ž . Ž . Ž .0 j

Hence

R K � 1, � 
 � 0 for all 
Ž .Ž .


and

0, if x � 0,
�* x �Ž . ½ �, if x 	 0.
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� 4Now if G is an open set and 0 � G then P S �n � G � 1, while if 0 � G0 n
then the convergence parameter yields the uninteresting lower bound

1 Sn
lim inf log � � G � ��.0 ½ 5n n

On the other hand,
nK i , 0 � E exp 
 S , X � 0Ž . Ž .
 i n n

so that

K n 3 j, 0 � exp �
 j , K n 3 j � i , 0 � exp 
 j .Ž . Ž . Ž . Ž .
 


Thus
1, if 
 � 0,

r K �Ž .
 ½ �, if 
 	 0,

Ž . � Ž .and � * x 
 0 for all x. Since sup K i, S � 
�, the spectral radius isi 


�taken to be 
�. This yields the trivial upper bound

1 Sn
lim sup log P � F � 0,½ 5n n

and neither the convex conjugate of the convergence parameter nor the
conjugate of the spectral radius tell us anything in this example. However,

Ž .by 4.6 ,
�1� 4lim P X � 0 � 4 � 3 pŽ .n 0

n

and hence

� 4 � 4� S � 3an � � X � 0 pÝ0 n 0 n�1 j
j�an

�1
� 4 � 3 p p .Ž . Ý0 j

j�an

Ž .B In the next example, the spectral radius still leads to a trivial upper
Ž .bound of � * x 
 0, but the convergence parameter yields a nondegenerate

� 4 Ž . Ž .rate for a full LDP. Let S � 0, 1, 2, . . . and P i, j be as in example A , but
Ž . Ž . Ž .now take f 3 j � 0, j � 0, f 3 j � 1 � 2 a , f 3 j � 2 � �a for j � 1, wherej j

Ž . � Ž .0 � a � �, and take p so that � 
 � Ý exp 
 a p � � for all 
 �j j j�1 j j
Ž .��, � .

Then we still have

K n 3 j, 0 � exp a 
 , K n 3 j � 1, 0 � exp �a 
Ž . Ž .Ž . Ž .
 j 
 j

Ž . Ž .and r K � 1 if 
 � 0, � � if 
 	 0. Thus � * x � 0.


� 4However, letting � � inf n � 1: S � 0 and noting thatn

� � � 1, S � 0 � p , � � � 4, S � a � p ,Ž . Ž .0 � 0 0 � j j

we see that
def

� 
 , � � � exp 
 S � �� � p exp �� 
 � 
 exp �4� .Ž . Ž . Ž . Ž . Ž .0 � 0
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� � Ž . Ž . Ž . Ž .By 20 , � 
 � �log R K is the unique solution � 
 � � of � 
 , � � 1,


and hence for fixed j the sequence of measures

Sn
� � �, X � ji n½ 5n

satisfy the full LDP with rate �*.
Ž .C An interesting counterexample where the full LDP does not hold

� �is given in 9 . They give an example of a uniformly recurrent, irreducible
chain on �2, with bounded f , and invariant probability measure �, where

� 4� S �n � � does not satisfy the LDP. Since the sufficient conditions men-� n
Ž .tioned in Section 4c III are satisfied, this would appear to be a contradiction.

The point is that one here has an initial measure �, rather than a fixed state.
This shows the sensitivity of the LDP to initial measures. Note that by the
results of the present paper, the lower bound does hold with rate �*.

Ž . � � � � � �D There is a class of examples in 12 , 4 and 16 of the following type.
ŽLet S be a finite set, S � C � C � C where C are irreducible in the1 2 3 i

. � 4classical sense classes for X satisfying the communication relations C �n 3
C � C , with C and C � C closed classes. This chain will be �-irreducible2 1 1 1 2

Ž . �1 n Ž .if � C � 1 and in that case n Ý f X will satisfy the LDP with rate �* if1 1 i
the initial state x � C . If x � C then neither �* nor � * gives the right0 1 0 2
rate function.
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