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LYAPUNOV FUNCTIONS FOR RANDOM WALKS
AND STRINGS IN RANDOM ENVIRONMENT

By Francis Comets,1 Mikhail Menshikov2 and Serguei Popov2�3

Université Paris 7, Universidade de São Paulo and
Universidade de São Paulo

We study two typical examples of countable Markov chains in random
environment using the Lyapunov functions method: random walk and ran-
dom string in random environment. In each case we construct an explicit
Lyapunov function. Investigating the behavior of this function, we get the
classification for recurrence, transience, ergodicity. We obtain new results
for random strings in random environment, though we simply review well-
known results for random walks using our approach.

1. Introduction. The theory of countable Markov chains is currently
developing in several directions. One of these is the qualitative analysis
of Markov chains in a countable state space with a complicated structure.
In relation to the forthcoming examples we mention two models: (i) Multi-
dimensional Markov chains with partial linear nonhomogeneities are consid-
ered in [1] and [7]; (ii) Markov chains with the state space being equal to
all finite sequences of letters from some alphabet (the so-called strings) are
studied in [8], [9] and [15]. For these problems a martingale method (method
of Lyapunov functions) was developed.

Another branch of current interest is the theory of countable Markov chains
in random environment. In this paper we study two examples using Lyapunov
functions. Let us briefly describe what we mean by the “random environment.”
A given countable, time-homogeneous Markov chain � = �ηt� t ≥ 0� can be
defined by its state space X = �xi� and by the collection of transition proba-
bilities Pij = P�ηt+1 = xj � ηt = xi�. Assume that on some probability space
�	�� �P	 we are given a collection of random variablesPij�ω	, i� j ∈ N,ω ∈ 	,
such that for any fixed ω (which we call the realization of the random environ-
ment) the numbers Pij�ω	 are transition probabilities. Together with the state
space X, these transition probabilities define a Markov chain � �ω	. One can
view the Markov chain as the motion of a particle in a space-inhomogeneous
medium �Pi�•�ω		i. Of particular interest is when the field �Pi�•�ω		i, viewed
as a random field, is stationary in space; then the medium possesses the space
homogeneity property at a statistical level. A natural question is, what is the
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probability (with respect to probability measure P) for the Markov chain � �ω	
of being recurrent (resp., transient, ergodic)?

In the present paper we consider random strings in a random environment,
which includes random walks in a random environment as a particular case.
The main idea of our approach is the following: for a given ω ∈ 	 we construct
a Lyapunov function f�x	 = f�x�ω	 for the Markov chain � �ω	. It turns
out that this function is a spatially homogeneous random field. Hence we can
investigate its asymptotic behavior and, using criteria for countable Markov
chains, we obtain the qualitative classification of the Markov chain � �ω	 for
typical ω’s.

The method can be applied to other models, like the branching random walk
in random environment [4] where the Lyapunov functions are much easier
analyzed than the process itself. Note that constructing a Lyapunov function
is not an easy matter; this is the main restriction to the method.

In Section 3 we briefly study the one-dimensional random walk in ran-
dom environment. Classification reduces to the investigation of the products
of independent random variables. The results are well known, but the inter-
est there is rather in the extreme simplicity of the arguments, which makes
the approach more transparent. The model of the random strings in random
environment, studied in Section 4, leads to the study of the products of i.i.d.
random matrices. The results there are new, and they are formulated in terms
of Lyapunov exponents.

The proofs in Sections 3 and 4 have many common points, so the rather
elementary Section 3 is useful for a better understanding of the techniques
and the ideas in Section 4.

2. Criteria for countable Markov chains. In this section we recall
three martingale criteria for countable irreducible Markov chains. We state
them in a rather simplified form which is sufficient for our purpose. More
general criteria can be found in [7], [16] and [1].

Let ηt be a discrete time-homogeneous Markov chain with a countable state
space X and a point 0 ∈X.

Proposition 2.1. Suppose there exists a function f� X �→ R which is
bounded and nonconstant, such that for all x �= 0,

E�f�ηt+1	 − f�ηt	 � ηt = x	 = 0�(1)

Then the Markov chain ηt is transient (i.e., nonrecurrent).

This is a consequence of Theorem 2.2.2 of [7]. The next propositions are just
simplified forms of Theorems 2.2.1 and 2.2.3 of [7], respectively.

Proposition 2.2. If there exists a function f�X �→ R such that f�x	 → +∞
as x→ ∞ and for all x �= 0,

E�f�ηt+1	 − f�ηt	 � ηt = x	 ≤ 0(2)

then the Markov chain ηt is recurrent.
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Proposition 2.3 (Foster). Assume that there exists a function f� X �→ R,
f�x	 ≥ 0 and δ > 0 such that for all x �= 0,

E�f�ηt+1	 − f�ηt	 � ηt = x	 ≤ −δ�(3)

and E�f�ηt+1	 � ηt = 0	 <∞. Then the Markov chain ηt is ergodic.

3. Random walk on Z� in a random environment. Let us recall the
model which was first considered by Kozlov [13] and Solomon [20] and inves-
tigated by many authors; see [18] for a review and [13] for a generalization.

Let �ξi�i=1�2���� be a sequence of i.i.d. random variables on 	 with values
in �0�1�. Suppose also that P�ξ1 = 0� = P�ξ1 = 1� = 0. Then, for fixed
environment, that is, for a given realization of the sequence of independent
and identically distributed (i.i.d.) random variables �ξi�, consider a Markov
chain ηt on Z+ defined as follows: η0 = 0,

pn = P�ηt+1 = n− 1 � ηt = n� = ξn�

qn = P�ηt+1 = n+ 1 � ηt = n� = 1 − ξn� n = 1�2 � � � �

and P�ηt+1 = 1 � ηt = 0� = 1. We will use P�E to denote probability and
expectation for the random environment ω, keeping the notations P�E for the
Markov chain ηt itself.

Denote ζn = log�pn/qn	. The next theorem is due to [20].

Theorem 3.1. Assume E�ζ1� <∞.

(i) If Eζ1 < 0, then the random walk is transient for almost all ω (for
almost all environments).

(ii) If Eζ1 ≥ 0, then the random walk is recurrent for almost all ω.
(iii) Moreover, if Eζ1 > 0, then the random walk is ergodic for almost all ω.

Sketch of proof. First, we prove the recurrence and the transience. Let
us try to construct a function f�x	 satisfying (1) for fixed ω. Denote �i =
f�i	 − f�i− 1	 and let �0 = 1, so f�n	 = ∑n

i=1 �i, f�0	 = 0. We have

E�f�ηt+1	 − f�ηt	 � ηt = x	 = −px�x + qx�x+1�(4)

so

�x+1 = px
qx
�x = exp

{ x∑
i=1

ζi

}
�(5)

It is clear that the function f�x	 is positive and that if Eζ1 ≥ 0, then
f�x	 → +∞ for almost all ω, and if Eζ1 < 0, then f�x	 is bounded. Applying
Propositions 2.1 and 2.2 we complete the proof of the first two statements of
Theorem 3.1.

To prove ergodicity, we construct the Lyapunov function f�s	 in the reverse
way. Let f�x	 = ∑x

i=1 �i, where

�i =
1
pi

+ qi
pipi+1

+ qiqi+1

pipi+1pi+2
+ qiqi+1qi+2

pipi+1pi+2pi+3
+ · · · �(6)
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Then one can easily check that if Eζ1 > 0:

1. The series in the right-hand side of (6) converge, so the function f�x	 is
well defined;

2. f�x	 satisfies (3) with δ = 1.

Applying now Proposition 2.3, we complete the proof of the last claim of
Theorem 3.1.

In the case Eζ1 = 0, the random walk is null recurrent. As a simple illustra-
tion of the techniques of Lyapunov functions, we prove a result (not optimal,
compare to [19]) about the speed of escape of the walk.

Theorem 3.2. Let Eζ1 = 0, and 0 < Eζ2
1 < ∞. Then for any integer k ≥ 1

and for any ε > 0 we have

ηt/�log t log2 t � � � log1+ε
k t	2 −→ 0(7)

almost surely as t → ∞, with log1 t �= log t, logm+1 t = log�logm t	, m ≥ 1.
Also, for any ε > 0 and for any p > 0 we have

ηt

log2+ε t
−→ 0(8)

in Lp, as t→ ∞.

In the above statements, “almost surely” means “for P-almost every envi-
ronment it holds P-a.s.” and “convergence in Lp” stands for “convergence in
Lp�P	 for P-a.e. ω.” Deheuvels and Révész proved (7) in [6], Theorem 4, with
a completely different approach, but ours is much shorter. After finishing this
paper, we learnt that Hu and Shi [10] proved the exact upper limit result,
lim supt ηt/�log2 t log3 t	 = 8/�π2σ2	 a.s.

Proof. We use again the Lyapunov function

f�x	 =
x∑
i=1

exp
{i−1∑
j=1

ζj

}
�

As shown in the proof of Theorem 3.1, the process f�ηt	 is a martingale except
at 0 [this means that (1) holds for all x �= 0]. Thus we have that for some
constant C′ (depending on the environment) E�f�ηt	 − f�ηt−1		 ≤ C′ for all
t ≥ 1 [one can take C′ = p1�ω	/q1�ω	]. Therefore, for all t ≥ 1, we have

Ef�ηt	 ≤ C′t�(9)

At this point we need a lower bound for the function f�x	. We use the
so-called “inverse iterated logarithm law”, recalling a result from Csáki [5].

Lemma 3.1 ([5], Theorem 3.1). Let �ζi�i=1�2���� be a sequence of i.i.d. random

variables, and let Eζ1 = 0, 0 < Eζ2
1 <∞. Let a� �y0�∞	 → �0�∞	 be decreasing
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and such that a�y	y1/2 increases, and
∫∞

1 �a�y	/y	dy <∞. Then

lim
n

maxi≤n
∑i

j=1 ζj

a�n	√n = +∞ a.s.(10)

It follows that for any such a there exists a positive constant C = C�a�ω	
such that

f�x	 ≥ g�x	 �= C exp
{
x1/2a�x	}(11)

for all x. We take for the moment a�x	 = �x+K	1/2−ε1x−1/2 and, for p > 0 we
denote also gp�x	 = C exp��x +K	�1/p	�1/2−ε1	�, where K is chosen in such a
way that the function gp�x	 is convex on �0�∞	. Using (9), (11) and the Jensen
inequality, we have

C′t ≥ Ef�ηt	 ≥ Eg�ηt	 = Egp�ηpt 	 ≥ gp�Eηpt 	�
so

�Eηpt 	1/p ≤ �g−1
p �C′t		1/p ≤ C3 log2+ε2 t�

for some C3 and ε2 = �4ε1	/�1 − 2ε1	, thus proving the convergence in Lp.
Let us prove a.s. convergence. Using Chebyshev’s inequality and (9), we

have

P�f�ηt	 > t3� ≤ Ef�ηt	
t3

≤ C′ 1
t2
�

Taking now a�y	 = �log y log2 y · · · log1+ε
k−1 y	−1 in (11) we get

P�f�ηt	 > t3� ≥ P�g�ηt	 > t3� = P�ηt > g−1�t3	�

≥ P�ηt > C4�log t log2 t · · · log1+ε
k t	2�

for some C4 > 0. Using the Borel–Cantelli lemma, we prove the a.s. conver-
gence, thus completing the proof of Theorem 3.2. ✷

4. Strings in a random environment.

4.1. Dynamics of the string. Consider a finite alphabet � = �1� � � � � k�. A
string is just a finite sequence of symbols from � . We write �s� for the length
of the string s; that is, if s = s1 · · · sn, si ∈ � , then �s� = n.

Consider a time-homogeneous Markov chain with the state space equal to
the set of all finite strings. We describe the transition matrix of this Markov
chain as follows: let s = s1 � � � sn, and sn = i ∈ � . Then:

1. We erase the rightmost symbol of s with probability r�n	i .

2. We substitute the rightmost symbol i by j with probability q�n	
ij .

3. We add the symbol j to the right end of the string with probability p�n	
ij .
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Of course we assume that for all i and for all n = 1�2� � � � �

r
�n	
i +∑

j

q
�n	
ij +∑

j

p
�n	
ij = 1�(12)

These parameters do not define the evolution when the string is empty (its
length equals 0), but we simply assume that the jumps from the empty string
are somehow defined and can only occur to strings of length 1. Clearly, these
“boundary conditions” do not affect the asymptotic behavior of the string. So
we see that the process is completely defined by the collection of numbers
�r�n	i � q

�n	
ij � p

�n	
ij �, n = 1�2� � � �, i = 1� � � � � k, and j = 1� � � � � k.

The model for the case when the quantities r�n	i , q�n	
ij and p�n	

ij do not depend
on n was investigated by Gajrat, Malyshev, Menshikov and Pelih [8]. In fact,
they investigated even more general models, where the maximal value of jump
may be greater than 1. All these are models for LIFO (last in, first out) queuing
systems [8], and they are random walks on trees. In the case k = 1, we recover
the random walk from Section 3. Note that the length �ηt� of the string is not
a Markov chain itself. We consider here only the one-sided evolution of the
string; Two-sided homogeneous strings were studied by Gajrat, Malyshev and
Zamyatin in [9].

Let’s now describe the random environment. First we define

ξn = �r�n	i � q
�n	
ij � p

�n	
ij 	i� j�

and we will say that a vector ξ is nonnegative (ξ ≥ 0) if all its components
are nonnegative. We will assume that the vectors ξn = ξn�ω	, n ≥ 0, are i.i.d.
random vectors on �	�� �P	, with nonnegative values satisfying (12). This
defines the Markov chain describing the evolution of the string, for each fixed
environment ω = �ξ1� ξ2� � � ��.

4.2. Lyapunov exponents and products of random matrices. In this section
we review some properties of products of random matrices that we need below.

Let �·� ·� be the standard scalar product in Rk. Define the norm of x ∈ Rk

by �x� = �x� x�1/2. The transpose of matrix A is denoted by A∗. The Euclidean
(operator) norm of a k×k real matrix A can be defined by any of the following
equivalent formulas:

�A� �= sup
�x�=1

�Ax�

= �largest eigenvalue of A∗A�1/2�
Consider a sequence of i.i.d. random matrices An. We assume that the ma-

trices An satisfy the following condition.

Condition A. E log+ �A� <∞, where log+ x = max�log x�0�.

Let �A1�ω	�A2�ω	� � � �	 be a realization of a sequence of i.i.d. random ma-
trices. Let a1�n	 ≥ a2�n	 ≥ · · · ≥ ak�n	 ≥ 0 be the square roots of the (random)
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eigenvalues of �An � � �A1	∗�An � � �A1	. Then the following limit exists for al-
most all ω (and it is the same for almost all ω):

lim
n→∞

1
n

log aj�n	 = γj�A	(13)

for j = 1� � � � � k (see Proposition 5.6 of [3]; A does not need to be invertible).
The numbers γj�−∞ ≤ γk ≤ · · · ≤ γ1 < ∞ are called the Lyapunov exponents
of the sequence of random matrices �An�. In particular,

γ1�A	 = lim
n→∞

1
n

log a1�n	 = lim
n→∞

1
n

log �An · · ·A1� a.s.(14)

is the top Lyapunov exponent.
The following simple lemma establishes relations between Lyapunov expo-

nents of A and A−1.

Lemma 4.1. Assume that A is a.s. invertible, and that both A and A−1

satisfy Condition A. Then for j = 1� � � � � k,

γj�A−1	 = −γk−j+1�A	�(15)

Proof. Let a1�n�A−1	� � � � � ak�n�A−1	 be the square roots of eigenval-
ues of

�A−1
n · · ·A−1

1 	∗�A−1
n · · ·A−1

1 	 = [�A1 · · ·An	�A1 · · ·An	∗
]−1

�

SinceUV has the same eigenvalues asVU, �a1�n�A−1		−1� � � � � �ak�n�A−1		−1

are the square roots of eigenvalues of �A1 · · ·An	∗�A1 · · ·An	. But A1 · · ·An

has the same distribution law as An · · ·A1. So for all j = 1� � � � � k we
have �aj�n�A−1		−1 = ak−j+1�n�A	 in law, and consequently, γj�A−1	 =
−γk−j+1�A	.

We will also need the following theorem [17].

Theorem 4.1 (Oseledec’s multiplicative ergodic theorem). Let An, n = 1�
2� � � � be a stationary ergodic sequence of k×k real matrices on the probability
space �	���m	 and suppose that E log+ �A1� < ∞. Let γ1 ≥ γ2 ≥ · · · ≥ γk be
the Lyapunov exponents of the sequence An. Consider the strictly increasing
nonrandom sequence of integers 1 = i1 < i2 < · · · < ip < ip+1 = k+1 such that
γiq−1

> γiq , if q = 2�3� � � � � p, and γi = γj, if iq ≤ i, j < iq+1 (the iq’s mark the

points of decrease of the γi). Then for almost all ω ∈ 	, for every v ∈ Rk,

lim
n→∞

1
n

log �An · · ·A1v�

exists or is −∞; for q ≤ p,

V�q�ω	 =
{
v ∈ Rk� lim

n→∞
1
n

log �An · · ·A1v� ≤ γiq

}
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is a random linear subspace of Rk with dimension k− iq + 1 �V�1�ω	 = Rk	;
for q ≥ 1, v ∈ V�q�ω	 �V�q+ 1�ω	 implies that

lim
n→∞

1
n

log �An · · ·A1v� = γiq �

4.3. Main results. Introduce two sequences of random k×k matrices �Bn�
and �Dn�, Bn = �p�n	

ij 	i� j=1�����k and Dn = �d�n	
ij 	i� j=1�����k, where d�n	

ij = −q�n	
ij for

i �= j and

d
�n	
ii = r

�n	
i + ∑

j�j �=i
q
�n	
ij �

with p
�n	
ij , q�n	

ij and r
�n	
i defined in Section 4.1. Important ingredients are the

sequence of i.i.d. random matrices An,

An = D−1
n Bn

and its Lyapunov exponents γ1� � � � � γk. Besides Condition A we will consider
the following condition.

Condition D. E log�1/ri	 <∞, i = 1� � � � � k.

The interest of this condition appears in the proposition.

Proposition 4.1. If Condition D holds, then the matrix D is a.s. invertible,
Condition A holds and E log+ �D−1� <∞.

Proof. With probability 1, ri > 0, i = 1� � � � � k, and then any nonzero vec-
tor v has a nonzero image Dv: if �vi� = max��vj��j = 1� � � � � k	 we may assume
vi > 0 without loss of generality, and we have �Dv	i = rivi+

∑
j �=i qij�vi−vj	 ≥

rivi > 0. Moreover,

�Dv� ≥ �Dv	i ≥ rivi ≥ k−1/2ri�v��
which implies �D−1� ≤ k1/2 maxi�1/ri	.

Therefore E log+ �D−1� ≤ ∑
i E log�1/ri	 <∞. The last claim follows easily

from this, from �A� = �D−1B� ≤ �D−1��B� and the boundedness of B.

Now we are ready to formulate the main results. In the next one we use
two different sets of assumptions, each one being of interest for applications.

Theorem 4.2. Assume that Condition A holds for the matrix An, and that:

(i) either Bn is a.s. invertible and Condition A holds for A−1
n ;

(ii) or E log�1/pii	 <∞� i = 1� � � � � k.

If γ1 > 0, then the Markov chain, describing the evolution of the string, is
transient (for almost all ω).
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Theorem 4.3. Assume Condition D for An. If γ1 < 0, then the process is
a.s. ergodic.

Theorem 4.4. Let γ1 = 0. In addition to Condition D, assume that A1 is
a.s. invertible, and that no finite union of proper subspaces of Rk is a.s stable
by A1. Then the process is a.s. recurrent.

4.4. Proof of Theorem 4.2. In this section we shall make use of Proposi-
tion 2.1 again.

Proof of Theorem 4.2. We start with the case when B (and then A) is
a.s. invertible and when E log+ �A−1� <∞. All that we need is to construct a
function f�s	 as in Proposition 2.1. We show that there exists a sequence of
column vectors vn = �vin	i=1�����k such that the function f�s	 can be defined as

f�s	 =
�s�∑
j=1

v
sj
j �(16)

Indeed, for f�s	 defined by (16) we have

E�f�ηt+1	 − f�ηt	 � ηt = s� �s� = n� sn = i	

= −r�n	i vin +
k∑

j=1

q
�n	
ij �−vin + vjn	 +

k∑
j=1

p
�n	
ij v

j
n+1�

so

E�f�ηt+1	 − f�ηt	 � ηt = s� �s� = n� sn = ·	 = −Dnvn +Bnvn+1�(17)

Thus, since f�s	 must satisfy (1), we have the following relation between
vn and vn+1 [compare this with (4) and (5); A−1

n is an analog of pn/qn]:

vn+1 = A−1
n vn�(18)

where the matrices An, Bn, and Dn were introduced in Section 4.3. From (18)
it follows that

vn+1 = A−1
n · · ·A−1

1 v0

for some vector v0. According to Theorem 4.1, for almost every environment ω
there exists a random vector v0 = v0�ω	 �= 0 such that

lim
n→∞

1
n

log �A−1
n · · ·A−1

1 v0� = γk�A−1	 = −γ1�(19)

From the last relation it follows that there exists two constants C1�2 =
C1�2�ω	 > 0 such that �vn� ≤ C1 exp�−C2n� for all n ≥ 0. Taking (16) into
account, we get

�f�s	� ≤ C1 exp�−C2�
1 − exp�−C2�

So this function satisfies all the conditions of Proposition 2.1 and Theorem 4.2
is proved under the first set of assumptions.
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Under the second assumption we compare the random string of interest,
say �ηt	t=0�1����, with a family of new random strings, �ηεt 	t=0�1���� indexed by
ε ∈ �0�1	, with transition probabilities

r
�n� ε	
i = rni � q

�n� ε	
ij = q

�n	
ij � p

�n� ε	
ij = p

�n	
ij − δijεmin

i
p

�n	
ii �

where δij is the Kronecker delta [so p�n�ε	
ij ∈ �0� p�n	

ij �], and the new string stays

at the same place with probability
∑

j�p�n	
ij − p

�n� ε	
ij 	 = εmini p

�n	
ii .

Clearly the new string ηε• is “more recurrent” than η• for ε > 0, and we
simply need to prove that ηε• is transient for some ε. Let ϕ�λ	 = �det�B−λI	�
be the absolute value of the characteristic polynomial of B. Recalling that
��B− λI	−1�2 is the largest eigenvalue of �B∗ − λI	−1�B− λI	−1 we see that

ϕ�λ	 = �det�B− λI	�B∗ − λI	�1/2

≤ ��B− λI	−1�−1��B− λI	�k−1�

On the other hand, since ϕ is (the absolute value of) a polynomial with coeffi-
cients smooth in B, ∫ 1

0
log+�1/ϕ�λ		dλ ≤ C��B�	 <∞�

Corresponding to the new string we define Bε = B − εmini�pii	I. From the
last two estimates we get

E
∫ 1

0
log+ ��Bε	−1�dε ≤ C′ + E

∫ 1

0
log+�1/ϕ�εmin

i
pii		dε

≤ C′ + E�min
i
pii	−1

∫ 1

0
log+�1/ϕ�λ		dλ

≤ C′ +C�1	∑
i

E�p−1
ii 	 <∞�

Hence for Lebesgue-a.e. ε, the matrix Aε
n is Q̃-a.s. invertible, and

E log+ ��Bε
n	−1�� E log+ ��Aε

n	−1�
are finite.

Also, by continuity of the top Lyapunov exponent in a suitable weak topol-
ogy, γ1�Aε	 → γ1�A	 > 0 as ε → 0 (the reader is referred to Corollary III.1.2
in [14]; it is not difficult to check that the proof therein extends to our case,
using the following remark: the Furstenberg formula III.1.1 for γ1 is valid
for positive matrices with any invariant probability measure concentrated on
Pd−1

+ = �ṫ ∈ Pd−1� ∃t ∈ Rd� ṫ = t/�t�� ti > 0� i = 1� � � � � k�	.
Choosing ε small enough the first set of assumptions is satisfied and we

derive from the previous proof that the string ηε• is transient, and therefore
η• has the same property.

4.5. Proof of Theorem 4.3. We shall use Proposition 2.3 to prove ergodicity.
Also we need one supplementary fact.
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Lemma 4.2. Matrix D−1
1 is almost surely nonnegative.

Proof. We need to prove that any vector w with at least a negative com-
ponent has image Dw with a negative component. Assume first

dii > − ∑
j�j �=i

dij� i = 1� � � � � k�(20)

In this case the statement is easily checked; �Dw	i < 0 if wi = minj wj < 0.
In the general case D is a limit of matrices satisfying (20); their inverse is
nonnegative, and so is D−1 by continuity.

Proof of Theorem 4.3. In contrast to the previous section, here we ex-
plicitly construct the function f�s	. Denote by I the identity matrix of order k,
and by 1 the column vector with all coordinates being equal to 1. Then we
again define f�s	 by (16), where

vn = D−1
n 1 + ∑

m�m≥n
An · · ·AmD

−1
m+11

= �D−1
n +AnD

−1
n+1 +AnAn+1D

−1
n+2 + · · ·	1

[compare this formula with (6)]. To prove that vn is finite, we first notice that
the property

E log+ �D−1� =
∫ ∞

0
P�log �D−1� > u	du <∞

implies that for every C > 0,∑
m>0

P�C−1 log��D−1
m � > m	 <∞

and from the Borel–Cantelli lemma, that

�D−1
m � < expmC

for m large enough. Also, since γ1 < 0, one can easily get by using (14) and
choosing C < −γ1 that

�vn� ≤ ��D−1
n � + �An� �D−1

n+1� + �AnAn+1� �D−1
n+2� + · · ·	�1� <∞ a.s.

for all n. With other respects we have vn ≥ 0, vn �= 0 according to Lemma 4.2.
According to (17) and keeping in mind that An = D−1

n Bn, we have

E�f�ηt+1	 − f�ηt	 � ηt = s� �s� = n� sn = ·	
= �−I−DnAnD

−1
n+1 −DnAnAn+1D

−1
n+2 − · · ·	1

+ �BnD
−1
n+1 +BnAn+1D

−1
n+2 +BnAn+1An+2D

−1
n+3 + · · ·	1

= −I1 −Dn�AnD
−1
n+1 −AnAn+1D

−1
n+2 − · · ·	1

+Dn�AnD
−1
n+1 +AnAn+1D

−1
n+2 + · · ·	1

= −1�
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Therefore the function f�s	 satisfies all the conditions of Proposition 2.3 and
Theorem 4.3 is proved.

4.6. Proof of Theorem 4.4. From a theorem in [2] the assumptions imply

lim inf
n→∞ �A1 · · ·An� = 0 a.s.

and therefore

B1A2 · · ·An1 ≤ D11 for some finite n�(21)

Define recursively the random times τ0 = 1 and

τk+1 = min
{
n > τk� −Dτk

1 +Bτk
Aτk+1 · · ·An1 ≤ 0

}
for k = 0�1� � � � � From (21) the times τk are a.s. finite. We still define f�s	 by
(16) with vτk = 1 and

vn = AnAn+1 · · ·Aτk+1
1� τk < n ≤ τk+1�(22)

Hence we have vn = Anvn+1 when τk < n < τk+1, k = 0�1� � � � � and

−Dτk
vτk +Bτk

vτk+1 = −Dτk
1 +Bτk

Aτk+1 · · ·Aτk+1
1 ≤ 0

by definition of τk+1. From (17) this means that f�ηt	 is a supermartingale
except at x = 0; see (2). From Lemma 4.2 and from the definition (22), the
vector vn is nonnegative, and therefore f�·	 ≥ 0. Finally, since the τk’s are
a.s. finite and vτk = 1, f�x	 → ∞ as (the length of) x → ∞. Proposition 2.2
applies, and the random string is recurrent. ✷
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punov est nul. Lyapunov Exponents. Lecture Notes in Math. 1186 27–36. Springer,
Berlin.

[3] Bougerol, P. and Lacroix, J. (1985). Products of Random Matrices with Application to
Schrödinger Operators. Birkhäuser, Boston.
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