
The Annals of Probability
1998, Vol. 26, No. 3, 1384–1402

CONVERGENCE OF SET VALUED SUB- AND
SUPERMARTINGALES IN THE KURATOWSKI–

MOSCO SENSE1

By Shoumei Li and Yukio Ogura

Saga University

The purpose of this paper is to prove some convergence theorems of
closed and convex set valued sub- and supermartingales in the Kuratowski–
Mosco sense. To get submartingale convergence theorems, we give sufficient
conditions for the Kudo–Aumann integral and Hiai–Umegaki conditional
expectation to be closed both for compact convex set valued random vari-
ables and for closed convex set valued random variables. We also give an
example of a bounded closed convex set valued random variable whose
Kudo–Aumann integral is not closed.

1. Introduction. Since Aumann introduced the concepts of integrals of
set valued random variables in 1965 [1], the study of set valued random vari-
ables has been developed extensively, with applications to economics and op-
timal control problems and so on, by many authors; see [3], [9], [21]–[23] and
so on. In particular, Hiai and Umegaki in [5], and Hiai in [6], [7] presented
the theory of set valued conditional expectations and set valued martingales.
This theory is the basic foundation of the study of set valued martingale the-
ory and applications. They obtained existence and convergence theorems of
conditional expectations, strong law of large number theorems for set valued
random variables and the representation theorem of closed set valued martin-
gales. However, there are few results on the closedness of the Aumann integral
of a closed set random variable and the associated conditional expectation.

In our previous papers [13]–[15], we studied fuzzy valued random variables,
conditional expectations and fuzzy valued martingales extensively, based on
the Hiai and Umegaki results. Among the results in [13], we used the method
of martingale selections especially to obtain a regularity theorem (cf. [13],
Lemma 5.7) for closed convex set valued martingales and applied it to fuzzy
valued martingales (cf. [13], Theorem 5.1) without using the condition for the
dual space �∗ to be separable. The regularity of �-valued martingales, as we
know, implies convergence almost everywhere. However, in the case of closed
convex set valued martingales, a regularity property does not imply conver-
gence in the Hausdorff distance (cf. [14], Example 4.2). Thus in [14], we made
use of Kuratowski–Mosco topology in place of Hausdorff distance, which was
a main tool in [13] (and in most previous works of other authors) and got con-
vergence theorems both for closed convex set valued martingales and fuzzy
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valued martingales (cf. [14], Theorems 3.1 and 3.3). There is a rich history
on Kuratowski–Mosco topology after the celebrated paper [17] (see [18], [24],
[25], e.g.). Actually, both the notions of the Hausdorff distance convergence
and the Kuratowski–Mosco convergence for set valued random variables in a
metric space are eminently useful in several areas of mathematics and appli-
cations such as optimization and control, stochastic and integral geometry and
mathematical economics. However, in a normed space, especially for infinite
dimensional cases, the Kuratowski–Mosco convergence is more tractable than
the Hausdorff. We note that Papageorgiou [19, 20] obtained fruitful results in
convergence theorems for set valued random variables as well as for closed
convex set valued martingales. However, the assumption there that the con-
jugate functions are uniformly equi-continuous is not easy to check. In [14],
we succeed in dropping that assumption by exploiting martingale selections.

This paper is the continuation of the work of [13]–[15]. Our main purpose
is to get convergence theorems for closed convex set valued submartingales
and supermartingales in the Kuratowski–Mosco sense. For this purpose, we
have to give sufficient conditions for the Aumann integral and Hiai–Umegaki
conditional expectation to be closed both for compact convex set valued random
variables and for closed convex set valued random variables. Note that they
are not closed in general (cf. the counterexample in Section 2). In Section 2, we
give our main results after introducing necessary definitions and notations.
Sections 3 to 6 contain the proofs of our main results.

It is not hard to extend the convergence theorems here to those for the
fuzzy valued sub- and supermartingales as we did in [14]. Here, however, we
focus only on the set valued case, because we want to make this paper rather
theoretical.

2. Definitions and results. Throughout this paper, (��� � µ) is a com-
plete probability space. Denote by ��� � · ��� a real separable Banach space,
�∗ the dual space of �, K��� the set of all nonempty, closed subsets of �,
Kc��� the set of all nonempty closed and convex subsets of � and Kcc��� the
set of all nonempty compact and convex subsets of �. For A ∈ K���, we let
�A�K = supx∈A �x��.

The Hausdorff distance on K��� is defined as follows:

�2�1� dH�A�B� = max
{
sup
a∈A

inf
b∈B

�a− b��� sup
b∈B

inf
a∈A

�a− b��
}

for A�B ∈ K���. But if A�B are unbounded, dH�A�B� may be infinite. It
is well known (cf. [12], pages 214 and 407) that the family of all bounded
elements in K��� is a complete metric space with respect to the Hausdorff
metric dH, and the family of all bounded elements in Kc���, Kcc��� are closed
subsets of this complete space.

A set valued random variable F	 � → K��� is a measurable mapping; that
is, for every B ∈ K���, F�−1��B� 	= �ω ∈ �; F�ω� ∩ B = ∅� ∈ � (cf. [5]).
A measurable mapping f	 � → � is called a measurable selection of F if
f�ω� ∈ F�ω� for all ω ∈ �.
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Denote by L1����� the Banach space of all measurable mappings g	 � → �
such that the norm �g�L = ∫

� �g�ω��� dµ is finite. For a measurable set
valued random variable F, define the set

SF = {
f ∈ L1�����	 f�ω� ∈ F�ω�� a.e.�µ�}�

It then follows that SF is closed in L1�����. For a sub-σ-field �0, denote by
SF��0� the set of all �0-measurable mappings in SF.

A set valued random variable F	 � → K��� is called integrably bounded iff
the real valued random variable �F�ω��K is integrable. Let L1���� � µ�K����
denote the space of all integrably bounded set valued random variables where
two set valued random variables F1, F2 ∈ L1���� � µ�K���� are considered
to be identical if F1�ω� = F2�ω�, a.e.�µ�. The spaces L1���� � µ�Kc����,
L1����0� µ�K����, L1����0� µ�Kc���� are defined in a similar way. Then
F ∈ L1���� � µ�K���� iff there exists a sequence �fn� of measurable func-
tions fn	 � → K��� such that F�ω� = cl�fn�ω�� for all ω ∈ �.

Define the subset of L1���� � µ�K���� as follows:

L1���� � µ�B� = {
F ∈ L1���� � µ�K����	 F�ω� ∈ B� a�e��µ�}�

and if �0 is a sub-σ-field of � , we denote

L1����0� µ�B� = {
F ∈ L1���� � µ�B�	 F is �0-measurable

}
�

where B is a subset of K���.
For each F ∈ L1���� � µ�K����, the Kudo–Aumann integral of F is

�2�2�
∫
�
Fdµ =

{∫
�
fdµ	 f ∈ SF

}
�

where
∫
� fdµ is the usual Bochner integral. Define

∫
AFdµ = {∫

A fdµ	 f ∈
SF

}
, for A ∈ � .

Remark 1. The integral
∫
� Fdµ of F is not closed in general, as is seen

from the following counterexample.

Example. Let � be a nonreflexive separable Banach space. Then there
exists a pair of disjoint bounded closed convex sets which cannot be separated
by a hyperplane; that is, there are B1, B2 ∈ Kc���, such that B1 ∩B2 = ∅ and
d��B1�B2� 	= inf x1∈B1� x2∈B2

d��x1� x2� = 0, where d� is the metric derived by
� · �� (cf. [8]). Let A ∈ � such that µ�A� = 1

2 .
Define a set valued random variable

F�ω� =
{
B1� if ω ∈ A�

−B2� if ω ∈ Ac�

Then ∫
�
Fdµ =

{∫
A
fdµ+

∫
Ac
fdµ	 f ∈ SF

}
= { 1

2�x1 − x2�	 x1 ∈ B1� x2 ∈ B2
}
�
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Since B1 ∩ B2 = ∅, we then have 0 /∈ ∫
� Fdµ, but d��B1�B2� = 0 implies

0 ∈ cl
∫
� Fdµ. ✷

Let �0 be a sub-σ-field of � . The conditional expectation E�F��0� of
an F ∈ L1���� � µ� Kc���� is determined as an �0-measurable element of
L1���� � µ�Kc���� such that

�2�3� SE�F��0���0� = cl
{
E�f��0�	 f ∈ SF

}
�

where the closure is taken in the L1����� (cf. [5]). If �∗ is separable, this is
equivalent to the formula

�2�4� cl
∫
A
Fdµ = cl

∫
A
E�F��0�dµ for A ∈ �0�

Using the above counterexample, we can easily get a counterexample to
explain that the set �E�f��0�	 f ∈ SF� is not necessarily closed.

In the following, we will give some sufficient conditions for the closedness of
the Kudo–Aumann integral of a compact convex set valued random variable
and of a closed convex set valued random variableF� and the set �E�f��0�	 f ∈
SF� concerning the conditional expectations E�F��0� of F. They are important
for our proof of the set valued submartingale convergence theorem.

A Banach space � is said to have the Radon–Nikodym property (RNP) with
respect to a finite measure space ���� � µ� if, for each µ-continuous �-valued
measure m: � → � of bounded variation, there exists an integrable mapping
f: � → � such that m�A� = ∫

A fdµ for all A ∈ � . It is known that every
separable dual space and every reflexive space has the RNP (cf. [2] and [25]).

Theorem 1. (i) If � has the RNP and F ∈ L1���� � µ�Kcc����, then the set∫
�
Fdµ =

{∫
�
fdµ	 f ∈ SF

}
is closed in �.

(ii) If � has the RNP, F ∈ L1���� � µ�Kcc���� and �0 is countably gener-
ated, that is, �0 = σ��� for a countable subclass � of � , then the set

�E�f��0�	 f ∈ SF�
is closed in L1������

Theorem 2. (i) If � is a reflexive Banach space, F ∈ L1���� � µ�Kc����.
Then the set ∫

�
Fdµ =

{∫
�
fdµ	 f ∈ SF

}
is closed.

(ii) If � is a reflexive Banach space, F ∈ L1���� � µ�Kc���� and �0 = σ���
is countably generated. Then the set{

E�f��0�	 f ∈ SF

}
is closed in L1������
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In the following we begin to discuss set valued martingales.
Let ��n	 n ∈ �� be a family of complete sub-σ-fields of � such that �n1

⊂
�n2

if n1 ≤ n2, and �∞ be the σ-field generated by
⋃∞
n=1 �n.

A system �Fn��n	 n ∈ �� is called a set valued martingale iff (1) Xn ∈
L1����n� µ	 Kc����, n ∈ �, and (2) Xn = E�Xn+1��n�, n ∈ �, a.e.�µ�.

A sequence of set valued random variables �Fn�n ≥ 1� is called uniformly
integrable iff

lim
λ↑∞

sup
n∈�

∫
��Fn�ω��K>λ�

�Fn�ω��K dµ = 0�

Chatterji in [2] proved that a Banach space � has the RNP with respect
to ���� � µ� iff every uniformly integrable �-valued martingale is regular.
The �-valued martingales with regularity, as we know, imply convergence al-
most everywhere with respect to µ. In [5], Hiai and Umegaki extended some
results of them to set valued martingales. They proved that if a separable Ba-
nach space � has the RNP and its dual space �∗ is also separable, then every
uniformly integrably set valued martingale in L′���� � µ�Kc���� is regular.
In [13], we used the method of martingale selections to prove the regular-
ity of martingales (cf. [13], Lemma 5.7) and then extended it to fuzzy valued
martingales without using the separability of the dual space �∗ (cf. [13], The-
orem 5.1). But in the case of set valued martingales, regularity property does
not imply convergence in the Hausdorff distance (cf. [14], Example 4.2). Thus
in [14], we used the Kuratowski–Mosco convergence and proved that regu-
larity property implies convergence in the Kuratowski–Mosco sense. In this
paper, we will continue to work to get sub- and supermartingale convergence
theorems.

Let �Bn�n∈� be a sequence of closed sets of �. We will say that Bn converges
to B in the Kuratowski–Mosco sense [17, 25] (denoted by Bn →K−M B) iff

w- lim sup
n→∞

Bn = B = s- lim inf
n→∞ Bn�

where

w- lim sup
n→∞

Bn = {
x = w- limxm	 xm ∈ Bm�m ∈ M ⊂ �

}
and

s- lim inf
n→∞ Bn = �x = s- limxn	 xn ∈ Bn�n ∈ ���

Remark 2. (i) Since we have s-lim infn→∞Bn ≤ s- lim supn→∞ Bn auto-
matically, Bn →K−M B iff w-lim-supn→∞Bn ⊂ B ⊂ lim-inf Bn. (ii) The notions
s-lim infn→∞Bn and w-lim supn→∞Bn are different from the set-theoretic no-
tations of lim inf and lim sup of a sequence of sets �Bn�n ∈ ��, which we
denote by LiBn and LsBn, respectively; that is,

LiBn =
∞⋃
k=1

⋂
n≥k

Bn
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and

LsBn =
∞⋂
k=1

⋃
n≥k

Bn�

The connections between s-lim infn→∞Bn, w-lim supn→∞Bn and LiBn,
LsBn are clarified by the following relations:

LiBn ⊂ s− lim inf
n→∞ Bn =

∞⋂
k=1

Li
(
cl�k−1Bn�

) = ∞⋂
k=1

∞⋃
n=1

⋂
m≥n

cl�k−1Bn�

and

LsBn ⊂ w- lim sup
n→∞

Bn�

where clA (resp. w-clA) is the closure (resp. weak closure) of the set A ∈ K���
and εA is an open ε-neighborhood of the set A defined as follows:

εA = {
x ∈ � � d1�x�A� < ε

}
�

where d1�x�A� = inf��x− y��	 x ∈ A� (cf. [25]).
A sequence of set valued random variables Fn ∈ L1���� � µ�Kc���� con-

verges to F ∈ L1���� � µ�Kc���� in the Kuratowski–Mosco sense (denoted by
Fn →K−M F� a.e.�µ�) iff Fn�ω� converges to F�ω� for almost every ω ∈ �
with respect to µ.

In [14], we got the following convergence theorem for nonempty closed and
convex set valued martingales in the Kuratowski–Mosco sense.

Theorem 3. Assume that � is a Banach space satisfying the RNP with the
separable dual �∗. Then, for every uniformly integrable set valued martingale
�Fn��n	 n ∈ ��, there exists a unique F∞ ∈ L1���� � µ�Kc���� such that
�Fn��n	 n ∈ � ∪∞� is a martingale and Fn →K−M F∞, a.e.�µ�.

A system �Fn��n	 n ∈ �� is called a set valued submartingale iff it satisfies
the following two conditions.

1. For each n ∈ �, Fn ∈ L1����n� µ�Kc����.
2. For each n ∈ �, SFn

��n� ⊂ �E�f��n�	 f ∈ SFn+1
��n+1���

Remark 3. (i) Condition 2 is equivalent to the following.

3. For each n�m ∈ � with n ≤ m, SFn
��n� ⊂ �E�f��n�	 f ∈ SFm

��m���
(ii) Condition 2 is stronger than the notion of submartingale in [5], where

they use the condition

Fn�ω� ⊂ E�Fn+1��n��ω� a�e��µ��
that is,

2′. For each n ∈ �, SFn
��n� ⊂ cl�E�f��n�	 f ∈ SFn+1

��n+1��.
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(iii) Condition 2 is equivalent to condition 2′ if

Ŝ = {
E�f��n�	 f ∈ SFn+1

��n+1
}

is closed. Concerning the closedness of it, we have given sufficient conditions
in Theorems 1 and 2.

Now we give a convergence theorem for set valued submartingales as fol-
lows.

Theorem 4. Assume that � is a Banach space satisfying the RNP with the
separable dual �∗. Then, for every uniformly integrable set valued submartin-
gale �Fn��n	 n ∈ ��, there exists a unique F∞ ∈ L1����∞� µ�Kc���� such
that Fn →K−M F∞, a.e.�µ�.

A system �Fn��n	 n ∈ �� is called a set valued supermartingale iff it
satisfies the following two conditions.

1. For each n ∈ �, Fn ∈ L1����n� µ�Kc����.
2. For each n ∈ �, E�Fn+1��n��ω� ⊂ Fn�ω�� a.e.�µ��

Remark 4. Condition (2) is equivalent to E�Fm��n��ω� ⊂ Fn�ω�� a.e.�µ�
for each n, m ∈ � with n ≤ m.

The following is the convergence theorem for set valued supermartingales
in the Kuratowski–Mosco sense.

Theorem 5. Assume that � is a Banach space satisfying the RNP with
the separable dual �∗, �Fn��n	 n ∈ �� is a uniformly integrable set valued
supermartingale and

�2�5� M =
∞⋂
n=1

{
f ∈ L1����∞� µ���	 E�f��n� ∈ SFn

��n�
}

is a nonempty set. Then there exists a unique F∞ ∈ L1����∞� µ�Kc���� such
that Fn →K−M F∞, a.e.�µ�.

3. Proof of Theorem 1. In this section, we will prove Theorem 1. For
our proof, we need the following lemmas.

Lemma 3.1 [5]. Let F ∈ L1���� � µ�K����; then there exists a sequence
�fn� ⊂ SF such that F�ω� = cl�fn�ω�� for all ω ∈ �.

Lemma 3.2 [5]. Let F ∈ L1���� � µ�Kcc����. Then f ∈ SF iff
∫
A fdµ ∈

cl
∫
AFdµ for all A ∈ � . Moreover if �∗ is separable, then the same is true for

any F ∈ L1���� � µ�Kc����.
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Proof of Theorem 1(i).
Step 1. Taking an F ∈ L1���� � µ�Kcc����, we prove that there exists a

countable field �̂ ⊂ � such that F is �1-measurable, where �1 = σ��̂�.
Indeed, since F ∈ L1���� � µ�Kcc����, by virtue of Lemma 3.1, there exists a
sequence �fn� ⊂ SF such that F�ω� = cl�fn�ω�� for all ω ∈ �. For every fn,
there exists a sequence of simple functions �f�m�

n � such that

lim
m→∞

∥∥fn − f
�m�
n

∥∥
L1 = 0� n ∈ ��

Let

� = {�f�m�
n �−1�x0�	 x0 ∈ f

�m�
n ���� m�n ∈ �

}
�

We then have that � is countable. Thus the field �̂, generated by �, is also
countable (cf. [4], Lemma 8.4, page 167). Hence F is �1-measurable, where
�1 = σ��̂� �= σ����.

Step 2. We prove that

cl
∫
A
Fdµ = cl

{∫
A
fdµ	 f ∈ SF

}
is a compact set in � for any A ∈ � .

Indeed, if F is a simple set valued random variable, that is, if

F�ω� =
n∑
i=1

KiIAi
�ω�� Ki ∈ Kcc����

then

cl
∫
A
Fdµ = cl

{ n∑
i=1

xiµ�A ∩Ai�	 xi ∈ Ki

}

= cl
( n∑
i=1

Kiµ�A ∩Ai�
)
∈ Kcc����

If F ∈ L1���� � µ�Kcc����, then there exists a simple set valued random
variable �Fn� such that dH�Fn�ω��F�ω�� → 0, a.e.�µ�. By [13], Lemma 2.2,
we have

dH

(
cl
∫
A
Fn dµ� cl

∫
A
Fdµ

)
≤

∫
A
dH

(
Fn�ω��F�ω�)dµ�

Thus dH�cl
∫
AFn dµ� cl

∫
AFdµ� → 0. Then cl

∫
� Fdµ is compact since Kcc���

is closed with respect to the Hausdorff metric.
Step 3. For each x ∈ cl

∫
� Fdµ, there exists a sequence �fn� ⊂ SF such

that

lim
n→∞

∥∥∥∥x−
∫
�
fn dµ

∥∥∥∥
�

= 0�
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Due to the inclusion �∫A fn dµ�n∈� ⊂ cl
∫
AFdµ ∈ Kcc���, for any A ∈ �̂, there

exists a subsequence �gn� of �fn� such that

λ�A� 	= lim
n→∞

∫
A
gn dµ�

Since �̂ is countable, with the help of the Cantor diagonal procedure, there
exists a subsequence, also denoted by �gn�, such that

λ�A� 	= lim
n→∞

∫
A
gn dµ for each A ∈ �̂�

In view of � ∫A gn�ω�dµ�� ≤ ∫
A �F�ω��K dµ, for each A ∈ � , we see that

�λn�A� 	= ∫
A gn�ω�dµ	 n ∈ �� is uniformly countably additive on �1, that is,

for any disjoint sequence �Ai� ⊂ �1,

sup
n

∞∑
i=N

∥∥λn�Ai�
∥∥
�
→ 0 as N → ∞�

Thus there exists a subsequence, which we also denote as �gn�, such that

λ�A� 	= lim
n→∞

∫
A
gn dµ for each A ∈ �1

(cf. [4], Lemma 8.8, page 292).
Step 4. We first note the following.

(a) λ is µ-continuous, that is, µ�An� → 0 implies λ�An� → 0, where An ∈
�1. This is due to [4], Theorem 7.2, page 158.

(b) λ is of bounded variation, that is, for each A ∈ �1�

sup
�Ai�

n∑
i=1

∥∥λ�Ai�
∥∥
�
< ∞�

where �Ai	 i = 1� � � � � n� is any measurable finite partition of A.
(c) λ is countably additive, which is due to [4], Corollary 7.4, page 160.

Since X has the RNP, these ensure the existence of a g ∈ L1����� such
that

λ�A� =
∫
A
gdµ for each A ∈ �1�

Further, we have∫
A
gdµ = lim

n→∞

∫
A
gn dµ ∈ cl

∫
A
Fdµ� A ∈ �1�

Hence, by Lemma 3.2, we have g ∈ SF. Especially, let A = � to obtain∫
�
gdµ = lim

n→∞

∫
�
gn dµ = x�

Thus we get

x ∈
∫
�
Fdµ =

{∫
�
fdµ	 f ∈ SF

}
�
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Proof of Theorem 1(ii).
Step 1. Let g ∈ cl�E�f��0�	 f ∈ SF�. Then there exists a sequence �fn� ⊂

SF such that

�3�1� lim
n→∞

∫
�

∥∥g −E�fn��0�
∥∥
�
dµ = 0�

Using the same method as Step 1 in part (i), we can get a countable field �̂0

such that F is �1-measurable, where �1 	= σ��̂0�. Let �̂ be the smallest field
including � and �̂0. Then �̂ is countable. Furthermore, since{∫

A
fn dµ

}
⊂ cl

∫
A
Fdµ ∈ Kcc����

using the Cantor diagonal procedure, we can choose a subsequence �gn� of
�fn� such that

λ�A� 	= lim
n→∞

∫
A
gn dµ for each A ∈ �̂�

In the same way as in Step 3 in (i), we have a subsequence, also denoted
by �gn�, such that

λ�A� 	= lim
n→∞

∫
A
gn dµ for each A ∈ �0 ∨�1�

Following Step 4 of (i), we then get an f ∈ L1����0 ∨�1� µ��� such that

λ�A� =
∫
A
fdµ� A ∈ �0 ∨�1�

In view of

�3�2�
∫
A
fdµ = lim

n→∞

∫
A
gn dµ ∈ cl

∫
A
Fdµ� A ∈ �0 ∨�1�

and Lemma 3.2, we have f ∈ SF��0 ∨�1�.
Step 2. Noting that∣∣�g�φ�∣∣ ≤ �g�L1�φ�L∞� g ∈ L1������ φ ∈ L∞����∗�

and (3.1), we have

lim
n→∞

∫
�
�E�fn��0�� φ�dµ =

∫
�
�g�φ�dµ� φ ∈ L∞����∗��

For any A ∈ �0 and x∗ ∈ �∗, let φ�ω� = IA�ω�x∗ ∈ L∞����∗�. We then have

lim
n→∞

〈∫
A
E�fn��0�dµ�x∗

〉
=

〈∫
A
gdµ�x∗

〉
�

and combining this with ∫
A
E�fn��0�dµ =

∫
A
fn dµ�
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we get

lim
n→∞

〈∫
A
fn dµ�x

∗
〉
=

〈∫
A
gdµ�x∗

〉
� x∗ ∈ �∗� A ∈ �0�

This with the relation �gn� ⊂ �fn� implies

lim
n→∞

〈∫
�
gn dµ�x

∗
〉
=

〈∫
�
gdµ�x∗

〉
� x∗ ∈ �∗� A ∈ �0�

Combining this with (3.2), we obtain∫
A
fdµ =

∫
A
gdµ� A ∈ �0�

Since g is �0-measurable, we have g = E�f��0�. That is, g ∈ �E�f��0�	
f ∈ SF�. ✷

4. Proof of Theorem 2.

Proof of Theorem 2(i).
Step 1. In the same way as in the proof of Theorem 1, we can find a count-

able field �̂ ⊂ � such that F is σ��̂�-measurable.
Step 2. For each x ∈ cl

∫
� Fdµ, there exists �fn� ⊂ SF such that

lim
n→∞

∥∥∥∥x−
∫
�
fn dµ

∥∥∥∥
�

= 0�

Fix an A ∈ �̂. Since � is reflexive and �∫A fn dµ�n∈� is bounded, we have
that �∫A fn dµ�n∈� is weak sequentially relatively compact (cf. [5], Theorem
3.28, page 68). By using the Cantor diagonal procedure, we can choose a sub-
sequence �gn� ⊂ �fn� such that

�4�1� λ�A� 	= w- lim
n→∞

∫
A
gn dµ for each A ∈ �̂�

For each fixed x∗ ∈ �∗, ��λn�A�� x∗�	 n ∈ �� is uniformly countably additive
on �1, where λ�A� = ∫

A gn dµ. Thus there exists a subsequence, also denoted
by �gn�, such that

λ�A� 	= w- lim
n→∞

∫
A
gn dµ for each A ∈ �1�

Furthermore, we have∣∣�λn�A�� x∗�∣∣ ≤ �x∗��∗

∫
A
�F�ω��K dµ� A ∈ �1�

Indeed, ∣∣∣∣〈∫
A
gn dµ�x

∗
〉∣∣∣∣ =

∣∣∣∣∫
A
�gn� x∗�dµ

∣∣∣∣
≤

∫
A
�gn���x∗��∗ dµ ≤ �x∗��∗

∫
A
�F�ω��K dµ�



SET VALUED SMARTINGALES 1395

Step 3. For every given x∗ ∈ �∗, �λ�·�� x∗� is µ-continuous, of bounded varia-
tion and countable additive. Thus there exists an f�x∗� ∈ L1����1� µ��� such
that

�4�2� �λ�A�� x∗� =
∫
A
f�x∗��ω�dµ� A ∈ �1�

Moreover,

f�ax∗ + by∗� = af�x∗� + bf�y∗� a�e��µ�� a� b ∈ �� x∗� y∗ ∈ �∗�

and

�4�3�
∫
A

∣∣f�x∗��ω�∣∣dµ ≤ 2�x∗�(�F�ω��K ∨ 1
)

a�e��µ��

where a ∨ b = max�a� b�. Indeed, let �+ = �ω	 f�x∗��ω� ≥ 0� and �− =
�ω	 f�x∗��ω� ≤ 0�. Then �+� �− ∈ �1 and∫

A
�f�x∗��dµ =

∫
A∩�+

f�x∗�dµ−
∫
A∩�−

f�x∗�dµ

= 〈
λ�A ∩�+�� x∗〉− 〈

λ�A ∩�−�� x∗〉
≤ 2�x∗�

∫
A
�F�ω��K dµ� A ∈ �1�

Now, for each ε > 0, let N = �ω	 �f�x∗��ω�� ≥ �2 + ε��x∗���F�ω��K ∨ 1�. Then
we have

�2 + ε��x∗�
∫
N

(�F�ω��K ∨ 1
)
dµ ≤

∫
N

∣∣f�x∗��ω�∣∣dµ
≤ 2�x∗�

∫
N

(�F�ω��K ∨ 1
)
dµ�

Thus
∫
N��F�ω��K ∨ 1�dµ = 0, which implies µ�N� = 0. We then have

�f�x∗��ω�� ≥ �2 + ε��x∗�(�F�ω��K ∨ 1
)

a�e��µ��
Letting ε ↓ 0, we get (4.3).

Let ' be a countable dense subset of �∗. Then we have

�4�4� ∥∥f�x∗��ω�∥∥ ≤ 2�x∗�(�F�ω��K ∨ 1
)
� x∗ ∈ '� a�e��µ��

Since f�x∗� is a linear function, f�x∗� is uniformly continuous on '. Thus
we can extend f�x∗� to a function on X∗ satisfying (4.2) and (4.4), which we
denote by f�x∗� again.

From (4.4) for all x∗ ∈ �∗, there exists an f�ω� such that

f�x∗��ω� = 〈
f�ω�� x∗〉� x∗ ∈ �∗

and

�f�ω��� ≤ 2
(�F�ω��K ∨ 1

)
�
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which implies f ∈ L1����1� µ���. Combining this with (4.2), we obtain

�λ�A�� x∗� =
∫
A
�f�ω�� x∗�dµ =

〈∫
A
fdµ�x∗

〉
� A ∈ �1�

We then have λ�A� = ∫
A fdµ for all A ∈ �1.

Step 4. In this step we will show that

�4�5� λ�A� =
∫
A
fdµ ∈ cl

∫
A
Fdµ� A ∈ �1�

Since gn ∈ SF, we have〈∫
A
gn dµ�x

∗
〉
≤ sup

x∈∫A Fdµ

�x� x∗�� x∗ ∈ �∗�

Letting n → ∞, we get〈
λ�A�� x∗〉 ≤ sup

x∈∫A Fdµ

�x� x∗� ≤ sup
x∈cl

∫
A Fdµ

�x� x∗�� x∗ ∈ �∗�

Thus λ�A� ∈ cl
∫
AFdµ, and by Lemma 3.2, we have f ∈ SF.

Step 5. Let A = � in (4.1). Then we have

λ��� =
∫
�
fdµ = w- lim

n→∞

∫
�
gn dµ = x�

Since f ∈ SF, we have x ∈ ∫
� Fdµ.

Proof of Theorem 2(ii).
Step 1. Let �fn� ⊂ SF, g ∈ L1����0� µ���, �̂, �0 and �1 be the same as

those in Step 1 in the proof of Theorem 1(ii). By using the same method as
in Step 2 in the proof of part (i), the set �∫A fn dµ� is weakly sequentially
relatively compact for each A ∈ �̂. By the discussion of Steps 2 and 3 in
part (i), there exist an f ∈ SF��0 ∨�1�, and a subsequence �gn� ⊂ �fn�, such
that ∫

A
fdµ = w- lim

n→∞

∫
A
gn dµ� A ∈ �0 ∪�1�

Step 2. By the same method as in Step 2 in the proof of Theorem 1(ii), we
get the conclusion. ✷

5. Proof of Theorem 4. To prove Theorem 4, we need the following lem-
mas.

Lemma 5.1. Let �Fn��n	 n ∈ �� be a set valued submartingale. Then there
exists a system of �-valued random variables �fkm�n	 k�m�n ∈ �� such that
the following hold.

(i) For each k�m ∈ �, the sequence �fkm�n��n	 n ∈ �� is a martingale.

(ii) For each k, m, n ∈ � with 1 ≤ m ≤ n, fkm�n ∈ SFn
��n�.
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(iii) For each n ∈ �,

Fn�ω� = cl
{
fkm�n�ω�	 1 ≤ m ≤ n�k ∈ �

}
for almost every ω ∈ ��

Proof. Fix an m ∈ �. Since Fm ∈ L1���� � µ�Kc����, we can find a count-
able set �fkm�m	 k ∈ �� ⊂ SFm

such that

Fm�ω� = cl
{
fkm�m�ω�	 k ∈ �

}
� ω ∈ ��

by virtue of Lemma 3.1. We then choose fkm�m+1 ∈ SFm+1
��m+1� so that

E�fkm�m+1��m� = fkm�m. Repeating this procedure, one gets a sequence
�fkm�n�n≥m such that

fkm�n ∈ SFn
��n�� E�fkm�n+1��n� = fkm�n� n ≥ m�

Defining fkm�n = E�fkm�m��n� for 1 ≤ n < m, we get the system of martingales
�fkm�n��n	 n ∈ ��, k�m ∈ � which also satisfy conditions (ii) and (iii). ✷

Lemma 5.2 [5]. Let M be a nonempty bounded closed convex subset of
L�����. Then there exists an F ∈ L1���� � µ�Kc���� such that M = SF iff M
is decomposable, that is, iff h = fIA + gI�\A belongs to M for all A ∈ � and
f�g ∈ M.

Lemma 5.3 [14]. Let �fkn	 n ∈ ��k∈� be a sequence of real valued sub-
martingales such that supn∈�E�supk∈��fkn�+� < ∞, and suppose that

lim
n→∞fkn = fk∞ a�e��µ�� k ∈ ��

It then holds that

lim
n→∞ sup

k∈�
fkn = sup

k∈�
fk∞ a�e��µ��

Proof of Theorem 4.
Step 1. Let

�5�1� S = cl
[ ∞⋃
m=1

∞⋂
n=m

{
f ∈ L1����∞� µ���	 E�f��n� ∈ SFn

��n�
}]
�

Clearly S is a closed convex bounded set. It is nonempty. Indeed, since the set
valued submartingale �Fn��n	 n ∈ �� is uniformly integrable, each �-valued
martingale �fkm�n�n∈� in Lemma 5.1 is uniformly integrable. Thus there ex-
ists an fkm�∞ ∈ L����∞� µ��� such that fkm�n → fkm�∞, a.e.�µ�. Further it
converges in L1����∞� µ���, so that fkm�∞ ∈ S. Finally, S is decomposable.
Indeed, for each f�g ∈ S, we can find two sequences �fj� and �gj� such that
fj → f, gj → g and fj, gj ∈ S�mj�, where

S�m� =
∞⋂

n=m

{
f ∈ L1����∞� µ����E�f��n� ∈ SFn

��n�
}
�
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Then hj 	= IAfj + I�\Agj ∈ S�mj� by the same reason as in the proof of
[13], Lemma 5.7. Now, by virtue of Lemma 5.2, there exists a unique F∞ ∈
L1����∞� µ�Kc���� such that S = SF∞��∞��

Step 2. We will show that

�5�2� F∞ ⊂ s- lim inf
n→∞ Fn a�e��µ��

Take an f ∈ SF∞ = S; then there is a sequence �fj� and a subsequence
m1 < m2 < · · · < mj < mj+1 < · · · of � such that

�5�3� �f− fj�L ≤ 1
2j
� fj ∈ S�mj�� j ∈ ��

Thus we have

E

[ ∞∑
j=1

∥∥fj�ω� − f�ω�∥∥
�

]
=

∞∑
j=1

E
[∥∥fj�ω� − f�ω�∥∥

�

]
=

∞∑
j=1

1
2j

< ∞�

This implies
∑∞

j=1 �fj�ω� − f�ω��� < ∞, a.e.�µ�. Moreover, we have∥∥fj�ω� − f�ω�∥∥
�
→ 0 as j → ∞� a�e��µ��

Now noting that fj ∈ S�mj�, we have E�fj��n� ∈ SFn
��n�; that is,

E�fj��n��ω� ∈ Fn�ω� a.e.�µ�, for each n ≥ mj, and∥∥fj�ω� −E�fj ��n��ω�∥∥
�
→ 0 as n → ∞ a�e��µ��

Since Fn�ω� is a closed set in �, this implies fj�ω� ∈ s- lim infn→∞Fn�ω�. But
the sets s-lim infn→∞Fn�ω� are closed for a.e.ω w.r.t µ. Hence, we get

f�ω� ∈ s- lim inf
n→∞ Fn�ω� a�e��µ��

Step 3. We will show that

�5�4� lim
n→∞ sup

x∈Fn�ω�
�x∗� x� ≤ sup

x∈F∞�ω�
�x∗� x�� x∗ ∈ �∗� a�e��µ��

Taking the system �fkm�n	 k�m�n ∈ �� in Lemma 5.1, we have

�5�5� sup
x∈Fn�ω�

�x∗� x� = sup
k∈��1≤m≤n

〈
x∗� fkm�n�ω�〉� ω ∈ �� n ∈ ��

Since �fkm�n	 n ∈ �� is a �-valued uniformly integrable martingale, there
exists an fkm�∞ ∈ S�m� ⊂ SF∞ such that

lim
n→∞fkm�n = fkm�∞ and fkm�n = E

(
fkm�∞��n

)
a�e��µ��
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which implies

lim
n→∞�x∗� fkm�n� = �x∗� fkm�∞� a�e��µ�

for each x∗ ∈ �∗ and k ∈ �. Furthermore, the sequence ��x∗� fkm�n���n	 n ∈ ��
is a real valued martingale with

sup
n∈�

E

[
sup

k∈��1≤m≤n

〈
x∗� fkm�n

〉+] ≤ �x∗��∗ sup
n∈�

E
[�Fn�K

]
< ∞�

where a+ = max�a�0�. Indeed, for m ≤ n, k ∈ �, condition (ii) in Lemma 5.1
ensures �fkm�n�� ≤ �Fn�K.

Now, by virtue of Lemma 5.3, it follows that for every fixed x∗ ∈ �∗,

lim
n→∞ sup

k∈��1≤m≤n

〈
x∗� fkm�n�ω�〉 = sup

k�m∈�

〈
x∗� fkm�∞�ω�〉 a�e��µ��

Since �∗ is separable, we get

lim
n→∞ sup

k∈��1≤m≤n

〈
x∗� fkm�n�ω�〉 = sup

k�m∈�
�x∗� fkm�∞�ω��� x∗ ∈ �∗ a�e��µ��

We thus obtain from (5.5) that

lim
n→∞ sup

x∈Fn�ω�
�x∗� x� = sup

k�m∈�

〈
x∗� fkm�∞�ω�〉 x∗ ∈ �∗ a�e��µ��

On the other hand, we have fkm�∞ ∈ F∞�ω� a�e��µ�� k ∈ �, since fkm�∞ ∈ SF∞ .
Thus we get 〈

x∗� fkm�∞�ω�〉 ≤ sup
x∈F∞�ω�

�x∗� x� x∗ ∈ �∗ a�e��µ��

This implies

sup
k�m∈�

�x∗� fkm�∞�ω�� ≤ sup
x∈F∞�ω�

�x∗� x�� x∗ ∈ �∗ a�e��µ��

ensuring (5.4).
Step 4. We now show that

�5�6� w-lim sup
n→∞

Fn ⊂ F∞ a�e��µ��

which together with (5.2) completes the proof of the theorem.
Take an x ∈ w-lim supn→∞Fn�ω�. Then, by the definition, there exists a

subsequence �ni� such that xni ∈ Fni
, i ∈ �, xni → x in the weak sense, and

lim
i→∞

�x∗� xni� = �x∗� x�� x∗ ∈ �∗�

This implies

�x∗� x� ≤ lim
i→∞

sup
x∈Fni

�ω�
�x∗� x�
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and together with (5.4),

�x∗� x� ≤ sup
x∈F∞�ω�

�x∗� x� a�e��µ��

We thus obtain x ∈ F∞�ω� a.e.�µ�, from the argument in [5], page 166. ✷

6. Proof of Theorem 5.
Step 1. Let M be that given in (2.4). We can use the same method as

in [13], Lemma 5.7 to get that M is closed, convex, bounded and decom-
posable. From the assumption of M being nonempty, there exists a unique
F∞ ∈ L1����∞� µ�Kc���� such that SF∞��∞� = M by Lemma 5.2.

Now we prove

�6�1� F∞�ω� ⊂ s- lim inf
n→∞ Fn�ω� a�e��µ��

Indeed, take an f ∈ SF∞��∞�. We then have E�f��n� ∈ SFn
��n�, that is,

E�f��n��ω� ∈ Fn�ω�, a.e.�µ� for all n ∈ �. Further, since �Fn� is uniformly
integrable, it holds that

lim
n→∞

∥∥E�f��n��ω� − f�ω�∥∥
�
= 0 a�e��µ��

We thus obtain f ∈ Ss- lim infn→∞Fn
, so that SF∞ ⊂ Ss- lim infn→∞Fn

.
Step 2. We will prove

�6�2� w- lim sup
n→∞

Fn ⊂ F∞ a�e��µ��

which together with (6.1) completes the proof of the theorem.
Let

�6�3� Mn =
n⋂

m=1

{
f ∈ L1����∞� µ���	 E�f��m� ∈ SFm

��m�
}
�

It is also easy to prove that Mn is closed, convex, bounded and decomposable.
Since M being nonempty, Mn is nonempty for each n ∈ �. Thus there exists
a unique Gn ∈ L1����∞� µ�Kc���� such that SGn

��∞� = Mn by Lemma 5.2.
First, we note that SFl

⊂ SGn
, for each l ≥ n. Indeed, for each f ∈

SFl
��l� SFl

��l��, f is �l-measurable and f�ω� ∈ Fl�ω�, a�e��µ�, so that f
is �∞-measurable, and E�f��k� ∈ cl�E�g��k�	 g ∈ SFl

��l�� = SE�Fl��k���k�
for 1 ≤ k ≤ n. Since �Fl��l	 l ∈ �� is supermartingale, SE�Fl ��k� ⊂ SFk

��k�.
We then have E�f��k� ∈ SFk

��k�, for 1 ≤ k ≤ n. Thus f ∈ SGn
. By virtue of

[13], Lemma 2.1, we have

Fl�ω� ⊂ Gn�ω� a�e��µ� for each l ≥ n�

Since Gn�ω� are convex and closed sets in � for a.e. ω w.r.t. µ, and convexity
and closedness imply weakly closedness, we have

w- lim sup
l→∞

Fl�ω� ⊂ Gn�ω� a�e��µ� for each n�
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We then get

w-lim sup
l→∞

Fl�ω� ⊂
∞⋂
n=1

Gn�ω� = F∞�ω� a�e��µ�� ✷

Remark 5. The proof of Theorem 5 is naturally valid for the case when
the set valued sequence �Fn��n	 n ∈ �� is a martingale. Hence it is also a
simpler proof of Theorem 3 than the previous one.
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