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EXPANSIONS AND CONTRACTIONS OF ISOTROPIC
STOCHASTIC FLOWS OF HOMEOMORPHISMS1

BY VLADIMIR V. PITERBARG

University of Southern California

A sequence of piecewise constant approximations to rescaled isotropic
homeomorphic stochastic flows is shown to converge weakly in Skorohod
metric to the coalescing Brownian flow. Intermittent behavior of isotropic
flows is exposed, and the clustering properties of isotropic flows are
studied by the means of this convergence. We obtain qualitative and
quantitative description of expansions and contractions of an arbitrary
isotropic homeomorphic flow on large time- and space-scales.

1. Introduction and main result. Our goal is to study long time, large
space-scale behavior of isotropic stochastic flows of homeomorphisms in �1. A
stochastic flow can be viewed as a collection of particles started at each point
on the real line and evolving according to some law, such that each particle
performs a Brownian motion, but the motions of two or more particles are, in
general, dependent. The condition of isotropy requires that the motions of
ensembles of particles do not depend on the particles’ absolute positions in
space, but only on the relative distances between them.

� Ž . 1 4An exact definition of a stochastic isotropic flow � x , x � � , t � � ist �
Ž . Ž . Ž .given below; see F1 � F5 . Here � x is the position of a particle at time tt

started at point x at time 0. We impose smoothness conditions on the
coefficients of � that guarantee it to be a flow of homeomorphisms.

Another object that appears in our study is the coalescing Brownian flow in
1 � Ž . 1 4 Ž .� , denoted by C x , x � � , t � � . Then C x is the position of at � t

particle at time t started at point x at time 0. This flow can be described as
follows. At time 0, every point in �1 begins to execute a Brownian motion.
The particles move independently, but if two particles meet, they stick
together, or coalesce, and move as one. This flow was studied by Arratia;

� �see 1 .
It is known that for the coalescing Brownian flow, the uncountable set of

particles started at time zero at every point on the real line coalesces into a
discrete set of particles by time t for any t � 0. For fixed t � 0, the real line
can be split into countably many intervals such that each interval coalesces
into a single particle by time t, and different intervals coalesce into different
particles. It is natural to call these intervals ‘‘regions of contraction,’’ mean-
ing that two particles started in the same contraction region get squashed
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together and become one particle by time t. The points separating the
intervals of contraction are called ‘‘expansion points,’’ meaning that two
particles started arbitrarily close to the expansion point but on different sides
of it get separated by time t. This picture of intermittent behavior will play
an important role in what follows.

It is convenient to rescale a flow to study its large time- and space-scale
behavior. We denote

1
k 1

21.1 � x � � kx , t � 0, x � � , k � � .Ž . Ž . Ž .t k t �k
� �It was proven in 11 , Chapter 3 that the sequence of rescaled isotropic flows

� k converges weakly as diffusions to the coalescing Brownian flow C, mean-
ing that finite-particle motions of rescaled flows converge weakly to finite-

Ž .particle motions of the coalescing flow see Section 4 for a short discussion .
Ž .Under the flow � , particles never meet � is the flow of homeomorphisms .

Nevertheless, we should see the same kind of intermittent behavior for
rescaled isotropic flows as we saw for the coalescing flow. For a homeomor-
phic flow, we should see contraction regions occupying almost all of the real
line separated by small expansion regions. As the rescaling parameter goes to
infinity, we would expect the clustering properties of the rescaled homeomor-
phic flow to approximate those of the coalescing flow. This paper seeks to
quantify this observation and derive properties of expansions and contrac-
tions for arbitrary homeomorphic flows from those of the coalescing Brownian
flow.

The finite-particle convergence discussed in Section 4 is not strong enough
to provide information on expansions and contractions. Another type of
convergence, one that takes into account all particles at once rather than only
the finite number of them, is needed.

kŽ .For fixed t � 0, � x is a continuous function of x for any k � � . Wet �
� kŽ .4�may ask whether the sequence � � , t � 0 fixed, converges weakly tot k�1

Ž .C � in some space of continuous functions with uniform topology. Thet
Ž .answer is ‘‘no’’ because the proposed limiting random element, C � , is not at

Ž .continuous function of x see Corollary 5 . To have any hope of convergence,
kŽ .we must make � � discontinuous and consider convergence in some appro-t

priate space of discontinuous functions.
Define

1
k 1ˆ 21.2 � x � � kx , x � � , t � � , k � � ,Ž . Ž . � �Ž .t k t � �k

ˆk k� � Ž .where � � floor � . Then � is a piecewise constant approximation to � on
1 � Ž . .the scale 1�k. Effectively, we divide � into intervals i�k, i � 1 �k and set

ˆk �� 4� to be a constant on these intervals with jumps at the endpoints i�k .i���

� Ž . .If x � i�k, i � 1 �k , then

ˆk ˆk k� x � � i�k � � i�k .Ž . Ž . Ž .
In this approximation some information is lost, but the information of our

primary concern, the information on expansions and contractions of the
original isotropic flow, is retained, as we will see later.
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Our main result is the following theorem.

THEOREM 1. For fixed t � 0,

ˆk� � � C � as k � �Ž . Ž .t t

Ž .weakly as random elements in the space D �; � of right-continuous functions
with left-hand limits, equipped with the Skorohod topology.

The paper is organized in the following way. We define isotropic homeo-
morphic flows in Section 2. The coalescing Brownian flow is studied in Sec-

� �tion 3. Results from 11 , Chapter 3, are recapped in Section 4. Estimates on
which our whole analysis is based are obtained in Section 5. Theorem 1 is
proved in Section 6. The results on expansions and contractions of homeomor-
phic flows that follow from Theorem 1 are obtained in Section 7.

2. Isotropic homeomorphic flows. Every isotropic flow in �1 is
uniquely determined in law by its covariance structure. So we start with a
function B: � � � such that the following holds.�

Ž . Ž .B1 B � is the autocovariance function of some stationary Gaussian process
on �; that is, it is positive definite and symmetric.

The following conditions define the class of isotropic flows we will be
dealing with.

Ž .B2 Smoothness:

B � C 2 �; � ;Ž .

Ž .B3 Locality:

� �B x � 0 as x � �;Ž .

Ž .B4 Normalization:

B 0 � 1.Ž .

Ž . Ž .Conditions B1 � B4 are assumed to hold throughout.
� 4 R ŽA family � , 0 	 s 	 t � � of random variables with values in � allst

.functions � � � is called an isotropic, time-homogeneous pure stochastic
flow with independent increments corresponding to the covariance structure
Ž . Ž . Ž .B � isotropic stochastic flow for short if we define � � � we have thet 0 t

following.

Ž . Ž .F1 � x, � � x for any � � �, x � �;t t
Ž . Ž Ž . . Ž .F2 � � x, � , � � � x, � for 0 	 s 	 t 	 u and for all � � � withouttu st su

any exceptions;
Ž . � 4F3 The processes � , 0 	 s 	 t � � have the same law for all h � 0;s�h, t�h
Ž .F4 For any n, any 0 	 s 	 t 	 ��� 	 s 	 t � �, the increments � ,1 1 n n s t1 1

. . . , � are independent;s tn n
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Ž . �Ž Ž . Ž .. 4 Ž . nF5 The n-particle motions � x , . . . , � x , t � 0 , x , . . . , x � � , aret 1 t n 1 n
diffusions with the infinitesimal generator

n 2 2B 0 � �Ž .
L � � B x � x ,Ž .Ý Ýn i j22 � x � x� x i jii�1 1	i�j	n

Ž . Ž . Ž .where B � satisfies conditions B1 � B4 .

Such flows have been extensively studied. For existence and thorough
� �study of properties, see 7 . A wider class of ‘‘Brownian flows’’ is considered by

� �Kunita in 9 ; see Section 4.2 there.
One can think of a stochastic flow as being defined by a stochastic

Ž � �. Ždifferential equation see 9 . Consider a SDE driven by the possibly infinite
. � � 4number of independent Brownian motions W , � � 1 :t

t
�2.1 x � x � V x dW ,Ž . Ž .ÝHt � s s

0 ��1

Ž . � Ž . 1 4x � �, t � 0, V � are functions � � �. The flow � x , x � � , t � � is� t �
� Ž . 4 Ž .said to be defined by the SDE above if for any x � �, � x , t � 0 solves 2.1t

Ž .with the initial point x, and F2 is satisfied. In this definition the covariance
Ž .structure, also known as local characteristic, a �, � is defined by

a y , z � V y V z ,Ž . Ž . Ž .Ý � �
��1

the sum on the right-hand side is assumed to converge in the appropriate
Ž .sense. If there exists a function B � of one variable such that

B y � z � a y , z ,Ž . Ž .
then the one-dimensional flow � is said to be isotropic. Note that this is the

Ž . Ž . � �same B � that appears in F5 . See 2 for more on the connection between
the two definitions.

k � Ž .� Ž .For a rescaled isotropic flow � see 1.1 the covariance structure B � isk
given by
2.2 B x � B kx , x � �,Ž . Ž . Ž .k

Ž .where B � is the covariance structure of � .

LEMMA 2. Define

D � � k x � � k y , x � y , t � 0, k � � .Ž . Ž .t t t �

� 4Then D , t � 0 is a positive martingale. Moreover, E D � x � y.t t

� Ž .PROOF. The process D satisfies a stochastic integral equation see F5t
Ž .�and 2.2

t
D � x � y � 1 � B kD dW ;'Ž . Ž .Ht s s

0

� 4W , t � 0 is a standard Brownian motion. Immediately D is a martingale.t t
Also x � y � 0, and 0 is inaccessible for D , therefore D � 0 a.s. for anyt t
t � 0. Since D � x � y, the second statement of the lemma is obvious. �0
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ˆkŽ . Ž .Recall that � x was defined in 1.2 to be the piecewise constant approxi-t
kŽ .mation to � x in x, on the scale 1�k.t

Ž . nLet us fix x � x , . . . , x � � . Then finite-particle motions of the pro-1 n
k ˆkcesses � , � started at x are defined as

� k , x � � k x , . . . , � k x ,Ž . Ž .Ž .t t 1 t n

ˆk , x ˆk ˆk� � � x , . . . , � x .Ž . Ž .Ž .t t 1 t n

k ˆkThe following lemma shows that � and � are ‘‘close’’ for large k in some
sense.

LEMMA 3. Let us fix x � � n, t � 0. Then
k , x ˆk , x� � � � 0 as k � �t t

in probability.

ˆPROOF. It is enough to consider the case n � 1 only. By definition of � , for
any x � �, for every s � 0,

ˆk k� x � � kx �k .Ž . � �Ž .s s

In particular,

k ˆk k k� x � � x , s � 0 � � x � � kx �k , s � 0Ž . Ž . Ž . � �� 4Ž .� 4s s s s

is a positive martingale; see Lemma 2. Moreover,

� k x � � k kx �k � kx � kx �k .Ž . � � � �Ž . Ž .0 0

Thus, by Markov’s inequality for any 	 � 0,
k ˆk �1 �1P � x � � x � 	 	 	 kx � kx �k 	 	 �k � 0Ž . Ž . � �Ž .Ž .t t

as k � �. The lemma follows. �

Ž . � kŽ . �For fixed t � 0, � � as well as � � for any k � � is a homeomorphismt t �
�1 � �1:

� � : x � � x , x � �1 ;Ž . Ž .t t

Ž . � � � �see condition B2 , Harris 7 , 4.13 and Matsumoto 10 , 3.5. In particular, for
kŽ . Ž . Ž .fixed t � 0, � x as a function of x is i continuous and ii strictly in-t

creasing.
The random function

ˆk ˆk 1� � : x � � x , x � � ,Ž . Ž .t t

for fixed t � 0 has the following properties:

Ž .i It is nondecreasing right-continuous function with left-hand limits.
Ž . � Ž . .ii It is constant on intervals i�k, i � 1 �k , i � �.
Ž . Ž . kŽ . kŽŽ . .iii It has positive jumps of size � i�k � � i � 1 �k at points i�k,t t

i � �.
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ˆŽ . Ž .In particular, for fixed t � 0, � � is a random element in the space D �; �t
of right-continuous functions with left-hand limits equipped with the Skoro-
hod metric.

3. Coalescing Brownian flow. The coalescing Brownian flow in �1 is a
process

C � C x , x � �1, t � � ,Ž .� 4t �

Ž .where C x is the position of the particle at time t, started at the point x att
time 0, such that the following hold.

� Ž . 4 Ž .1. For fixed x � �, C x , t � 0 is a one-dimensional standard Browniant
motion started at x.

2. For any x � y,

C x � C y � C x � C y for any s � t .� 4 � 4Ž . Ž . Ž . Ž .t t s s

� Ž . 43. The motions C x , t � 0 for different x ’s are independent until coales-t
cence.

This is not a definition, but rather a general picture of a coalescing
Brownian flow. The existence and properties of such a process were estab-

� �lished by Arratia in 1 . By

C x � C x , . . . , C x ,Ž . Ž .Ž .t t 1 t n

we denote the n-particle motion of the coalescing Brownian flow started at

x � x , . . . , x .Ž .1 n

The rigorous definition of a finite-particle coalescing Brownian motion
� �was given in 11 , Lemma 2.1, Theorem 2.1. The following result is due to

� �Arratia 1 .

PROPOSITION 4. There exists a random process

� 4 1C , t � 0 � C x , x � � , t � �Ž .� 4t t �

Ž . nsuch that for any x , . . . , x � � the process1 n

C x , . . . , C x , t � 0� 4Ž . Ž .Ž .t 1 t n

� �is an n-particle coalescing Brownian motion as defined in 11 , Lemma 2.1.
This process has the following properties: for any t � 0 there exists a random

� 4� Ž .discrete set of points E , E � E t, � , such that for any x � �,k k��� k k

�

C x � C E 1 x .Ž . Ž . Ž .Ýt t k � E , E .k k�1
k���

In particular,

x , y � E t , E t � C x � C y ,� 4Ž . Ž . Ž . Ž .� 4.k k�1 t t
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and the set of noncoalesced by time t � 0 particles is discrete:

C x , x � � � C E , k � � as sets a.s.� 4 � 4Ž . Ž .t t k

� Ž .4�Moreover, for fixed t � 0, the random set E t is a point process in �k k���

Ž . � �with known zero function and, therefore, known distribution ; see 1 , page
� Ž Ž .. 417. The random set C E t , k � � is also a point process in � with thet k

Ž .same zero function and, therefore, the same distribution .

Ž .Let us define for fixed t � 0 jumps at the points E , k � �:k

3.1 J � C E � C E � � C E � C E , k � �.Ž . Ž . Ž . Ž . Ž .k t k t k t k t k�1

From Proposition 4 we obtain the following.

Ž . Ž .COROLLARY 5. Fix t � 0. For almost all � � �, the function C � � C �, �t t
has the following properties:

Ž . Ž .i C � is a nondecreasing right-continuous function with left-handt
limits;

Ž . Ž . � .ii C � is constant on intervals E , E ;t k k�1
Ž . Ž .iii C � has jumps of size J at points E .t k k

ˆkŽ . Ž . Ž .C � for fixed t � 0 is a random element in D �; � , just as � � is.t t

4. Weak convergence as diffusions. The following result is intuitive,
even though its proof is quite technical.

Ž . Ž .THEOREM 6. Suppose conditions B1 � B4 hold. Then for any n � � ,�
Ž . nany x � x , . . . , x � � , the sequence of rescaled n-particle motions1 n

� k , x4� x� converges weakly to the n-particle motion C :� k�1 �

� k , x � C x weakly as k � �.� �

This type of convergence is called ‘‘convergence of stochastic flows weakly as
diffusions.’’

PROOF. The idea of the proof is quite simple. The law of an isotropic
stochastic flow is uniquely determined by its covariance structure. Conditions
Ž . Ž . � Ž . Ž .�B1 � B4 imply B � ’s are defined in 2.2 thatk

4.1 B � � B � as k � �,Ž . Ž . Ž .k �

1 � 4pointwise and uniformly on compact subsets of � 
 0 , where

1, x � 0,B x �Ž .� ½ 0, x � 0.
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The definition of the coalescing Brownian motion implies that its covariance
Ž .structure is exactly B � :�

t
cov C y , C z � EB C y � C z ds.Ž . Ž . Ž . Ž .Ž . Ž .Ht t � s s

0

Ž .If B � were a smooth function, Theorem 6 would follow immediately from�

Ž .4.1 . Its not being smooth creates a great many complications, which we skip
� �altogether by referring the interested reader to 11 , where a complete proof

of this result is given. �

5. Motions of adjacent intervals. This section provides technical tools
to be used in the proof of Theorem 1 to establish tightness; see Section 6.

Ž .THEOREM 7. There exists � � 1�2 such that, if h � 1� 2k and 
 � h,
then

2h2 �

k k k k 2P sup � h � � 0 � 0 � � �h � 
 � .Ž . Ž . Ž . Ž .Ž . Ž .t t t t 2 �ž / 
t�0

The theorem is proven by the series of propositions. Define

�2 � x , y � �2 : x � 0, y � 0 ,� 4Ž .�

X k � � k x � � k 0 , x � 0,Ž . Ž .t t t

Y k � � k 0 � � k �y , y � 0.Ž . Ž .t t t

We start with a technical but crucial proposition.

Ž . 2PROPOSITION 8. For x, y � � define�

B x � B y � B x � y � 1Ž . Ž . Ž .
c x , y � ,Ž .

xy

1 � B x 1 � B yŽ . Ž .
v x , y � � .Ž . 2 2x y

Then there exists 	 � 0 such that for any 	 , 0 � 	 � 	 ,0 0

1�2c x , y 1 � B 	Ž . Ž .
� 4x � 	 or y � 	 � � .ž /½ 5v x , y 2Ž .

Ž .PROOF. It follows from positive-definiteness and symmetry of B � that

1 B x B x � yŽ . Ž .
B x 1 B yŽ . Ž .det � 0.� 0B x � y B y 1Ž . Ž .
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Expanding the determinant, we obtain that

1 � 2 B x � y B x B y � B2 x � y � B2 x � B2 y � 0.Ž . Ž . Ž . Ž . Ž . Ž .
From this it follows readily that

2 2'5.1 B x � y � B x B y � 1 � B x 1 � B y .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
Ž .Here B � is a continuous positive-definite function with purely nonatomic
� Ž . Ž . �spectrum conditions B1 � B4 in Section 2 . Therefore, there exists 	 � 00

Ž . Ž . Ž . � �such that if x � 	 then B x � B 	 , and B x is monotone on 0, 	 .0 0 0
Choose 	 such that 0 � 	 � 	 . The choice of 	 guarantees that if x � 	0 0

Ž . Ž .then B x � B 	 . Set
1�21 � B 	Ž .

� � .ž /2
Ž .If max x, y � 	 then

' 1 � B x 1 � B Y � 2 � .Ž . Ž .Ž . Ž .
Ž .Thus for max x, y � 	 ,

x 2 1 � B y � y2 1 � B xŽ . Ž .Ž . Ž .
1 1�2 1�2� 1 � B x 1 � B y 2 xy 1 � B x 1 � B yŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .Ž . Ž .

2 �

1�22 2� x 1 � B y � y 1 � B x � 2 xy 1 � B x 1 � B yŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .Ž .
21�2 1�2� x 1 � B y � y 1 � B xŽ . Ž .Ž . Ž .Ž .

� 0
xy

� � 1 � B x 1 � B y ,Ž . Ž .Ž . Ž .Ž .
�

where the last inequality holds because the last term is negative. Rearrang-
ing,

x 2 1 � B y � y2 1 � B xŽ . Ž .Ž . Ž .
xy 1�22 2� 1 � B x 1 � B y � 1 � B x 1 � B yŽ . Ž . Ž . Ž .Ž . Ž .Ž . Ž .Ž .ž /
�

xy
� B x � B y � B x � y � 1 ,Ž . Ž . Ž .Ž .

�

Ž .the last inequality holds thanks to 5.1 .
We can rewrite the inequality above as

1�2c x , y 1 � B 	Ž . Ž .
	 � � .ž /v x , y 2Ž .

The proof is complete. �
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Choose 	 such that

� 45.2 0 � 	 � min 	 , 1�8 ,Ž . 0

where 	 is from Proposition 8. Also choose h, 	 such that0

1 1
h � , 0 � 	 � ,

2k 2
and define

A � Ak � x , y � �2 : 0 � x 	 	�k , 0 � y 	 	�k ,Ž .� 4	 	 �

C � x , y � �2 : 0 � x 	 h , 0 � y 	 h ,Ž .� 4h �

� 4 � 4D � 0, h � h � h � 0, h ,� 4 � 4Ž Žh

ck k k� � � � inf t � 0: X , Y � C .Ž .� 4Ž .h h t t h

Ž .PROPOSITION 9. For any 	 as in 5.2 , any k � � ,�
1sup P � � � � .Ž .x , y h 2

Ž .x , y �A	

Ž .PROOF. If x, y � A , then	

P � � � � lim P � � TŽ . Ž .x , y h x , y h
T��

	 lim P sup X k � h � P sup Y k � h .x t y tž / ž /ž /T�� t	T t	T

Ž .Since 	 is less than 1�8 by choice and x, y � A ,	

1 1
x � , y � .

8k 8k

Then X k is a positive martingale and E X k � x; see Lemma 2. Thereforet t

1 x 1� 8k 1Ž .
k kP sup X � h 	 E X � 	 � .Ž .x t x Tž / h h 1� 2k 4Ž .t	T

Similarly
1kP sup Y � h � .y t 4ž /

t	T

Hence,
1 1 1sup P � � � � � � . �Ž .x , y h 4 4 2

Ž .x , y �A	

Choose 
 � h and define

� � � k � inf t � 0: X k , Y k � A ,� 4Ž .	 	 t t 	

B � x , y � �2 : xy � 
2 ,Ž .� 4
 �

� � � k � inf t � 0: X k , Y k � B ,� 4Ž .
 
 t t 
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Ž .PROPOSITION 10. For any 	 as in 5.2 ,

P � � � � 2 sup P � � � � � .Ž . Ž .h , h 
 x , y 
 	
Ž .x , y �Dh

Ž k k .PROOF. Apply the strong Markov property of X , Y at stopping times �t t 	

and � , the fact thath
c c

B � C � AŽ . Ž .
 h 	

and Proposition 9. �

We define
�k k kM � X Y .Ž .t t t

Note that

� � inf t � 0: M k � 
2 � .� 4
 t

Ž .PROPOSITION 11. For any 	 as in 5.2 there exists � � 1�2 such that

M k , t � 0� 4t 
 �	

is a supermartingale.

PROOF. Set
f x , y � x � y � .Ž .

Ž . Ž . Ž k k . 2By F5 and 2.2 the process X , Y is a diffusion in � with infinitesimalt t �
generator

� 2 � 2

L � 1 � B kx � 1 � B kyŽ . Ž .Ž . Ž .2 2� x � y

� 2

� B kx � B ky � B k x � y � 1 .Ž . Ž . Ž .Ž .Ž .
� x� y

Applying it to the function f yields

Lf 1 � B kx 1 � B kyŽ . Ž .Ž . Ž .
2� k � � � 1 �Ž . 2 2 2 2ž /f k x k y

B kx � B ky � B k x � y � 1Ž . Ž . Ž .Ž .
2 2� k � 2ž /k xy

� k 2� � � 1 v kx , ky � k 2� 2c kx , ky ,Ž . Ž . Ž .
Ž . Ž .where the functions v �, � and c �, � come from Proposition 8.

Set
1�21 � B 	Ž .

� � .ž /2
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Ž . Ž .c Ž .Suppose x, y � A . Then max xk, yk � 	 . Thus, by Proposition 8,	

c kx , ky � � v kx , kyŽ . Ž .
and

Lf
2 2	 k � � � 1 v kx , ky � � � v kx , kyŽ . Ž . Ž .Ž .

f

� k 2� v kx , ky � � 1 � ��Ž . Ž .Ž .
� k 2� v kx , ky � � � 1 � 1 .Ž . Ž .Ž .

Since 0 � � � 1,
1 1

� ,
� � 1 2

and, therefore, there exists � such that

1 1
� � � .

� � 1 2

With such a choice of � ,

� � � 1 � 1 � 0Ž .
and

Lf
� 0.

f

Summarizing the arguments, we obtain that if � is chosen so that

1 1
� � � 1�22 1 � 1 � B 	 �2Ž .Ž .Ž .

then
� c

L xy � 0 for x , y � A .Ž . Ž . Ž .Ž . 	

Ž . Ž . Ž .c �Since the starting point h, h is chosen so that h, h � A by assump-	

Ž . �tion, h � 1� 2k � 	�k , the assertion of the proposition is proved. �

PROPOSITION 12. Let 	 � 0, � � 1�2 be chosen as in the statement of
Proposition 11. Then

h2 �

sup P � � � � � 	 .Ž .x , y 
 	 2 �
Ž .x , y �Dh

Ž .PROOF. Choose x, y � D and T � 0. Seth

� � � 
 � 
 T .
 	

Then

M k , t � 0� 4t 
 �
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is a supermartingale by Proposition 11. Therefore
�k k k 2 �5.3 E M � E M 	 E M � xy 	 h .Ž . Ž .x , y � x , y T 
 � x , y 0

� Ž . 2 �The last inequality holds because max xy � h . On the other hand,Ž x, y .� Dh

5.4 M k � M k � 
2 � 1 � 
1 c � 
2 � 1 ,Ž . � � 
 � 
 T �� �� � T 4 �� �� � T 4 � �� � T
 	 
 	 
 	 
 	

where 
 is a nonnegative random variable because M k is. Therefore, combin-�

Ž . Ž .ing 5.3 and 5.4 ,


2 � P � � � � T 	 h2 � .Ž .x , y 
 	

Taking the limit T � �, we obtain the statement of the proposition. �

COROLLARY 13. There exists � � 1�2 such that

2h2 �

P � � � � .Ž .h , h 
 2 �


Ž .PROOF. Choose any 	 as in 5.2 . Then the result follows from Propositions
10 and 12. �

By the definition of � , the statement of Corollary 13 is equivalent to


2h2 �

k k 2P sup X Y � 
 � ,Ž .h , h t t 2 �ž / 
t�0

which is exactly the statement of Theorem 7. The theorem is proved. �

6. Proof of Theorem 1.

Ž . Ž . Ž .DEFINITION 14. Let � � be a random element in D �; � or C �; � . For
Ž .any n � � the n-particle distribution of � � associated with the point�

Ž . nx , . . . , x � � is the distribution of the vector1 n

� x , . . . , � x .Ž . Ž .Ž .1 n

The collection of n-particle distributions for all n is referred to as the
finite-particle distributions.

In more conventional terminology, finite-particle distributions would be
called finite-dimensional distributions. We would like to keep that term
reserved for time-indexed processes, hence the need for this definition.

The time variable t will be fixed throughout. If no confusion is expected it
Ž . Ž .will be dropped, so that we will write � � for � � , and so on.t

Theorem 1 asserts that for fixed t � 0,

ˆk� � � C � as k � �Ž . Ž .t t
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Ž .weakly in the space D �; � . The proof consists of two parts:

ˆkŽ . Ž .1. convergence of finite-particle distributions of � � to those of C � ;t t
ˆk �� Ž .4 Ž .2. tightness of the family � � in the space D �; � .t k�1

The convergence of finite-particle distributions follows immediately from
Ž � � . � �Theorem 6 see also 11 , Theorem 3.1 , Lemma 3 and 3 , Theorem 1.4.1. The

estimate obtained in Theorem 7 will play a crucial role in establishing
tightness.

PROPOSITION 15. There exist 	 � 0, � � 1 and A � 0 such that

ˆk ˆk ˆk ˆk �	 �P � x � h � � x � 
, � x � � x � h � 
 	 A
 hŽ . Ž . Ž . Ž .Ž .
for all x � �, all 
 � 0, all h � 0 uniformly in k � � .�

Ž .PROOF. Fix h � 0. The result is immediate for k such that h � 1� 2k ,
1

k k k kˆ ˆ ˆ ˆ6.1 h � � P � x � h � � x � 
, � x � � x � h � 
 � 0Ž . Ž . Ž . Ž . Ž .Ž .
2k

ˆkŽ .because � � is constant on intervals of length 1�k. Fix k such that h �
Ž .1� 2k . Set

h � kx � kh � kx �k ,� � � �Ž .1

h � kx � kx � kh �k ,� � � �Ž .2

� 4h� � max h , h .1 2

Then
1

	 h� � h � 1�k 	 h � 2h � 3h.
2k

kŽ .Using space homogeneity and monotonicity of � � and applying Theorem 7
we obtain that there exists � � 1�2 such that

ˆk ˆk ˆk ˆkP � x � h � � x � 
, � x � � x � h � 
Ž . Ž . Ž . Ž .Ž .
� P � k h � � k 0 � 
, � k 0 � � k �h � 
Ž . Ž . Ž . Ž .Ž .1 2

	 P � k h� � � k 0 � 
, � k 0 � � k �h� � 
Ž . Ž . Ž . Ž .Ž .
	 P � k h� � � k 0 � k 0 � � k �h� � 
2Ž . Ž . Ž . Ž .Ž . Ž .Ž .6.2Ž .

2 �2 h�Ž .
	 2 �


2 �2 3hŽ .
	 .2 �


We denote
6.3 � � 	 � 2� � 1.Ž .

Ž . Ž . Ž .Combining 6.1 , 6.2 , 6.3 and setting

A � 2 � 3� ,
we obtain the statement of the proposition. �
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ˆk �� Ž .4 Ž .COROLLARY 16. For fixed t � 0, the family of � � is tight in D �; � .t k�1

� �The corollary follows from Proposition 15 and 6 , Theorem 3.8.8, Remark
3.8.9b.

Theorem 1 is proved. �

7. Expansions and contractions. Theorem 1 provides us with the
Ž . Ž .means to study expansions and contractions of the original flow � � . Thet
Ž .idea is that expansions of � � on large time and space scales correspond tot

ˆkŽ .large jumps of � � for large k.t

Ž . Ž .DEFINITION 17. Let � � � D �; � . Define

�� x � � x � � x� , x � �,Ž . Ž . Ž .
Ž .to be the jump-function of � � . Define

J � � sup �� x .Ž . Ž .
0�x	1

Also fix u � 0 and define
0 n�1 n � �P � , u � 0, P � , u � inf x � P � , u : �� x � u .� 4Ž . Ž . Ž . Ž .

Ž . Ž .J � is the size of the largest jump of � � D �; � between zero and one.
1Ž . Ž .For a fixed u � 0, P �, u is the first counting from x � 0 jump of function

Ž . nŽ . Ž .� � of size larger than u, and similarly P �, u is the nth jump of � � of
size larger than u.

Ž .PROPOSITION 18. Define NN � D �; � , the subset of functions with a jump
at zero, by

� � NN � �� 0 � 0.Ž .
Also define

� �U � � u � 0: �� x � u for some x � � .� 4Ž . Ž .
The function

� � J �Ž .
is continuous in Skorohod metric at each point � � NN. For u � 0, the func-
tions

� � P n � , u , � � �� P n � , uŽ . Ž .Ž .
Ž .are continuous in Skorohod metric at each point � such that � � NN, u � U �

nŽ .and that P �, u � � for the last case.

Ž . � �For the continuity of J � see 6 , page 153. For the continuity of the other
� �two functionals see 8 , Proposition 6.2.7. Note that the condition that � does

� � � �not have a jump at 0 does not appear in 6 and 8 because they consider the
Ž . Ž .space D � ; � rather than D �; � . Modifications to the proofs are obvious.�

� 4 Ž . � 4Let us fix t � 0 and recall that J , l � � were defined in 3.1 , E , l � �l l
Ž .were defined in Proposition 4. Applying J to C � we gett

J C � � max J : E � 0, 1 .� 4Ž . ŽŽ .t l l
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ˆkŽ .Now let us apply J to � � :t

ˆk ˆk ˆkJ � � � max � i�k � � i � 1 �kŽ . Ž . Ž .Ž .Ž . Ž .t t t
i�1, . . . , k

1
2 2� max � i � � i � 1 .Ž . Ž .Ž .k t k tk i�1, . . . , k

Ž . Ž .2 2Then � i � � i � 1 can be interpreted as the size of the expansion ofk t k t
Ž .2the random function � � at the integer point i, or simply integer expan-k t

ˆkŽ Ž .. Ž .sion. Then J � � is the rescaled size of the largest integer expansion oft
Ž . � 4 � 4 Ž2� � over the set 1, . . . , k . Let us enumerate E , l � � see Proposition 4k t l

. � . Žfor definition in such a way that 0 � E , E . Fix u � 0. Define i, l are0 1
.integers

K 0 � 0, K n � 1 � min l � K n : J � u ,� 4Ž . Ž . Ž . l

I k 0 � 0, I k n � 1 � min i � I k n : � 2 i � � 2 i � 1 � uk .Ž . Ž . Ž . Ž . Ž .� 4k t k t

Ž . Ž . Ž .Here K n is the number in the sequence of all jumps of nth jump of C �t
kŽ . Ž .2of size larger than u; I n is the position of nth integer expansion of � �k t

of size larger than uk. Then for any n � ��

E � P n C � , u ,Ž .Ž .K Žn. t

J � �C E � �C P n C � , u ,Ž .Ž .Ž . Ž .K Žn. t K Žn. t t

k n ˆkI n �k � P � � , u ,Ž . Ž .Ž .t

k k ˆk n ˆk
2 2� I n � � I n � 1 � �� P � � , u .Ž . Ž . Ž .Ž . Ž . Ž .ž /k t k t t t

Ž Ž Ž ... Ž .Note that for any u � 0, P u � U C � � 0, P E � 0 � 1. However, before0
ˆkŽ . Ž .we can apply Proposition 18 to the weak convergence � � � C � , we need

the following simple lemma.

Ž . n�1LEMMA 19. Fix u � 0, n � � . Define x � x , . . . , x � � by x � iu,� 0 n i
� x 4i � 0, . . . , n. Let C , s � 0 be the n � 1-particle coalescing Brownian motions

started at x. Then for any t � 0, there exist 0 � p � 1, independent of n such
that

P C x , i � 0, . . . , n , are all distinctŽ .Ž .t i

� P C x � C x , i , j � 0, . . . , n , i � j 	 pn .Ž . Ž .Ž .t i t j

PROOF. Let

W x , t � 0 � W x , . . . , W x , t � 0� 4 � 4Ž . Ž .Ž .t t 0 t n

be the n � one-dimensional standard Brownian motion with the starting
Ž � �point x. Before coalescence, particles of C move independently also see 11 ,t

Ž .Lemma 2.1 iii , so

P C x � C x , i , j � 0, . . . , n , i � jŽ . Ž .Ž .t i t j

� �� P W x � W x � 0 for any s � 0, t , all i � 1, . . . , n .Ž . Ž .Ž .s i s i�1
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For simplicity of notations, assume that n is even. Then

� �P W x � W x � 0 � s, i : s � 0, t , i � 1, . . . , nŽ . Ž .Ž .s i s i�1

� �	 P W x � W x � 0 � s, i : s � 0, t , i � 0, . . . , n�2 � 1Ž . Ž .Ž .s 2 i�1 s 2 i

n�2�1

� �� P W x � W x � 0 � s : s � 0, tŽ . Ž .Ž .Ł s 2 i�1 s 2 i
i�0

n�21 2 � �� P W � W � u � s : s � 0, t ,Ž .Ž .s s

where W 1, W 2 are two independent standard Brownian motions both started� �

at 0. Set

1 2p � P sup W � W � u .Ž .s sž /(
0	s	t

Clearly 0 � p � 1, and the lemma follows. �

THEOREM 20. Let us fix t � 0. Then we have the following.

Ž . Ž .2i The rescaled size of the largest integer expansion of the function � �k t
� 4 Ž .over the set 1, . . . , k converges in distribution to the largest jump of C � overt
Ž �the interval 0, 1 , that is,

1
2 2max � i � � i � 1 � max J : E � 0, 1 .� 4Ž . Ž . ŽŽ .k t k t l lk i�1, . . . , k

Ž .ii For any u � 0, n � � and t � 0, the rescaled position of nth integer�
Ž .2expansion of � � of size larger than uk converges to the position of nth jumpk t

Ž .of C � larger than u, that is,t

1
kI n � E .Ž . K Žn.k

Ž .iii For any u � 0, n � � and t � 0, the rescaled size of nth integer�
Ž .2expansion of � � that is larger than uk converges to the size of nth jump ofk t

Ž .C � that is larger than u, that is,t

1
k k

2 2� I n � � I n � 1 � J .Ž . Ž .Ž . Ž .Ž .k t k t K Žn.k

Ž . Ž . Ž .The convergence in i , ii and iii is in distribution as k � �.

Ž .PROOF. As was mentioned before t � 0, u � 0 are fixed ,

P C � � NN � P E � 0 � 0Ž . Ž .Ž .t 0

� Ž . �positions of jumps of C � are not fixed ,t

P u � U C � � 0Ž .Ž .Ž .t

� Ž . � Ž . Ž .sizes of jumps of C � are not fixed . Therefore, the statements i and iit
Ž .follow from Theorem 1 and Proposition 18. Statement iii will also follow
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from Theorem 1 and Proposition 18 if we can establish that

7.1 P P n C � , u � � � 1Ž . Ž .Ž .Ž .t

for any u � 0, n � � , t � 0. We will prove that it holds for n � 1. For�
Ž . Ž .general n, 7.1 will follow from space-homogeneity of C � . We can rewritet

the probability above for n � 1 as

P � k � 1: J � u � 1.Ž .k

As stated in Proposition 4,

� 4 � 4J , k � � � E � E , k � �k k k�1

in distribution. Let A be the eventn

A � � k : E � 0, un , E � E � u .� 4Žn k k k�1

Then
P � k � 1: J � u � lim P A .Ž . Ž .k n

n��

Ž . n�1 � x 4Set x � x , . . . , x � � by x � iu, i � 0, . . . , n. Let C , t � 0 be the0 n i t
n � 1-particle coalescing Brownian motion started at x. Then

E � u i � 1 , ui � C x � C x .� 4� 4Ž . Ž . Ž .Žk t i�1 t i

Ž Ž . �Therefore, the event A implies that on each interval u i � 1 , ui , i �n
1, . . . , n, there is at least one E . In other words,k

A � � i � 1, . . . , n � k : E � u i � 1 , ui .� 4Ž .Žn k

In particular,

A � C x � C x � i � 1, . . . , n .� 4Ž . Ž .n t i�1 t i

The probability of the event on the right-hand side was estimated in Lemma
19. Hence there exist 0 � p � 1, such that for any n � � ,�

nP A 	 p .Ž .n

Taking the limit n � �, we get that

P � k � 1: J � u � lim P A � 1 � lim pn � 1.Ž . Ž .k n
n�� n��

Ž .Therefore, 7.1 is established and Proposition 18 is applicable. The second
statement of the theorem follows. �

Ž .Note that the realizations of � � were broken at integer points purely for
notational convenience. We could have taken the piecewise constant approxi-

kŽ .mation to � � on the scale 	�k instead of 1�k for any 	 � 0, say, and all the
results would go through. That would allow us to study expansions at points
� 4 Ž .	 k, k � � similarly to the way proposed in Theorem 20 and later results
for integer expansions.

Ž .Yet another insight into the clustering properties of � � can be gained via
what we call the expansion measure. Let 
 be the Lebesgue measure on �.



ISOTROPIC STOCHASTIC FLOWS 497

kŽ . Ž .We push it backward using the mappings � � and C � :t t

� k � � k � 
�� k � ,Ž .t t

� � � � 
�C � ,Ž .t t

meaning that for Borel sets A � �,

� k A � 
 � k A ,Ž . Ž .Ž .t

� A � 
 C A .Ž . Ž .Ž .t

kŽ .If � A is large for some set A, then A is stretched by time t by the flow
kŽ . kŽ .� � . If � A is small, the set A is, correspondingly, shrunk. The samet

comments, of course, apply to � . This explains the name ‘‘expansion mea-
sures.’’

Ž .The random measure � has a particularly simple structure:
�

� � � J � � ,Ž . Ž .Ý k Ek
k���

Ž . � �where � � assigns a unit mass to the point x � �. Let a, b be an intervalx
in �. Then

k � � k k� a, b � � b � � a ,Ž . Ž .Ž . t t

� �� a, b � C b � C a .Ž . Ž .Ž . t t

Using the results on convergence of finite-particle motions of � k to those of C
Ž . � �Theorem 6 we obtain that for any a, b � �,

k � � � �� a, b � � a, bŽ . Ž .
Ž .in distribution as k � � t is fixed . The following theorem shows that the

stronger kind of convergence in fact holds.

Ž . 1Ž .THEOREM 21. Let � � be a C �; � function with compact support. Then
�

k� x � dx � � x � dx � J � EŽ . Ž . Ž . Ž . Ž .ÝH H k k
k���

in distribution as k � �, t is fixed.

kŽ .PROOF. Let us fix t � 0. Using the fact that � � is continuous and
strictly increasing, we integrate by parts to get

� x � k dx � � �� x � k x dx a.s.Ž . Ž . Ž . Ž .H H
Also

� x � dx � � �� x C x dx a.s.,Ž . Ž . Ž . Ž .H H
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Ž .because C � is piecewise constant. So in fact we have to prove thatt

7.2 � x � k x dx � � x C x dxŽ . Ž . Ž . Ž . Ž .H H
Ž .in distribution as k � � for any � � , a continuous function with compact

support.
The functional

f � f x dxŽ .H
Ž .for f � D �; � with compact support is continuous in Skorohod metric; see

� �6 , page 153. Therefore, Theorem 1 implies that

ˆk7.3 � x � x dx � � x C x dxŽ . Ž . Ž . Ž . Ž .H H
ˆk k Ž .in distribution as k � �. We want to replace � by � in 7.3 . The argument

will be similar to the one used in the proof of Lemma 3, so we omit the
details. Fix 	 � 0. Then

k kˆP � x � x dx � � x � x dx � 	Ž . Ž . Ž . Ž .H Hž /
k kˆ	 P � x � x � � x dx � 	Ž . Ž . Ž .Ž .Hž /

k k k kˆ ˆ� P � x � x � � x dx � 	 � x � � x a.s.Ž . Ž . Ž . Ž . Ž .Ž . Ž .H t tž /7.4Ž .

�1 k kˆ	 	 � x E � x � � x dx by Markov’s inequalityŽ . Ž . Ž . Ž .Ž .H
�1 �1	 	 k � x dx � 0Ž .H

Ž . Ž . � � Ž .as k � �. Combining 7.3 , 7.4 and 3 , Theorem 1.4.1, we establish 7.2
and, therefore, the statement of the theorem. �
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