MULTIPLE POINTS OF DILATION-STABLE LÉVY PROCESSES ${ }^{1}$

By Narn-Rueih Shieh
National Taiwan University

Abstract

Let X be a symmetric Lévy process in $\mathbb{R}^{d}, d=2$, 3. We assume that X has independent α_{j}-stable components, $1<\alpha_{d} \leq \cdots \leq \alpha_{1}<2$ (a process with stable components, by Pruitt and Taylor), or more generally that X is d-dimensionally self-similar with similarity exponents $H_{j}, H_{j}=1 / \alpha_{j}$ (a dilation-stable process, by Kunita). Let a given integer $k \geq 2$ be such that $k(H-1)<H, H=\sum_{j=1}^{d} H_{j}$. We prove that the set of k-multiple points E_{k} is almost surely of Hausdorff dimension

$$
\operatorname{dim} E_{k}=\min \left(\frac{k-(k-1) H}{H_{1}}, d-\frac{k(H-1)}{H_{d}}\right) .
$$

In the stable components case, the above formula was proved by Hendricks for $d=2$ and was suspected by him for $d=3$.

1. Introduction and main result. Let $X_{t}=X_{t}(\omega), t \in \mathbb{R}_{+}$, be a Lévy process, defined on a probability space (Ω, \mathscr{F}, P) and taking values in \mathbb{R}^{d}, $d \geq 2$. We assume that $X(0)=0$. Let $\gamma_{t}, t>0$, be a multiplicative semigroup $\gamma_{t s}=\gamma_{t} \circ \gamma_{s}$ of nonsingular linear transformations on \mathbb{R}^{d}. We say that X is stable with respect to γ_{t} if $X_{t}={ }_{d} \gamma_{t} X_{1}$ for all $t>0$, where $=_{d}$ denotes distributional equivalence. See the recent book by J urek and Mason (1994) for the theory of general operator-stable processes. We are interested in the case $\gamma_{t}=C \delta_{t} \theta_{t} C^{-1}$, where C, θ_{t} are orthogonal transformations and δ_{t} are diagonal transformations with diagonal entries $t^{H_{1}}, \ldots, t^{H_{d}}$. For the simplicity of the context of proof, we assume further in what follows that C, θ_{t} are identities so that $\gamma_{t}=\delta_{t}$. Then, X is d-dimensionally self-similar with similarity exponents H_{1}, \ldots, H_{d}, in the sense that for each $c>0$, the following equivalence of the time-scaled and the space-scaled processes of $X=\left(X_{1}, \ldots, X_{d}\right)$ holds:

$$
\{X(c t)\}_{t \geq 0}={ }_{d}\left\{\left(c^{H_{1}} X_{1}(t), \ldots, c^{H_{d}} X_{d}(t)\right)\right\}_{t \geq 0} .
$$

The consideration of the above-mentioned Lévy processes comes from a lecture of Kunita (1993), who named X a dilation-stable process. There are much earlier works by Pruitt and Taylor (1969a) and Hendricks (1974, 1979). They considered an important case, namely, assuming that X is also of independent components, and it was called a process with stable components; note that the component X_{j} is a (strictly) α_{j}-stable Lévy process, $\alpha_{j}=1 / H_{j}$. In this paper, we derive a dimension formula for the multiple points of sample paths of dilation-stable Lévy processes. For any positive integer $k \geq 2$, a point $x \in \mathbb{R}^{d}$

[^0]is said to be a k-multiple point of the path $X(\cdot, \omega)$ if there are distinct times $0<t_{1}<\cdots<t_{k}$ such that $X\left(t_{i}, \omega\right)=x$ for $i=1, \ldots, k$. We assume that
\[

$$
\begin{equation*}
\frac{1}{2}<H_{1} \leq \cdots \leq H_{d}<1, \tag{1.1}
\end{equation*}
$$

\]

or equivalently,

$$
\begin{equation*}
1<\alpha_{d} \leq \cdots \leq \alpha_{1}<2 . \tag{1.1}
\end{equation*}
$$

We assume in this paper that the process X is symmetric, in the sense that $X(t)={ }_{d}-X(t)$ for all $t>0$. We also assume that the process X is genuinely in \mathbb{R}^{d}; that is, X is not concentrated on any proper subspace of \mathbb{R}^{d}. Let a given integer $k \geq 2$ be such that

$$
\begin{equation*}
k(H-1)<H, \tag{H}
\end{equation*}
$$

where

$$
H=H_{1}+\cdots+H_{d} .
$$

Then, $X(t)$ has k-multiple points a.s.; see Section 2 . Since we have assumed that $1 / 2<H_{j}<1$, condition (H) is nonvoid only when $d=2,3$ and the situation is

$$
\begin{array}{ll}
d=2: & 1<H_{1}+H_{2}<\frac{k}{k-1} \\
d=3: & \frac{3}{2}<H_{1}+H_{2}+H_{3}<2(k=2 \text { only }) .
\end{array}
$$

Letting E_{k} denote the (random) set of k-multiple points, our purpose is to prove the following dimension formula for E_{k}. Let dim(.) denote the Hausdorff dimension of a Borel set in \mathbb{R}^{d}. We refer to Taylor (1986) for a convenient reference on the theory of random fractals arising from the sample paths of stochastic processes, in which the detailed definitions and properties of Hausdorff and other dimension indices have been described.

Theorem 1. Let X be a dilation-stable symmetric Lévy process in \mathbb{R}^{d}, as described above. Under condition (H), almost surely,

$$
\begin{equation*}
\operatorname{dim} E_{k}=\min \left(\frac{k-(k-1) H}{H_{1}}, d-\frac{k(H-1)}{H_{d}}\right) . \tag{1.2}
\end{equation*}
$$

Note that (1.2) reduces to a well-known formula proved by Taylor (1967) in the α-stable Lévy case, in which $\alpha=1 / H_{j}$ for all j, namely that $\operatorname{dim} E_{k}=$ $d-k(d-\alpha)$. In the case of processes with stable components, (1.2) is consistent with an \mathbb{R}^{2} result proved by Hendricks (1974). However, Hendricks did not prove the \mathbb{R}^{3} result in his works (1974, 1979), although he indeed remarked on some difficulty and suspicion in (1974), page 127 (iv). Thus, our Theorem 1 completes his work on the multiple points of the processes with stable components. We should remark that, in the case $d=3, \operatorname{dim} E_{2}$ in (1.2) is always the first term, since the second term is always bigger; the latter is a consequence
of the fact that $2-H<1 / 2<H_{1}$ (I thank Y. M. Xiao for this observation). We remark that Hendricks also made crucial usage of the independent components assumption, and it seems impossible to follow his arguments to obtain our (1.2) for more general dilation-stable processes even in the \mathbb{R}^{2} case. Our ingredients for proving Theorem 1 are some basic scaling estimates for the potential kernels and some intersection local time techniques for general Lévy processes given in Le Gall (1987) and Le Gall, Rosen and Shieh (1989). We observe that the two possible values in (1.2) come from two kinds of coverings: by ellipsoids with semiaxis lengths $\varepsilon^{H_{1}}, \ldots, \varepsilon^{H_{d}}$ and by balls with radius $\varepsilon^{H_{d}}$. For the α-stable case, the two kinds of coverings have "the same effect" since the scalings are the same in various directions; thus the two possibly different values reduce to the same, as was proved by Taylor (1967). Hendricks [(1974), page 127(i)] mentioned his idea of successively using up the two components; such an approach seems to restrict to the \mathbb{R}^{2} and the independent components case only.

Finally, we should mention that the background for studying processes with stable components, as that remarked by Pruitt and Taylor (1969a) and Hendricks (1974), arises from J ain and Pruitt's (1969) work on the collisions of independent stable processes, while the background for studying dilationstable processes arises from the investigation on "Lévy flows," see Kunita (1993, 1996) and Applebaum and Kunita (1994).
2. Some preliminaries and basic estimates. First, we cite a result of Lamperti (1962), Example 1 showing that dilation-stable Lévy processes are indeed an extension of α-stable Lévy processes.

LEMMA 2.1. If X is a d-dimensionally self-similar Lévy process in \mathbb{R}^{d} and thesimilarity exponents $H_{1}=\cdots=H_{l}$, for some l : $1 \leq l \leq d$, then $\left(X_{1}, \ldots, X_{l}\right)$ is a (strictly) α-stable Lévy process in $\mathbb{R}^{l}, \alpha=1 / H_{j}, j=1, \ldots, l$.

Note that we have assumed that $1 / 2<H_{j}<1$, so that $\alpha_{j}=1 / H_{j}$ are in the range (1, 2); thus we have the excluded subordinators, and the Cauchy and Wiener processes from our consideration. We also remark that, in view of Lemma 2.2 below and the well-known Port-Stone criterion, our process is transient; see also Choi and Sato (1995) for the transience of more general operator-stable processes. Let $P_{t}(d y)$ be the probability distribution of X_{t}. Then, it is known [Kunita (1993), J urek and Mason (1994), Chapter 4] that $P_{t}(d y)$ has a bounded continuous density $p_{t}(y), y \in \mathbb{R}^{d}$, and that the following scaling holds:

$$
\begin{equation*}
p_{t}(y)=\frac{p_{1}\left(\gamma_{t^{-1}} y\right)}{t^{H}} \quad \forall t>0, y \in \mathbb{R}^{d} \tag{2.1}
\end{equation*}
$$

where $H=H_{1}+\cdots+H_{d}$. Note that $1 \leq d / 2<H<d$. Observe that, by the symmetry assumption,

$$
p_{1}(0)=\int_{x}\left(p_{1 / 2}(x)\right)^{2} d x>0
$$

Then it follows from (2.1) that $p_{t}(y)>0, \forall t, y$. Note that the above positivity assertion is the "type A" condition in Taylor (1967). The following lemma can be seen in Hudson and Mason (1981) and K unita (1993), from which it is easy to construct a dilation-stable symmetric Lévy process, with given H_{j}, yet not of independent components.

Lemma 2.2. For a dilation-stable Lévy process X, the characteristic function of X_{1} is determined by

$$
\begin{aligned}
& E \exp \left(i\left(z, X_{1}\right)\right) \\
& \quad=\exp \left[\int_{0}^{\infty} \int_{S}\left(\exp \left(i\left(z, \gamma_{r} x\right)\right)-1-i\left(z, \gamma_{r} x\right) 1_{D}\left(\gamma_{r} x\right)\right) \frac{\lambda(d x) d r}{r^{2}}\right]
\end{aligned}
$$

where $\lambda(d x)$ is a finite Borel measure on $S=\{x:|x|=1\}$, and $D=\{x:|x| \leq 1\}$.
Note that, in Lemma 2.2, if we take $\lambda(d x)$ to be a symmetric measure on S, then the resulting X is symmetric; while if λ is not concentrated on the coordinate axes, then X is not of independent components.

Following the general definition and notation in Taylor (1967), we define the potential kernel $U(y)$ with respect to the process X in Theorem $1,0<$ $U(y) \leq \infty$, to be

$$
U(y)=\int_{0}^{\infty} p_{t}(y) d t, \quad y \in \mathbb{R}^{d}
$$

which is lower-semicontinuous in y.
LEMMA 2.3. For $0<\rho_{1}<\rho_{2}$,

$$
0<\inf _{\rho_{1} \leq|y| \leq \rho_{2}} U(y) \leq \sup _{\rho_{1} \leq|y| \leq \rho_{2}} U(y)<\infty
$$

Proof. By (2.1), we have

$$
\begin{equation*}
U(y)=\int_{0}^{1} \frac{p_{1}\left(\gamma_{t^{-1}} y\right)}{t^{H}} d t+\int_{1}^{\infty} \frac{p_{1}\left(\gamma_{t^{-1}} y\right)}{t^{H}} d t \tag{2.2}
\end{equation*}
$$

Positivity of the lower bound comes from that of $p_{1}(0)$. We prove finiteness of the upper bound as follows. The second term in the r.h.s of (2.2) converges uniformly in $|y| \leq \rho_{2}$, since $\left|\gamma_{t^{-1}} y\right| \leq \rho_{2}$ for $|y| \leq \rho_{2}$ and $t \geq 1$ [we also note that $p_{1}(\cdot)$ is continuous]. As for the first term, note that $\alpha_{d}=1 / H_{d}$ is the minimum of $\alpha_{j}=1 / H_{j}, 1 \leq j \leq d$. By the estimate for the stable density given in Pruitt and Taylor (1969b), considering the slowest possible decay, we have

$$
p_{1}\left(\gamma_{t^{-1}} y\right) \leq \text { Const } \cdot\left|\gamma_{t^{-1}} y\right|^{-\left(1+\alpha_{d}\right)} \leq \text { Const } \cdot t^{H_{1}\left(1+\alpha_{d}\right)}
$$

for all $t: 0<t \leq 1$ and all $y: \rho_{1} \leq|y|$; the Const in the above display is a certain absolute constant depending only on d and ρ_{1}. Thus, the first term in
the r.h.s. of (2.2) converges uniformly in $\rho_{1} \leq|y|$ whenever $H-H_{1}\left(1+\alpha_{d}\right)<1$. The latter is true, since

$$
H-H_{1}\left(1+\alpha_{d}\right)<H-2 H_{1}<2\left(1-H_{1}\right)<1 .
$$

We note that $H<2$ is a consequence of condition (H).
Lemma 2.4. There exist $C, C^{\prime}>0$ such that

$$
\frac{C^{\prime}}{\left(\max _{j}\left|y_{j}\right|^{1 / H_{j}}\right)^{H-1}} \leq U(y) \leq \frac{C}{\left(\max _{j}\left|y_{j}\right|^{1 / H_{j}}\right)^{H-1}} \quad \forall y \neq 0 .
$$

Proof. We have

$$
\begin{equation*}
U(y)=\frac{U\left(\gamma_{t^{-1}} y\right)}{t^{H-1}} \quad \forall t, y . \tag{2.3}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
U\left(\gamma_{t} y\right) & =\int_{0}^{\infty} p_{s}\left(\gamma_{t} y\right) d s \\
& =\int_{0}^{\infty} \frac{p_{1}\left(\gamma_{s^{-1}} \gamma_{t} y\right)}{s^{H}} d s \\
& =\int_{0}^{\infty} \frac{p_{1}\left(\gamma_{u^{-1}} y\right)}{(t u)^{H}} t d u \\
& =\frac{\int_{0}^{\infty} p_{u}(y) d u}{t^{H-1}} .
\end{aligned}
$$

Now, for any $y \neq 0$, let $t_{y}=\max _{j}\left|y_{j}\right|^{1 / H_{j}}$; then

$$
1 \leq\left|\gamma_{t_{\bar{y}}} y\right| \leq \sqrt{d} .
$$

By Lemma 2.3 and (2.3), we have

$$
0<C^{\prime} \leq t_{y}^{H-1} U(y) \leq C<\infty .
$$

For each compact $K \subset \mathbb{R}^{d}$, the capacity of K with respect to the process X is defined, as in Taylor (1967), to be

$$
\operatorname{Cap}(K)=\sup \left\{\mu(K): \sup _{x} W_{\mu}(x) \leq 1\right\}
$$

where μ is a finite Borel measure supported by K and $W_{\mu}(x)$ is defined by

$$
W_{\mu}(x)=\int_{K} U(y-x) \mu(d y) .
$$

The following scaling property of $\operatorname{Cap}(K)$ is evident.
Lemma 2.5. We have

$$
\operatorname{Cap}\left(\gamma_{t} K\right)=t^{H-1} \operatorname{Cap}(K) \quad \forall t, K
$$

Let B_{r} be the ball in \mathbb{R}^{d} with center 0 and radius r, and let $\Gamma_{d}(r)$ be its volume.

Lemma 2.6. We have

$$
\frac{\Gamma_{d}(r)}{\int_{|y| \leq 2 r} U(y) d y} \leq \operatorname{Cap}\left(B_{r}\right) \leq \frac{\Gamma_{d}(4 r)}{\int_{|y| \leq r} U(y) d y} .
$$

Proof. The inequality appears in Hendricks (1979), Lemma 2. The estimate in the proof of Lemma 2.3 shows that

$$
\int_{|y| \leq a} U(y) d y
$$

is finite positive for each $a>0$.
Lemma 2.7. Fix $k \geq 1$. There exists an absolute constant $C_{k, d}$ such that

$$
\int_{|y| \leq 2 r} U(y)^{k} d y \leq C_{k, d} \int_{|y| \leq r} U(y)^{k} d y
$$

for all $r>0$.
The proof follows directly from Lemma 2.4.
By the following Lemma 2.8 and the result in Evans (1987) or Le Gall, Rosen and Shieh (1989), under condition (H), the set E_{k} of k-multiple points of a dilation-stable Lévy process is (a.s.) nonempty.

Lemma 2.8. Under condition (H), for each $a>0$,

$$
0<\int_{|y| \leq a} U^{k}(y) d y<\infty
$$

Proof. We use an argument similar to that of the proof of Lemma 2.3. We show that both of the following integrals are finite, and we note that the first one is positive by the positivity of $p_{1}(0)$,

$$
\int_{|y| \leq a}\left[\int_{0}^{1} p_{t}(y) d t\right]^{k} d y
$$

and

$$
\int_{|y| \leq a}\left[\int_{1}^{\infty} p_{t}(y) d t\right]^{k} d y
$$

As before, the second one is all right; to prove the first one, by the generalized Minkowski inequality, it suffices to prove the finiteness of

$$
\int_{0}^{1}\left[\int_{|y| \leq a} p_{t}^{k}(y) d y\right]^{1 / k} d t
$$

which we estimate as equal to

$$
\begin{gathered}
\int_{0}^{1}\left[\int_{|y| \leq a} p_{t}^{k-1}(y) p_{t}(y) d y\right]^{1 / k} d t \\
\quad \leq \int_{0}^{1}\left[\sup _{|y| \leq a}^{k-1}(y)\right]^{1 / k} d t
\end{gathered}
$$

since $p_{t}(y)$ is a density function for each t. Moreover, since

$$
p_{t}^{k-1}(y)=\frac{p_{1}^{k-1}\left(\gamma_{t^{-1}} y\right)}{t^{(k-1) H}},
$$

and $p_{1}(\cdot)$ is bounded, the above integral is finite by condition (H).
Remark. From the proof of Lemma 2.8 and a result of Shieh (1992), it is possible to consider the k-multiple points of the path $X(\cdot, t)$ with t restricted to a certain subset of \mathbb{R}_{+}for which the Hausdorff dimension is less than 1 .
3. Proof of Theorem 1. First, we reduce our consideration from the selfintersections of a single process X to the intersections of the ranges of k independent copies X^{1}, \ldots, X^{k} of X, with starting points x^{1}, \ldots, x^{k}, respectively. Such a reduction has been rigorously justified for general Lévy processes in Le Gall, Rosen and Shieh (1989), Section 3. Thus, our E_{k} now is the intersection $\bigcap_{j=1}^{k} X^{j}[0, \infty)$. The proof of Theorem 1 is largely based on the following "canonical" measure μ_{k} supported by E_{k}.

Proposition 3.1. There exists (a.s.) a Bord measure μ_{k} supported by E_{k} whose moments are given, for each $l=1,2, \ldots$ and compact K, by

$$
E\left[\mu_{k}(K)\right]^{l}=\int_{K^{l}} d y_{1} \cdots d y_{l} \prod_{j=1}^{k}\left[\sum_{\sigma} U\left(y_{\sigma(1)}-x^{j}\right) \prod_{i=2}^{l} U\left(y_{\sigma(i)}-y_{\sigma(i-1)}\right)\right],
$$

where the sum extends over all permutations of $\{1, \ldots, l\}$.
From now on, we suppress the subscript k from μ_{k}. To construct μ, there are two (essentially the same) ways: to consider μ as the image of the measure α in Le Gall, Rosen and Shieh (1989), Theorem 3, under the mapping $\left(t_{1}, \ldots, t_{k}\right) \longrightarrow X^{1}\left(t_{1}\right),\left(t_{1}, \ldots, t_{k}\right)$ being a k-multiple time; or to consider μ as the limiting measure of a certain normalized intersection of k sausage measures, as in Le Gall (1987), Theorem 2.1. Here we follow the latter approach, since it is more direct and useful for the present purpose. Note that Le Gall (1987) treated the spherically symmetric Lévy processes, while this quite restrictive assumption can be removed to fit our dilation-stable case. Also note that the Hawkes condition in Le Gall's paper is essentially condition (H) in our dilation-stable case. In the Appendix we show how to modify Le Gall's theorem.

Theproof of " \leq " in (1.2). For each $\varepsilon, 0<\varepsilon<1$, and $y \in \mathbb{R}^{d}$, we consider the ellipsoid $R_{\varepsilon}(y)$ with center y, axes parallel to the coordinates, and semiaxis lengths $\varepsilon^{H_{1}}, \ldots, \varepsilon^{H_{d}}$; we also consider the ball $B_{\varepsilon}(y)$ with center y and radius $\varepsilon^{H_{d}}$. We suppress $y=0$ from $R_{\varepsilon}(0)$ and $B_{\varepsilon}(0)$. Now, we observe that the ellipsoid and the ball are related by

$$
\begin{aligned}
& R_{\varepsilon}(y)=\gamma_{\varepsilon} B_{1}(y), \\
& B_{\varepsilon}(y)=\gamma_{\varepsilon} Q_{\varepsilon}(y),
\end{aligned}
$$

where $Q_{\varepsilon}(y)$ is the ellipsoid with center y, axes parallel to the coordinates and semiaxis lengths $\varepsilon^{H_{d}-H_{j}}, j=1, \ldots, d$. Note that $Q_{\varepsilon}(y) \subset B_{1}(y)$. Also note that, in the α-stable case, since $H_{1}=\cdots=H_{d}=1 / \alpha$, the two objects $R_{\varepsilon}(y)$ and $B_{\varepsilon}(y)$ are the same. Let the measure functions $\phi_{i}(r), r>0$, be defined by

$$
\begin{aligned}
& \phi_{1}(r)=r^{(k-(k-1) H) / H_{1}}, \\
& \phi_{2}(r)=r^{\left.d-\left(k(H-1) / H_{d}\right)\right)} .
\end{aligned}
$$

We prove that the Hausdorff ϕ_{i} measure of $E_{k} \cap K$, denoted henceforth by $\phi_{i}-m\left(E_{k} \cap K\right)$, is (a.s.) finite for both $i=1,2$, for each compact K. The " \leq " part of (1.2) then follows from this assertion. For the proof of $\phi_{1}-m$, we make use of $R_{\varepsilon}(y)$. Let $\mathscr{B}_{\varepsilon}, 0<\varepsilon<1$, be the class of abutting boxes in \mathbb{R}^{d} with edges parallel to the coordinates, edge-lengths $\varepsilon^{H_{1}}, \ldots, \varepsilon^{H_{d}}$ and lowerleft vertices $\left(\varepsilon^{H_{1}} k_{1}, \ldots, \varepsilon^{H_{d}} k_{d}\right), k_{i} \in \mathrm{Z}$. Let $N(\varepsilon)$ be the (random) numbers of those elements of $\mathscr{B}_{\varepsilon}$ intersecting $E_{k} \cap K$. For any Borel A, let $A_{\varepsilon}^{n b d}$ denote $\bigcup_{y \in A} R_{\varepsilon}(y)$; we note that, for each box $A \in \mathscr{B}_{\varepsilon}$, vol $A=\varepsilon^{H}$ and diam $A=\varepsilon^{H_{1}}$. Geometry shows that

$$
\begin{align*}
N(\varepsilon) \varepsilon^{H} & \leq \operatorname{Leb}\left(\left(E_{k} \cap K\right)_{\sqrt{d} \varepsilon}\right) \\
& \leq \operatorname{Leb}\left(S_{\sqrt{d} \varepsilon}^{1} \cap \cdots \cap S_{\sqrt{d} \varepsilon}^{k} \cap K_{\sqrt{d} \varepsilon}^{n b d}\right), \tag{3.1}
\end{align*}
$$

where S_{ε}^{j} denotes the sausage of X^{j} associated with R_{ε}. That is,

$$
S_{\varepsilon}^{j}=\bigcup_{t \geq 0}\left(X^{j}(t)+R_{\varepsilon}\right)
$$

The expectation of the last term in (3.1) is $O\left(\operatorname{Cap}\left(R_{\varepsilon}\right)^{k}\right)$; this follows from Le Gall's theorem modified in the Appendix: in $L^{l}(d P), l=1,2, \ldots$,

$$
\mu(K)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\operatorname{Cap}\left(R_{\varepsilon}\right)^{k}} \operatorname{Leb}\left(S_{\varepsilon}^{1} \cap \cdots \cap S_{\varepsilon}^{k} \cap K\right) .
$$

We have, by Lemma 2.5,

$$
\operatorname{Cap}\left(R_{\varepsilon}\right)=\operatorname{Cap}\left(\gamma_{\varepsilon} B_{1}\right)=\varepsilon^{H-1} \operatorname{Cap}\left(B_{1}\right)
$$

Therefore,

$$
\liminf _{\varepsilon \rightarrow 0} E\left[N(\varepsilon) \varepsilon^{H-k(H-1)}\right]<\infty
$$

Since diam $A_{\varepsilon}=\varepsilon^{H_{1}}$ for all $A_{\varepsilon} \in \mathscr{B}_{\varepsilon}$, the above display asserts that

$$
\liminf _{\varepsilon \rightarrow 0} N(\varepsilon) \phi_{1}\left(\operatorname{diam} A_{\varepsilon}\right)<\infty \quad \text { a.s., }
$$

which certainly implies that $\left(\phi_{1}-m\right)\left(E_{k} \cap K\right)<\infty$ a.s. For the proof of $\phi_{2}-m$, we make use of $B_{\varepsilon}(y)$. Let $\mathscr{B}_{\varepsilon}$ now denote the class of abutting cubes constructed similarly as above, with common edge lengths $\varepsilon^{H_{d}}$. Let S_{ε}^{j} now denote the sausage of X^{j} associated with B_{ε}, and $A_{\varepsilon}^{n b d}=\bigcup_{y \in A} B_{\varepsilon}(y)$. We note now that, for $A \in \mathscr{B}_{\varepsilon}$, vol $A=\varepsilon^{d H_{d}}$ and diam $A=\sqrt{d} \varepsilon^{H_{d}}$. Intead of (3.1), we now have

$$
\begin{equation*}
N(\varepsilon) \varepsilon^{d H_{d}} \leq \operatorname{Leb}\left(S_{\sqrt{d} \varepsilon}^{1} \cap \cdots \cap S_{\sqrt{d} \varepsilon}^{k} \cap K_{\sqrt{d} \varepsilon}^{n b d}\right) . \tag{3.1}
\end{equation*}
$$

The expectation of the r.h.s of (3.1)' is now $O\left(\operatorname{Cap}\left(B_{\varepsilon}\right)^{k}\right)$, while we have

$$
\operatorname{Cap}\left(B_{\varepsilon}\right)=\operatorname{Cap}\left(\gamma_{\varepsilon} Q_{\varepsilon}\right) \leq \varepsilon^{H-1} \operatorname{Cap}\left(B_{1}\right) .
$$

Thus, we have as above that

$$
\liminf _{\varepsilon \rightarrow 0} N(\varepsilon) \phi_{2}\left(\operatorname{diam} A_{\varepsilon}\right)<\infty \quad \text { a.s. }
$$

The proof of " \geq " in (1.2). We have had the measure μ supported by E_{k}. Let s denote the minimum value in (1.2), that is,

$$
s=\min \left(\frac{k-(k-1) H}{H_{1}}, d-\frac{k(H-1)}{H_{d}}\right) .
$$

Fix a compact K and we prove that if

$$
0<\tau<s
$$

then a.s.,

$$
\begin{equation*}
\mu\left(B_{\varepsilon}(y) \cap K\right) \leq C \varepsilon^{\tau} \tag{3.2}
\end{equation*}
$$

for all the balls $B_{\varepsilon}(y)$ with center y and radius ε. The C depends on the path and on K, but not on $B_{\varepsilon}(y)$. Indeed, once (3.2) is proved, then by Frostman's lemma in Kahane [(1985), page 130], the τ-dimensional Hausdorff measure of $E_{k} \cap K$ is positive. Then " \geq " part of (1.2) is obtained by letting a sequence $\tau \uparrow s$. We also observe that it suffices to prove (3.2) for μ-a.e. y and for a sequence $\varepsilon \downarrow 0$ which we choose to be $2^{-l}, l=1,2, \ldots$. Set

$$
\theta=s-\tau
$$

Let $B_{l}(y)$ now be the ball with center y and radius 2^{-l}. Let

$$
A_{l}=\left\{y \in K: \mu\left[B_{l}(y) \cap K\right] \geq 2^{\theta l} \int_{|y| \leq 2^{-l}} U^{k}(y) d y\right\} .
$$

We aim to prove that

$$
\begin{equation*}
\sum_{l=1}^{\infty} E \mu\left(A_{l}\right)<\infty \tag{3.3}
\end{equation*}
$$

and that

$$
\begin{equation*}
\int_{|y| \leq r} U^{k}(y) d y=O\left(r^{s}\right) \quad \text { as } r \downarrow 0 . \tag{3.4}
\end{equation*}
$$

Assume that (3.3) and (3.4) have been proved. Then, by (3.3), a.s. for μ-a.e. y, $y \notin A_{l}$ if $l \geq l_{0}$, some $l_{0}=l_{0}(y, \omega)$; thus by (3.4),

$$
\begin{aligned}
\mu\left[B_{l}(y) \cap K\right] & \leq 2^{\theta l} \int_{|y| \leq 2^{-l}} U^{k}(y) d y \\
& =O\left(2^{\theta l-s l}\right), \\
& =O\left(2^{-\tau l}\right),
\end{aligned}
$$

which is what we desire.
To prove (3.3), we observe that

$$
\begin{aligned}
& \int_{A_{l}} \mu(d y)\left[\mu\left(B_{l}(y)\right)\right]^{l} \\
& \quad \geq \mu\left(A_{l}\right) \cdot 2^{\theta l^{2}}\left[\int_{|y| \leq 2^{-l}} U^{k}(y) d y\right]^{l}
\end{aligned}
$$

Thus

$$
\begin{equation*}
E \mu\left(A_{l}\right) \leq \frac{E \int_{A_{l}} \mu(d y)\left[\mu\left(B_{l}(y)\right)\right]^{l}}{2^{\theta l^{2}}\left[\int_{|y| \leq 2^{-l}} U^{k}(y) d y\right]^{l}} \tag{3.5}
\end{equation*}
$$

Applying the $(l+1)$ th moment formula for μ in Proposition 3.1, we see the numerator in the r.h.s. of (3.5) is

$$
O\left\{[(l+1)!]^{k}\left[\int_{|y| \leq 2^{-(l-1)}} U(y)^{k} d y\right]^{l}\right\}
$$

Thus, in view of (3.5) and Lemma 2.7, we have

$$
\sum_{l=1}^{\infty} E \mu\left(A_{l}\right) \leq \text { Const } \sum_{l=1}^{\infty} \frac{[(l+1)!]^{k}}{2^{\theta l^{2}}}<\infty,
$$

by Stirling's formula for $(l+1)$!.
To prove (3.4), we use the following device. We note first that

$$
B_{r}=\gamma_{\varepsilon} R_{\varepsilon, r},
$$

where
B_{r} is the ball with center 0 and radius r;
$R_{\varepsilon, r}$ is the ellipsoid with center 0 , edges parallel to the coordinates, and semiaxis lengths $r \varepsilon^{-H_{1}}, \ldots, r \varepsilon^{-H_{d}}$.
Thus,

$$
\int_{B_{r}} U^{k}(y) d y=\int_{R_{\varepsilon, r}} U^{k}\left(\gamma_{\varepsilon} z\right) \varepsilon^{H} d z .
$$

Case $H_{d}<k(H-1)<H$. In this case, we take $\varepsilon^{H_{1}}=r$. Then $R_{\varepsilon, r} \supset B_{1}$, and we may write

$$
\int_{R_{\varepsilon, r}}=\int_{B_{1}}+\int_{R_{\varepsilon, r}-B_{1}}
$$

By Lemma 2.4 we have

$$
\int_{R_{\varepsilon, r}, B_{1}} U^{k}\left(\gamma_{\varepsilon} z\right) d z \leq \varepsilon^{-k(H-1)} \int_{R_{\varepsilon, r}-B_{1}} \frac{d z}{\max _{j}\left|z_{j}\right|^{k(H-1) / H_{j}}} .
$$

The last integral in the above display is $O(1)$ as $r \downarrow 0$, since $H_{j} \leq H_{d}<$ $k(H-1)$. By Lemma 2.4 again,

$$
\int_{B_{1}} U^{k}\left(\gamma_{\varepsilon} z\right) d z \leq \varepsilon^{-k(H-1)} \int_{B_{1}} \frac{d z}{\max _{j}\left|z_{j}\right|^{k(H-1) / H_{j}}} .
$$

The last integral in the above display is finite, since the dominating power is $k(H-1) / H_{d}$ which is less than d by our assumption that $k(H-1)<H$. Therefore

$$
\int_{B_{r}} U^{k}(y) d y=O\left(r^{(H-k(H-1)) / H_{1}}\right),
$$

and we note that the power of r in the above r.h.s is the first term in s.
Case $0<k(H-1) \leq H_{d}$. This happens only in the case $d=2$, since $H>3 / 2$ in case $d=3$. Now, we take $\varepsilon^{H_{d}}=r, d=2$. Then $R_{\varepsilon, r} \subset B_{1}$, and we have

$$
\begin{aligned}
& \int_{R_{\varepsilon, r}} U^{k}\left(\gamma_{\varepsilon} z\right) \varepsilon^{H} d z \\
& \quad=\int_{B_{1}} U^{k}\left(\gamma_{\varepsilon} T_{\varepsilon^{-1}} z\right) \varepsilon^{H} \varepsilon^{2 H_{2}-H} d z
\end{aligned}
$$

where $T_{\varepsilon}:\left(z_{1}, z_{2}\right) \rightarrow\left(\varepsilon^{H_{1}-H_{2}} z_{1}, z_{2}\right)$, which maps $R_{\varepsilon, r}$ onto B_{1}. Since

$$
\gamma_{\varepsilon} T_{\varepsilon^{-1}} z=\varepsilon^{H_{2}} z, \quad H_{2} / H_{1} \geq 1
$$

we now have

$$
\begin{aligned}
\int_{B_{r}} U^{k}(y) d y & =O\left(\varepsilon^{2 H_{2}} \int_{B_{1}} \frac{d z}{\max _{j}\left|\varepsilon^{H_{2}} z_{j}\right|^{k(H-1) / H_{j}}}\right) \\
& =O\left(\varepsilon^{2 H_{2}-k(H-1)}\right) \\
& =O\left(r^{\left(2 H_{2}-k(H-1)\right) / H_{2}}\right),
\end{aligned}
$$

and we note that the power of r in the above r.h.s. is the second term in the s (with $d=2$).

Remarks. (i) The first part of the proof indeed gives the same upper bound estimate for the packing dimension (Dim) of E_{k}. Therefore we may include in Theorem 1 that $\operatorname{Dim} E_{k}=\operatorname{dim} E_{k}$; see Taylor (1986) for a description of the relation between the two dimensional indices.
(ii) As we have remarked in Section 1, by our assumption on the range of the H_{j}, each component process X_{j} is α_{j}-stable with $1<\alpha_{j}<2$. As was seen in Pruitt and Taylor (1969a) and Hendricks (1974), a different type of results should appear if we want to extend the range.
(iii) The proof of Theorem 1 is motivated by those in Le Gall (1987), Theorems 2.1 and 3.1, yet we pay special attention to the facts that a dilation-stable process cannot be spherically symmetric if the similarity exponents are different and that the potential kernel needs to be estimated properly.
(iv) As we see from the proof, the "nonisotropic" nature of the process is the driving force behind our thinking (the different roles of ellipsoids and balls). This nonisotropic nature is different, in fact stronger, than the nonsymmetric α-stable process. The latter has its nature arising from the nonuniform distribution of its difining measure on the unit spherical surface [cf. Taylor (1967), Sections 2, 3]. In the case of dilation-stable processes with different exponents, in view of Lemma 2.2, even if we start with the uniform distribution on the unit spherical surface, we can only have a symmetric, yet not spherically symmetric, Lévy process. These require that the efforts on dilation-stable processes should be more considerable than those on stable ones.

APPENDIX

Le Gall's Theorem 2.1 (1987). In his 1987 work (Theorem 2.1), Le Gall treated the intersections of k independent spherically symmetric Lévy processes with common transition densities. The potential kernel $U(x)$ in his work is then radial. That is $U(x)=U(|x|)$, and he assumed $U(r)$ to be decreasing in r. The assumption is indeed used in obtaining a majorization in his Lemma 2.3, of page 346. Such a majorization is crucial in proving his (2.b) and (2.c), page 347, which are central to obtaining his Theorem 2.1. We will show that we still have such a majorization in the present case, and thus we can exactly follow Le Gall's arguments to obtain a result corresponding to his Theorem 2.1 for our dilation-stable processes under condition (H). N ote that the formulation of the assertions in LeGall's Theorem 2.1 is a general one (nothing to do with the spherical symmetry) and indeed he also pointed out (page 351) the possibility of the extension to the more general case. Now, let B_{ε} be either the ball $|y| \leq \varepsilon^{H_{d}}$ or the ellipsoid $\sum_{i=1}^{d}\left(y_{i} / \varepsilon^{H_{i}}\right)^{2} \leq 1,0<\varepsilon<1$. For X^{i}, the independent copies of a dilation-stable Lévy process X with starting point x^{i}, let S_{ε}^{i} be the sausage associated with B_{ε} and let $T_{\varepsilon}^{i}(y)$ be the hitting time of $y+B_{\varepsilon}$. The basic relation holds:

$$
P\left\{y \in S_{\varepsilon}^{i}\right\}=P\left\{T_{\varepsilon}^{i}(y)<\infty\right\}=\int_{B_{\varepsilon}} U\left(y+x-x^{i}\right) \mu_{\varepsilon}(d x)
$$

where μ_{ε} is the capacitory measure for B_{ε}. Let $c(\varepsilon)$ denote $\mu_{\varepsilon}\left(B_{\varepsilon}\right)=\operatorname{Cap}\left(B_{\varepsilon}\right)$. Then, by Lemmas 2.5 and 2.6 in the above Sections $2, c(\varepsilon) \downarrow 0$ as $\varepsilon \downarrow 0$. Let y_{1}, \ldots, y_{l} be distinct points that do not belong to any hyperplane which is parallel to the coordinates and contains the x^{i} (these hyperplanes have \mathbb{R}^{d} Lebesgue measure zero). Let $\varepsilon_{1}, \ldots, \varepsilon_{l}$ be small enough so that $y_{i}+B_{\varepsilon_{j}}$ are
separated by a positive distance ρ, from each other and from all the x^{i}. By the strong Markov property, we have

$$
\begin{aligned}
& P\left\{T_{\varepsilon_{1}}^{i}\left(y_{1}\right) \leq \cdots \leq T_{\varepsilon_{l}}^{i}\left(y_{l}\right)<\infty\right\} \\
& \quad=P\left\{T_{\varepsilon_{1}}^{i}\left(y_{1}\right) \leq \cdots \leq T_{\varepsilon_{l-1}}^{i}\left(y_{l-1}\right)<\infty\right\} E\left\{P^{v_{l-1}^{i}}\left\{T_{\varepsilon_{l}}^{i}\left(y_{l}\right)<\infty\right\}\right\}
\end{aligned}
$$

where, for $j=2,3, \ldots$, the (random) points v_{j}^{i} are

$$
v_{j}^{i}=X^{i}\left(T_{\varepsilon_{j}}^{i}\left(y_{j}\right)\right) .
$$

We observe that

$$
\begin{aligned}
P\left\{T_{\varepsilon_{1}}^{i}\left(y_{1}\right)<\infty\right\} & =\int_{B_{\varepsilon_{1}}} U\left(y_{1}+x-x^{i}\right) \mu_{\varepsilon_{1}}(d x) \\
& \leq c\left(\varepsilon_{1}\right) f_{\varepsilon_{1}}\left(y_{1}-x^{i}\right),
\end{aligned}
$$

where

$$
f_{\varepsilon_{1}}(z)=\sup _{x \in B_{\varepsilon_{1}}} U(z+x) .
$$

Moreover, since $v_{j}^{i} \in y_{j}+B_{\varepsilon_{j}}, j=2,3, \ldots$,

$$
\begin{aligned}
& E\left\{P^{v_{j-1}^{i}}\left\{T_{\varepsilon_{j}}^{i}\left(y_{j}\right)<\infty\right\}\right\} \\
& \quad=E\left\{\int_{B_{\varepsilon_{j}}} U\left(y_{j}+x-v_{j-1}^{i}\right) \mu_{\varepsilon_{j}}(d x)\right\} \\
& \quad \leq c\left(\varepsilon_{j}\right) f_{\varepsilon_{j-1}, \varepsilon_{j}}\left(y_{j}-y_{j-1}\right),
\end{aligned}
$$

where

$$
f_{\varepsilon_{j-1}, \varepsilon_{j}}(z)=\sup _{x \in B_{\varepsilon_{j}}+B_{\varepsilon_{j-1}}} U(z+x) .
$$

Therefore, we have the following recursive relation:

$$
\begin{aligned}
& \left\{c\left(\varepsilon_{1}\right) \cdots c\left(\varepsilon_{l}\right)\right\}^{-1} P\left\{T_{\varepsilon_{1}}^{i}\left(y_{1}\right) \leq \cdots \leq T_{\varepsilon_{l}}^{i}\left(y_{l}\right)<\infty\right\} \\
& \leq f_{\varepsilon_{1}}\left(y_{1}-x^{i}\right) \prod_{j=2}^{l} f_{\varepsilon_{j-1}, \varepsilon_{j}}\left(y_{j}-y_{j-1}\right) .
\end{aligned}
$$

Under our separation condition mentioned above, the functions $f_{\varepsilon_{1},} f_{\varepsilon_{j-1}, \varepsilon_{j}}$ are integrable in y_{j}, y_{j-1} up to any order, thanks to Lemmas 2.3 and 2.4 in

Section 2. The above majorization is our replacement of that given in Le Gall [(1987), page 346]. With this majorization and the same arguments as his, we have the following modification of Le Gall's result, valid for dilation-stable Lévy processes.

Theorem A. Let X be the dilation-stable Lévy process in Theorem 1; then the measure μ in Proposition 3.1 exists as the following limit: in $L^{l}(d P), l=$ $1,2, \ldots$,

$$
\mu(K)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\operatorname{Cap}\left(R_{\varepsilon}\right)^{k}} \operatorname{Leb}\left(S_{\varepsilon}^{1} \cap \cdots \cap S_{\varepsilon}^{k} \cap K\right),
$$

where K is any compact in $\mathbb{R}^{d}, R_{\varepsilon}$ is either the ball $|y| \leq \varepsilon^{H_{d}}$ or the ellipsoid $\sum_{i=1}^{d}\left(y_{i} / \varepsilon^{H_{i}}\right)^{2} \leq 1,0<\varepsilon<1$ and S_{ε}^{i} is the sausage of X^{i} associated with R_{ε}.

Acknowledgments. I am indebted to Professor S. J. Taylor and Professor S. Watanabe for helpful conversations on this work.

REFERENCES

Applebaum, D. and Kunita, H. (1994). Lévy flows on manifolds and Lévy processes on Lie groups. J. Math. Kyoto Univ. 33 1103-1123.

Choi, G. S. and Sato, K. (1995). Recurrence and transience of operator semi-stable processes. Proc. J apan Acad. Ser. A Math. Sci. 71 87-89.
Evans, S. N. (1987). Multiple points in the sample paths of a Lévy process. Probab. Theory Related Fields 76 359-367.
Hendricks, W. J. (1974). Multiple points for a process in R^{2} with stable components. Z. Wahrsch. Verw. Gebiete 28 113-128.
Hendricks, W. J. (1979). Multiple points for transient symmetric Lévy processes. Z. Wahrsch. Verw. Gebiete 49 13-21.
Hudson, W. N. and Manson, J. D. (1981). Operator-stable laws. J. MultivariateAnal. 11 434-447.
Jain, N. and Pruitt, W. E. (1969). Collisions of stable processes. Illinois J. Math. 13 241-248.
Jurek, Z. J. and Mason, J. D. (1994). Operator-limit Distributions in Probability Theory. Wiley, New York.
Kahane, J. P. (1985). Some Random Series of Functions (2nd ed.). Cambridge Univ. Press.
Kunita, H. (1993). About stable Markov processes on manifolds (in J apanese). Lecture at Annual Probability Meeting of J apan, Dec. 21-24 1993 at Keio Univ., Yokohama, J apan.
Kunita, H. (1996). Stochastic flows with self-similar properties. In Stochastic Analysis and Applications (Davis, Truman, and Elworthy, eds.) 286-300. World Scientific, Singapore.
Lamperti, J. (1962). Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104 62-78.
Le Gall, J. F. (1987). Temps locaux d'intersection et points multiples des processes de Lévy. Lecture Notes in Math. 1274 341-374. Springer, Berlin.
Le Gall, J. F., Rosen, J. and Shieh, N. R. (1989). Multiple points of Lévy processes. Ann. Probab. 17 503-515.
Pruitt, W. E. and Taylor, S. J. (1969a). Sample path properties of processes with stable components. Z. Wahrsch. Verw. Gebiete 12 267-289.
Pruitt, W. E. and TAylor, S. J. (1969b). The potential kernel and hitting probabilities for the general stable process in R^{N}. Trans. Amer. Math. Soc. 146 299-321.
Shieh, N. R. (1992). Multiple points of sample paths of Markov processes. Ann. Probab. 20 553-562.

TAYLOR, S. J. (1967). Sample path properites of a transient stable process. J. Math. Mech. 16 1229-1246.
TAyLOR, S. J. (1986). The measure theory of random fractals. Math. Proc. Cambridge Philos. Soc. 100 383-406.

Department of Mathematics
National Taiwan University
TAIPEI
TAIWAN 10617
E-MAIL: shiehnr@math.ntu.edu.tw

[^0]: Received October 1996; revised February 1998.
 ${ }^{1}$ Supported in part by NSC Grants 1996-7 2121-M-002-012 and 1997-8 2115-M-002-009. AMS 1991 subject classification. 60G17.
 Key words and phrases. Lévy processes, stable components, dilation-stability, self-similarity, multiple points, Hausdorff dimensions.

