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MULTIPLE POINTS OF DILATION-STABLE LÉVY PROCESSES1

By Narn-Rueih Shieh

National Taiwan University

Let X be a symmetric Lévy process in R
d, d = 2�3. We assume that

X has independent αj-stable components, 1 < αd ≤ · · · ≤ α1 < 2 (a process
with stable components, by Pruitt and Taylor), or more generally thatX is
d-dimensionally self-similar with similarity exponents Hj, Hj = 1/αj (a
dilation-stable process, by Kunita). Let a given integer k ≥ 2 be such that
k�H − 1� < H, H = ∑d

j=1Hj. We prove that the set of k-multiple points
Ek is almost surely of Hausdorff dimension

dimEk = min

(
k− �k− 1�H

H1
� d− k�H− 1�

Hd

)
�

In the stable components case, the above formula was proved by Hendricks
for d = 2 and was suspected by him for d = 3.

1. Introduction and main result. Let Xt = Xt�ω�, t ∈ R+, be a Lévy
process, defined on a probability space ���� �P� and taking values in R

d,
d ≥ 2. We assume that X�0� = 0. Let γt, t > 0, be a multiplicative semigroup
γts = γt ◦ γs of nonsingular linear transformations on R

d. We say that X
is stable with respect to γt if Xt =d γtX1 for all t > 0, where =d denotes
distributional equivalence. See the recent book by Jurek and Mason (1994) for
the theory of general operator-stable processes. We are interested in the case
γt = CδtθtC−1, where C, θt are orthogonal transformations and δt are diagonal
transformations with diagonal entries tH1� � � � � tHd . For the simplicity of the
context of proof, we assume further in what follows that C, θt are identities so
that γt = δt. Then,X is d-dimensionally self-similar with similarity exponents
H1� � � � �Hd, in the sense that for each c > 0, the following equivalence of the
time-scaled and the space-scaled processes of X = �X1� � � � �Xd� holds:{

X�ct�}
t≥0 =d

{�cH1X1�t�� � � � � cHdXd�t��
}
t≥0�

The consideration of the above-mentioned Lévy processes comes from a lecture
of Kunita (1993), who named X a dilation-stable process. There are much
earlier works by Pruitt and Taylor (1969a) and Hendricks (1974, 1979). They
considered an important case, namely, assuming thatX is also of independent
components, and it was called a process with stable components; note that the
component Xj is a (strictly) αj-stable Lévy process, αj = 1/Hj. In this paper,
we derive a dimension formula for the multiple points of sample paths of
dilation-stable Lévy processes. For any positive integer k ≥ 2, a point x ∈ R

d
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is said to be a k-multiple point of the path X�·�ω� if there are distinct times
0 < t1 < · · · < tk such that X�ti�ω� = x for i = 1� � � � � k. We assume that

1
2 < H1 ≤ · · · ≤Hd < 1�(1.1)

or equivalently,

�1�1�′ 1 < αd ≤ · · · ≤ α1 < 2�

We assume in this paper that the process X is symmetric, in the sense that
X�t� =d −X�t� for all t > 0. We also assume that the process X is genuinely
in R

d; that is,X is not concentrated on any proper subspace of R
d. Let a given

integer k ≥ 2 be such that

�H� k�H− 1� < H�
where

H =H1 + · · · +Hd�
Then, X�t� has k-multiple points a.s.; see Section 2. Since we have assumed
that 1/2 < Hj < 1, condition (H) is nonvoid only when d = 2�3 and the
situation is

d = 2� 1 < H1 +H2 <
k

k− 1
�

d = 3� 3
2
< H1 +H2 +H3 < 2 �k = 2 only��

Letting Ek denote the (random) set of k-multiple points, our purpose is to
prove the following dimension formula forEk. Let dim�·� denote the Hausdorff
dimension of a Borel set in R

d. We refer to Taylor (1986) for a convenient
reference on the theory of random fractals arising from the sample paths
of stochastic processes, in which the detailed definitions and properties of
Hausdorff and other dimension indices have been described.

Theorem 1. Let X be a dilation-stable symmetric Lévy process in R
d, as

described above. Under condition (H), almost surely,

dimEk = min
(
k− �k− 1�H

H1
� d− k�H− 1�

Hd

)
�(1.2)

Note that (1.2) reduces to a well-known formula proved by Taylor (1967) in
the α-stable Lévy case, in which α = 1/Hj for all j, namely that dimEk =
d− k�d− α�. In the case of processes with stable components, (1.2) is consis-
tent with an R

2 result proved by Hendricks (1974). However, Hendricks did not
prove the R

3 result in his works (1974, 1979), although he indeed remarked
on some difficulty and suspicion in (1974), page 127 (iv). Thus, our Theorem 1
completes his work on the multiple points of the processes with stable compo-
nents. We should remark that, in the case d = 3, dimE2 in (1.2) is always the
first term, since the second term is always bigger; the latter is a consequence
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of the fact that 2 −H < 1/2 < H1 (I thank Y. M. Xiao for this observation).
We remark that Hendricks also made crucial usage of the independent compo-
nents assumption, and it seems impossible to follow his arguments to obtain
our (1.2) for more general dilation-stable processes even in the R

2 case. Our
ingredients for proving Theorem 1 are some basic scaling estimates for the po-
tential kernels and some intersection local time techniques for general Lévy
processes given in Le Gall (1987) and Le Gall, Rosen and Shieh (1989). We
observe that the two possible values in (1.2) come from two kinds of coverings:
by ellipsoids with semiaxis lengths εH1� � � � � εHd and by balls with radius εHd .
For the α-stable case, the two kinds of coverings have “the same effect” since
the scalings are the same in various directions; thus the two possibly different
values reduce to the same, as was proved by Taylor (1967). Hendricks [(1974),
page 127(i)] mentioned his idea of successively using up the two components;
such an approach seems to restrict to the R

2 and the independent components
case only.

Finally, we should mention that the background for studying processes with
stable components, as that remarked by Pruitt and Taylor (1969a) and Hen-
dricks (1974), arises from Jain and Pruitt’s (1969) work on the collisions of
independent stable processes, while the background for studying dilation-
stable processes arises from the investigation on “Lévy flows,” see Kunita
(1993, 1996) and Applebaum and Kunita (1994).

2. Some preliminaries and basic estimates. First, we cite a result of
Lamperti (1962), Example 1 showing that dilation-stable Lévy processes are
indeed an extension of α-stable Lévy processes.

Lemma 2.1. If X is a d-dimensionally self-similar Lévy process in R
d and

the similarity exponentsH1 = · · · =Hl, for some l� 1 ≤ l ≤ d, then �X1� � � � �Xl�
is a (strictly) α-stable Lévy process in R

l, α = 1/Hj, j = 1� � � � � l.

Note that we have assumed that 1/2 < Hj < 1� so that αj = 1/Hj are in
the range �1� 2�; thus we have the excluded subordinators, and the Cauchy
and Wiener processes from our consideration. We also remark that, in view
of Lemma 2.2 below and the well-known Port–Stone criterion, our process is
transient; see also Choi and Sato (1995) for the transience of more general
operator-stable processes. Let Pt�dy� be the probability distribution of Xt.
Then, it is known [Kunita (1993), Jurek and Mason (1994), Chapter 4] that
Pt�dy� has a bounded continuous density pt�y�, y ∈ R

d, and that the following
scaling holds:

pt�y� =
p1�γt−1y�
tH

∀ t > 0� y ∈ R
d�(2.1)

where H = H1 + · · · +Hd. Note that 1 ≤ d/2 < H < d. Observe that, by the
symmetry assumption,

p1�0� =
∫
x

(
p1/2�x�

)2
dx > 0�
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Then it follows from (2.1) that pt�y� > 0, ∀ t� y. Note that the above positivity
assertion is the “type A” condition in Taylor (1967). The following lemma can
be seen in Hudson and Mason (1981) and Kunita (1993), from which it is easy
to construct a dilation-stable symmetric Lévy process, with given Hj, yet not
of independent components.

Lemma 2.2. For a dilation-stable Lévy process X, the characteristic func-
tion of X1 is determined by

E exp�i�z�X1��

= exp
[∫ ∞

0

∫
S

(
exp�i�z� γrx�� − 1 − i�z� γrx�1D�γrx�

)λ�dx�dr
r2

]
�

where λ�dx� is a finite Borel measure on S = �x� �x� = 1�, andD = �x� �x� ≤ 1�.

Note that, in Lemma 2.2, if we take λ�dx� to be a symmetric measure on
S, then the resulting X is symmetric; while if λ is not concentrated on the
coordinate axes, then X is not of independent components.

Following the general definition and notation in Taylor (1967), we define
the potential kernel U�y� with respect to the process X in Theorem 1, 0 <
U�y� ≤ ∞, to be

U�y� =
∫ ∞

0
pt�y�dt� y ∈ R

d�

which is lower-semicontinuous in y.

Lemma 2.3. For 0 < ρ1 < ρ2,

0 < inf
ρ1≤�y�≤ρ2

U�y� ≤ sup
ρ1≤�y�≤ρ2

U�y� <∞�

Proof. By (2.1), we have

U�y� =
∫ 1

0

p1�γt−1y�
tH

dt+
∫ ∞

1

p1�γt−1y�
tH

dt�(2.2)

Positivity of the lower bound comes from that of p1�0�. We prove finiteness
of the upper bound as follows. The second term in the r.h.s of (2.2) converges
uniformly in �y� ≤ ρ2, since �γt−1y� ≤ ρ2 for �y� ≤ ρ2 and t ≥ 1 [we also note
that p1�·� is continuous]. As for the first term, note that αd = 1/Hd is the
minimum of αj = 1/Hj, 1 ≤ j ≤ d. By the estimate for the stable density
given in Pruitt and Taylor (1969b), considering the slowest possible decay,
we have

p1�γt−1y� ≤ Const · �γt−1y�−�1+αd� ≤ Const · tH1�1+αd�

for all t� 0 < t ≤ 1 and all y� ρ1 ≤ �y�; the Const in the above display is a
certain absolute constant depending only on d and ρ1. Thus, the first term in



MULTIPLE POINTS OF LÉVY PROCESSES 1345

the r.h.s. of (2.2) converges uniformly in ρ1 ≤ �y� wheneverH−H1�1+αd� < 1.
The latter is true, since

H−H1�1 + αd� < H− 2H1 < 2�1 −H1� < 1�

We note that H < 2 is a consequence of condition (H). ✷

Lemma 2.4. There exist C�C′ > 0 such that

C′(
maxj �yj�1/Hj

)H−1 ≤ U�y� ≤ C(
maxj �yj�1/Hj�H−1

∀y �= 0�

Proof. We have

U�y� = U�γt−1y�
tH−1

∀ t� y�(2.3)

In fact,

U�γty� =
∫ ∞

0
ps�γty�ds

=
∫ ∞

0

p1�γs−1γty�
sH

ds

=
∫ ∞

0

p1�γu−1y�
�tu�H tdu

=
∫∞

0 pu�y�du
tH−1

�

Now, for any y �= 0, let ty = maxj �yj�1/Hj ; then

1 ≤ ∣∣γt−1
y
y
∣∣ ≤ √

d�

By Lemma 2.3 and (2.3), we have

0 < C′ ≤ tH−1
y U�y� ≤ C <∞� ✷

For each compact K ⊂ R
d, the capacity of K with respect to the process X

is defined, as in Taylor (1967), to be

Cap�K� = sup
{
µ�K�� sup

x
Wµ�x� ≤ 1

}
�

where µ is a finite Borel measure supported by K and Wµ�x� is defined by

Wµ�x� =
∫
K
U�y− x�µ�dy��

The following scaling property of Cap�K� is evident.

Lemma 2.5. We have

Cap�γtK� = tH−1 Cap�K� ∀ t�K�
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Let Br be the ball in R
d with center 0 and radius r, and let )d�r� be its

volume.

Lemma 2.6. We have

)d�r�∫
�y�≤2r U�y�dy ≤ Cap�Br� ≤

)d�4r�∫
�y�≤r U�y�dy�

Proof. The inequality appears in Hendricks (1979), Lemma 2. The esti-
mate in the proof of Lemma 2.3 shows that∫

�y�≤a
U�y�dy

is finite positive for each a > 0. ✷

Lemma 2.7. Fix k ≥ 1. There exists an absolute constant Ck�d such that∫
�y�≤2r

U�y�k dy ≤ Ck�d
∫
�y�≤r

U�y�k dy

for all r > 0.

The proof follows directly from Lemma 2.4.
By the following Lemma 2.8 and the result in Evans (1987) or Le Gall,

Rosen and Shieh (1989), under condition (H), the set Ek of k-multiple points
of a dilation-stable Lévy process is (a.s.) nonempty.

Lemma 2.8. Under condition (H), for each a > 0,

0 <
∫
�y�≤a

Uk�y�dy <∞�

Proof. We use an argument similar to that of the proof of Lemma 2.3. We
show that both of the following integrals are finite, and we note that the first
one is positive by the positivity of p1�0�,∫

�y�≤a

[∫ 1

0
pt�y�dt

]k
dy

and ∫
�y�≤a

[∫ ∞

1
pt�y�dt

]k
dy�

As before, the second one is all right; to prove the first one, by the generalized
Minkowski inequality, it suffices to prove the finiteness of

∫ 1

0

[∫
�y�≤a

pkt �y�dy
]1/k

dt�
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which we estimate as equal to

∫ 1

0

[∫
�y�≤a

pk−1
t �y�pt�y�dy

]1/k

dt

≤
∫ 1

0

[
sup
�y�≤a

pk−1
t �y�

]1/k

dt

since pt�y� is a density function for each t. Moreover, since

pk−1
t �y� = p

k−1
1 �γt−1y�
t�k−1�H �

and p1�·� is bounded, the above integral is finite by condition (H). ✷

Remark. From the proof of Lemma 2.8 and a result of Shieh (1992), it is
possible to consider the k-multiple points of the path X�·� t� with t restricted
to a certain subset of R+ for which the Hausdorff dimension is less than 1.

3. Proof of Theorem 1. First, we reduce our consideration from the self-
intersections of a single processX to the intersections of the ranges of k inde-
pendent copies X1� � � � �Xk of X, with starting points x1� � � � � xk� respectively.
Such a reduction has been rigorously justified for general Lévy processes in
Le Gall, Rosen and Shieh (1989), Section 3. Thus, our Ek now is the intersec-
tion

⋂k
j=1 X

j�0�∞�. The proof of Theorem 1 is largely based on the following
“canonical” measure µk supported by Ek.

Proposition 3.1. There exists (a.s.) a Borel measure µk supported by Ek
whose moments are given, for each l = 1�2� � � � and compact K, by

E
[
µk�K�]l = ∫

Kl
dy1 · · ·dyl

k∏
j=1

[∑
σ

U�yσ�1� − xj�
l∏
i=2

U�yσ�i� − yσ�i−1��
]
�

where the sum extends over all permutations of �1� � � � � l�.

From now on, we suppress the subscript k from µk. To construct µ, there
are two (essentially the same) ways: to consider µ as the image of the mea-
sure α in Le Gall, Rosen and Shieh (1989), Theorem 3, under the mapping
�t1� � � � � tk� −→X1�t1�, �t1� � � � � tk� being a k-multiple time; or to consider µ as
the limiting measure of a certain normalized intersection of k sausage mea-
sures, as in Le Gall (1987), Theorem 2.1. Here we follow the latter approach,
since it is more direct and useful for the present purpose. Note that Le Gall
(1987) treated the spherically symmetric Lévy processes, while this quite re-
strictive assumption can be removed to fit our dilation-stable case. Also note
that the Hawkes condition in Le Gall’s paper is essentially condition (H) in
our dilation-stable case. In the Appendix we show how to modify Le Gall’s
theorem.
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The proof of “≤” in �1�2�. For each ε�0 < ε < 1, and y ∈ R
d, we consider the

ellipsoid Rε�y� with center y, axes parallel to the coordinates, and semiaxis
lengths εH1� � � � � εHd ; we also consider the ball Bε�y� with center y and radius
εHd . We suppress y = 0 from Rε�0� and Bε�0�. Now, we observe that the
ellipsoid and the ball are related by

Rε�y� = γεB1�y��
Bε�y� = γεQε�y��

where Qε�y� is the ellipsoid with center y, axes parallel to the coordinates
and semiaxis lengths εHd−Hj , j = 1� � � � � d. Note that Qε�y� ⊂ B1�y�. Also
note that, in the α-stable case, since H1 = · · · = Hd = 1/α, the two objects
Rε�y� and Bε�y� are the same. Let the measure functions φi�r�, r > 0� be
defined by

φ1�r� = r�k−�k−1�H�/H1�

φ2�r� = rd−�k�H−1�/Hd���

We prove that the Hausdorff φi measure of Ek ∩K, denoted henceforth by
φi − m�Ek ∩ K�, is (a.s.) finite for both i = 1�2, for each compact K. The
“≤” part of (1.2) then follows from this assertion. For the proof of φ1 −m, we
make use of Rε�y�. Let �ε, 0 < ε < 1, be the class of abutting boxes in R

d

with edges parallel to the coordinates, edge-lengths εH1� � � � � εHd and lower-
left vertices �εH1k1� � � � � ε

Hdkd�, ki ∈ Z. Let N�ε� be the (random) numbers of
those elements of �ε intersecting Ek ∩K. For any Borel A, let Anbdε denote⋃
y∈A Rε�y�; we note that, for each boxA ∈ �ε, volA = εH and diamA = εH1 .

Geometry shows that

N�ε�εH ≤ Leb
(�Ek ∩K�√dε

)
≤ Leb

(
S1√

dε
∩ · · · ∩Sk√

dε
∩Knbd√

dε

)
�

(3.1)

where Sjε denotes the sausage of Xj associated with Rε. That is,

Sjε =
⋃
t≥0

(
Xj�t� +Rε

)
�

The expectation of the last term in (3.1) is O�Cap�Rε�k�; this follows from
Le Gall’s theorem modified in the Appendix: in Ll�dP�, l = 1�2� � � � �

µ�K� = lim
ε→0

1
Cap�Rε�k

Leb
(
S1
ε ∩ · · · ∩Skε ∩K

)
�

We have, by Lemma 2.5,

Cap�Rε� = Cap�γεB1� = εH−1 Cap�B1��
Therefore,

lim inf
ε→0

E
[
N�ε�εH−k�H−1�] <∞�
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Since diamAε = εH1 for all Aε ∈ �ε, the above display asserts that

lim inf
ε→0

N�ε�φ1�diamAε� <∞ a.s.�

which certainly implies that �φ1 − m��Ek ∩ K� < ∞ a.s. For the proof of
φ2 −m, we make use of Bε�y�. Let �ε now denote the class of abutting cubes
constructed similarly as above, with common edge lengths εHd . Let Sjε now
denote the sausage of Xj associated with Bε, and Anbdε = ⋃

y∈A Bε�y�. We
note now that, for A ∈ �ε, volA = εdHd and diamA = √

dεHd . Intead of (3.1),
we now have

�3�1�′ N�ε�εdHd ≤ Leb
(
S1√

dε
∩ · · · ∩Sk√

dε
∩Knbd√

dε

)
�

The expectation of the r.h.s of �3�1�′ is now O�Cap�Bε�k�, while we have

Cap�Bε� = Cap�γεQε� ≤ εH−1 Cap�B1��
Thus, we have as above that

lim inf
ε→0

N�ε�φ2�diamAε� <∞ a.s.

The proof of “≥” in (1.2). We have had the measure µ supported by Ek.
Let s denote the minimum value in (1.2), that is,

s = min
(
k− �k− 1�H

H1
� d− k�H− 1�

Hd

)
�

Fix a compact K and we prove that if

0 < τ < s�

then a.s.,

µ�Bε�y� ∩K� ≤ Cετ�(3.2)

for all the balls Bε�y� with center y and radius ε. The C depends on the path
and on K, but not on Bε�y�. Indeed, once (3.2) is proved, then by Frostman’s
lemma in Kahane [(1985), page 130], the τ-dimensional Hausdorff measure
of Ek ∩K is positive. Then “≥” part of (1.2) is obtained by letting a sequence
τ ↑ s. We also observe that it suffices to prove (3.2) for µ-a.e. y and for a
sequence ε ↓ 0 which we choose to be 2−l, l = 1�2� � � � � Set

θ = s− τ�
Let Bl�y� now be the ball with center y and radius 2−l. Let

Al =
{
y ∈K� µ�Bl�y� ∩K� ≥ 2θl

∫
�y�≤2−l

Uk�y�dy
}
�

We aim to prove that
∞∑
l=1

Eµ�Al� <∞(3.3)
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and that ∫
�y�≤r

Uk�y�dy = O�rs� as r ↓ 0�(3.4)

Assume that (3.3) and (3.4) have been proved. Then, by (3.3), a.s. for µ-a.e. y,
y �∈ Al if l ≥ l0, some l0 = l0�y�ω�; thus by (3.4),

µ
[
Bl�y� ∩K

] ≤ 2θl
∫
�y�≤2−l

Uk�y�dy

= O(2θl−sl)�
= O(2−τl)�

which is what we desire.
To prove (3.3), we observe that∫

Al

µ�dy�[µ�Bl�y��]l

≥ µ�Al� · 2θl
2
[∫

�y�≤2−l
Uk�y�dy

]l
�

Thus

Eµ�Al� ≤
E
∫
Al
µ�dy�[µ�Bl�y��]l

2θl2
[ ∫

�y�≤2−l Uk�y�dy
]l �(3.5)

Applying the �l+ 1�th moment formula for µ in Proposition 3.1, we see the
numerator in the r.h.s. of (3.5) is

O

{[�l+ 1�!]k[∫
�y�≤2−�l−1�

U�y�k dy
]l}
�

Thus, in view of (3.5) and Lemma 2.7, we have
∞∑
l=1

Eµ�Al� ≤ Const
∞∑
l=1

��l+ 1�!�k
2θl2

<∞�

by Stirling’s formula for �l+ 1�!.
To prove (3.4), we use the following device. We note first that

Br = γεRε� r�
where

Br is the ball with center 0 and radius r;
Rε�r is the ellipsoid with center 0, edges parallel to the coordinates, and semi-

axis lengths rε−H1� � � � � rε−Hd .

Thus, ∫
Br

Uk�y�dy =
∫
Rε�r

Uk�γεz�εH dz�
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Case Hd < k�H − 1� < H. In this case, we take εH1 = r. Then Rε�r ⊃ B1,
and we may write ∫

Rε�r

=
∫
B1

+
∫
Rε�r−B1

�

By Lemma 2.4 we have∫
Rε�r−B1

Uk�γεz�dz ≤ ε−k�H−1�
∫
Rε�r−B1

dz

maxj �zj�k�H−1�/Hj �

The last integral in the above display is O�1� as r ↓ 0, since Hj ≤ Hd <
k�H− 1�. By Lemma 2.4 again,∫

B1

Uk�γεz�dz ≤ ε−k�H−1�
∫
B1

dz

maxj �zj�k�H−1�/Hj �

The last integral in the above display is finite, since the dominating power
is k�H − 1�/Hd which is less than d by our assumption that k�H − 1� < H.
Therefore ∫

Br

Uk�y�dy = O(r�H−k�H−1��/H1
)
�

and we note that the power of r in the above r.h.s is the first term in s.
Case 0 < k�H − 1� ≤ Hd. This happens only in the case d = 2, since

H > 3/2 in case d = 3. Now, we take εHd = r, d = 2. Then Rε�r ⊂ B1, and
we have ∫

Rε�r

Uk�γεz�εH dz

=
∫
B1

Uk�γεTε−1z�εHε2H2−H dz�

where Tε� �z1� z2� → �εH1−H2z1� z2�, which maps Rε�r onto B1. Since

γεTε−1z = εH2z� H2
/
H1 ≥ 1�

we now have ∫
Br

Uk�y�dy = O
(
ε2H2

∫
B1

dz

maxj �εH2zj�k�H−1�/Hj

)

= O(ε2H2−k�H−1�)
= O(r�2H2−k�H−1��/H2

)
�

and we note that the power of r in the above r.h.s. is the second term in the
s (with d = 2).

Remarks. (i) The first part of the proof indeed gives the same upper bound
estimate for the packing dimension (Dim) of Ek. Therefore we may include in
Theorem 1 that DimEk = dimEk; see Taylor (1986) for a description of the
relation between the two dimensional indices.
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(ii) As we have remarked in Section 1, by our assumption on the range of
the Hj, each component process Xj is αj-stable with 1 < αj < 2. As was seen
in Pruitt and Taylor (1969a) and Hendricks (1974), a different type of results
should appear if we want to extend the range.

(iii) The proof of Theorem 1 is motivated by those in Le Gall (1987), Theo-
rems 2.1 and 3.1, yet we pay special attention to the facts that a dilation-stable
process cannot be spherically symmetric if the similarity exponents are differ-
ent and that the potential kernel needs to be estimated properly.

(iv) As we see from the proof, the “nonisotropic” nature of the process is the
driving force behind our thinking (the different roles of ellipsoids and balls).
This nonisotropic nature is different, in fact stronger, than the nonsymmetric
α-stable process. The latter has its nature arising from the nonuniform distri-
bution of its difining measure on the unit spherical surface [cf. Taylor (1967),
Sections 2, 3]. In the case of dilation-stable processes with different expo-
nents, in view of Lemma 2.2, even if we start with the uniform distribution
on the unit spherical surface, we can only have a symmetric, yet not spheri-
cally symmetric, Lévy process. These require that the efforts on dilation-stable
processes should be more considerable than those on stable ones.

APPENDIX

Le Gall’s Theorem 2.1 (1987). In his 1987 work (Theorem 2.1), Le Gall
treated the intersections of k independent spherically symmetric Lévy pro-
cesses with common transition densities. The potential kernel U�x� in his
work is then radial. That is U�x� = U��x��, and he assumed U�r� to be de-
creasing in r. The assumption is indeed used in obtaining a majorization in
his Lemma 2.3, of page 346. Such a majorization is crucial in proving his (2.b)
and (2.c), page 347, which are central to obtaining his Theorem 2.1. We will
show that we still have such a majorization in the present case, and thus we
can exactly follow Le Gall’s arguments to obtain a result corresponding to his
Theorem 2.1 for our dilation-stable processes under condition (H). Note that
the formulation of the assertions in LeGall’s Theorem 2.1 is a general one
(nothing to do with the spherical symmetry) and indeed he also pointed out
(page 351) the possibility of the extension to the more general case. Now, let
Bε be either the ball �y� ≤ εHd or the ellipsoid

∑d
i=1�yi/εHi�2 ≤ 1, 0 < ε < 1.

ForXi, the independent copies of a dilation-stable Lévy processX with start-
ing point xi, let Siε be the sausage associated with Bε and let Tiε�y� be the
hitting time of y+Bε. The basic relation holds:

P
{
y ∈ Siε

} = P{Tiε�y� <∞} = ∫
Bε

U�y+ x− xi�µε�dx��

where µε is the capacitory measure for Bε. Let c�ε� denote µε�Bε� = Cap�Bε�.
Then, by Lemmas 2.5 and 2.6 in the above Sections 2, c�ε� ↓ 0 as ε ↓ 0. Let
y1� � � � � yl be distinct points that do not belong to any hyperplane which is
parallel to the coordinates and contains the xi (these hyperplanes have R

d-
Lebesgue measure zero). Let ε1� � � � � εl be small enough so that yi + Bεj are



MULTIPLE POINTS OF LÉVY PROCESSES 1353

separated by a positive distance ρ, from each other and from all the xi. By
the strong Markov property, we have

P
{
Tiε1

�y1� ≤ · · · ≤ Tiεl�yl� <∞}
= P{Tiε1

�y1� ≤ · · · ≤ Tiεl−1
�yl−1� <∞}

E
{
Pv

i
l−1
{
Tiεl�yl� <∞}}

�

where, for j = 2�3� � � � � the (random) points vij are

vij =Xi
(
Tiεj�yj�

)
�

We observe that

P
{
Tiε1

�y1� <∞} = ∫
Bε1

U�y1 + x− xi�µε1
�dx�

≤ c�ε1�fε1
�y1 − xi��

where

fε1
�z� = sup

x∈Bε1
U�z+ x��

Moreover, since vij ∈ yj +Bεj , j = 2�3� � � � �

E
{
Pv

i
j−1�Tiεj�yj� <∞�}
= E

{∫
Bεj

U�yj + x− vij−1�µεj�dx�
}

≤ c�εj�fεj−1� εj
�yj − yj−1��

where

fεj−1� εj
�z� = sup

x∈Bεj+Bεj−1

U�z+ x��

Therefore, we have the following recursive relation:

�c�ε1� · · · c�εl��−1P
{
Tiε1

�y1� ≤ · · · ≤ Tiεl�yl� <∞}
≤ fε1

�y1 − xi�
l∏
j=2

fεj−1� εj
�yj − yj−1��

Under our separation condition mentioned above, the functions fε1
, fεj−1� εj

are integrable in yj, yj−1 up to any order, thanks to Lemmas 2.3 and 2.4 in
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Section 2. The above majorization is our replacement of that given in Le Gall
[(1987), page 346]. With this majorization and the same arguments as his,
we have the following modification of Le Gall’s result, valid for dilation-stable
Lévy processes.

Theorem A. Let X be the dilation-stable Lévy process in Theorem 1; then
the measure µ in Proposition 3.1 exists as the following limit: in Ll�dP�, l =
1�2� � � � �

µ�K� = lim
ε→0

1
Cap�Rε�k

Leb
(
S1
ε ∩ · · · ∩Skε ∩K

)
�

where K is any compact in R
d, Rε is either the ball �y� ≤ εHd or the ellipsoid∑d

i=1 �yi/εHi�2 ≤ 1, 0 < ε < 1 and Siε is the sausage of Xi associated with Rε.
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