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ORNSTEIN–UHLENBECK PROCESSES
INDEXED BY THE CIRCLE

BY J. R. NORRIS

University of Cambridge

We consider the class of stationary, zero-mean Gaussian processes,
indexed by the circle, satisfying a two-point Markov property and taking
values in a vector bundle over the circle with given holonomy. We estab-
lish, subject to certain additional symmetry properties, a classification of
all such processes. We then propose a construction of a Brownian motion
of loops, in which these processes provide the infinitesimal increments.

1. Introduction. The problem considered in this paper arises from a
desire to understand what are the simplest and most natural evolutions of
loops in a Riemannian manifold M. A loop is a continuous map x: S � M,
where S � ��� is the circle. For a loop to move, one must specify a direction,

Ž .which is a field of tangent vectors v t � T M, and if the loop is not tox Ž t .
Ž Ž . .break apart, v t : t � S should be continuous. In the deterministic case one

might specify that each point should follow a geodesic, but how is the initial
Ž .direction to be chosen? If v 0 � T M is given, there is no canonical way tox Ž0.

Ž Ž . .lift to a continuous field of vectors v t : t � S .
Our interest is, however, in the random case. We would like to construct a

‘‘Brownian motion of loops,’’ such that, in particular, each point on the loop
follows a Brownian motion in M. Let us assume that our loops are sufficiently
regular that there is a well-defined notion of parallel translation along the
loop�smooth or semimartingale loops would do. Then the tangent space over
the loop has the structure of a Euclidean vector bundle over S with connec-
tion. We choose the look for a vector field along each loop determined by this
structure alone. Whilst one might reasonably use more of the local differen-
tial structure of the manifold along the loop, for example, curvature, our
choice is minimal and motivated therefore by economy. Considerations of
continuity and infinite divisibility suggest a Gaussian distribution for the
vector field. Further, we wish to impose maximal symmetry, so that, in
particular, the distribution is invariant under rotation of loops. There remain
a great many choices, so we impose in addition a two-point Markov property:
this leads to a simple stochastic structure and my be considered as a type of
locality condition. At this point, in contrast to the deterministic case, where
there was no canonical vector field, we find, associated to each invariant
subspace of the holonomy of the loop, a canonical two-parameter family of
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vector fields. The parameters are associated to scale and correlation. This
classification theorem is our main result, Theorem 3.1. It is followed by a
brief investigation of the properties of these canonical vector fields, in the
final section. We finish with a section, of a more speculative nature, explain-
ing how the Ornstein�Uhlenbeck processes described in this paper might
provide the infinitesimal increments for processes of Brownian motion on
loops. There appear to be some major technical problems, which have yet to
be resolved and which expose the inadequacies of present techniques for
multiparameter stochastic differential equations. For recent progress on re-

� � � � � � � � � �lated problems, see 1 , 3 , 4 , 5 and 7 .

2. Vector bundles over the circle. In this section we establish some
Ž .basic notation and terminology. Let E � E : t � S be a Euclidean vectort

bundle over the circle with connection, having holonomy � . By this we mean
that each E is equipped with an inner product and, for each pair t, t� � S,t
there is an isometry

��
� : E � E � .t t t t

These isometries satisfy �� � I and, for t � t� � t� � t, the relationt t

��
� � ��

� ���
� .t t t t t t

Here and throughout, we write t � t� � t� � t or simply t � t� � t� to mean
that one passes t, t�, t� in that order as one moves in the positive sense, that
is, anticlockwise, around the circle. The holonomy � is the isometry of E0
given, for all t � 0, by

� � �� �� .0 t t0

The isometries ��
� define parallel translations anticlockwise around S. Thet t

clockwise parallel translations are denoted
�1� �

� � �� � � : E � E .Ž .t t t t t t

˜An isomorphism of two such bundles E, E is specified by an isometry �:
˜E � E such that0 0

� � ����1 .˜
˜ �In the case E � E there is an isomorphism given by � � � . Given at s�t 0 s

connected Euclidean vector bundle E, its isomorphism class is determined
uniquely by integers k � 1, n , . . . , n � 1 and distinct angles of rotation1 k

Ž �� , . . . , � � �� , � , for which there exists an orthogonal decomposition1 k

E � E1 	 ��� 	 Ek
0 0 0

such that
� � � 
 ��� 
 � ,1 k

where Ei has dimension n , with n even unless � � 0 or � � � , and where0 i i i i
Ž . i� � � n , � acts on E as a rotation through � . Thusi i i 0 i

� n , 0 � I , � n , � � � I ,Ž . Ž .
� �� 2n , � � I cos � � J sin � , 0 � � � �,Ž .
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where J is an isometry with J 2 � �I. The bundle then decomposes as

E � E1 	 ��� 	 Ek ,
where

Ei � �� Ei .t t0 0

LEMMA 2.1. Suppose � : E � E is a linear map, which commutes with0 0
every isometry of E commuting with � . Then � respects the decomposition0

E � E1 	 ��� 	 Ek
0 0 0

and is given on Ei , for some 	 , 
 � �, by0 i i

� � 	 I � 
 � .i i i

PROOF. For any orthogonal decomposition E � E� 	 E� respected by � ,0 0 0
� commutes with the isometry which acts as �1 on E� , so must � , and0
hence � must also respect the decomposition. Thus we reduce to the following
two special cases. When � � I, we must have � � 	I for some 	 � �. When
� � J with J 2 � �I, we must have � � 	I � 
 J for some 	, 
 � �. �

3. Ornstein–Uhlenbeck processes. Let E be a Euclidean vector bun-
dle over S with connection. Given a section x: S � E, we denote by x:˜
� � E the lifting given by0

x � ��n�� x , n � �, 0 � t � 1.˜n� t 0 t t

Note, in particular, that x � ��1 x .˜ ˜1 0
We call a random section of E any measurable map

X : � � S � E.
We now define a number of properties that such a random section might

˜have. Although these will be expressed in terms of X, it is easy to check that
˜Ž . Ž .the point 0 plays no special role. We say X : t � S is Gaussian if X : t � �t t

˜Ž . Ž .is Gaussian. We say X : t � S is stationary if X : t � � has the samet s�t
˜Ž . Ž .distribution as X : t � � for all s � �. We say X : t � S is rotationt t

˜ ˜Ž . Ž .invariant if � X : t � � has the same distribution as X : t � � , for allt t
Ž .isometries � commuting with � . We say X : t � S is Markovian if, for allt

Ž . Ž .s, t � S, conditional on X and X , X : s � r � t and X : t � r � s ares t r r
Ž .independent. We say X : t � S is locally reversible if, for all s, t � � witht

˜Ž .0 � t � s � 1, for all x, y � E , the distribution of X : 0 � r � t � s0 s�r
˜ ˜ ˜Ž .given X � x, X � y is the same as the distribution of X : 0 � r � t � ss t t�r
˜ ˜ ˜Ž . Ž .given X � x, X � y. We say X : t � S is reversible if X : t � � has thet s t �t

˜Ž .same distribution as X : t � � . Note that, given stationarity, reversibilityt
implies local reversibility, but, since

˜ �1 ˜ �2 ˜X � � X � � X ,1 0 �1

reversibility must in general fail, unless � 2 � I.
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We say that a random section X of E is an Ornstein�Uhlenbeck process if
it is stationary, centered, Gaussian, rotation invariant, Markovian and locally

Ž .reversible. We write X � OU E for short. We emphasize that we do not
assume that X is continuous. This will turn out to be a consequence of the
other defining properties.

Ž .The distribution of any stationary centered Gaussian section X : t � S int
E is determined by its covariance

˜ ˜	c t � � X 
 X , 0 � t � 1,Ž . 0 t

� � 	 Ž . Ž .which is a measurable map c: 0, 1 � E 
 E with c 1 � c 0 � .0 0
For � an isometry of E and for 	 
 0, 0 � 
 � � and 0 � t � 1, define0

� sinh 	t � I sinh 	 1 � tŽ .
c t , � � ,Ž .	 sinh 	

c t , � � � t � I 1 � t ,Ž . Ž .0

� sin 
t � I sin 
 1 � tŽ .
c t , � � ,Ž .i
 sin 


c t , �I � I cos � t .Ž .i�

Observe that these functions may be regarded as a single family, parametrized
by 	, where �� 2 � 	2 � �, with continuous extension to 	 � i� in the case
� � �I.

We come to the main result. In the case n � 1 and � � 1, this has been
Ž � � � �.discovered at least twice before see 9 and 6 . Our method is a development

� � � �of that used by Pitt 9 . Klein and Landau 6 prove a general classification
theorem for periodic Gaussian processes having Osterwalder�Schrader posi-

� �tivity, based on a representation theorem of Krein 2 .

Ž . 2 2 2THEOREM 3.1. For � � � n, � , 0 �  � � and �� � 	 � �, there ex-
Ž . 2 Ž .ists a continuous OU E process with covariance  c �, � , and we obtain all	

Ž .OU E processes in this way.
In general, if � has decomposition

� � � 
 ��� 
 � ,1 k

Ž . i Ž i. 1 kwhere � � � n , � with all � distinct, and if X � OU E with X , . . . , Xi i i i
independent, then

X � X 1 	 ��� 	 X k

Ž . Ž .is an OU E process, and we obtain all OU E processes in this way.

Ž . � �PROOF. We deal first with existence. Let � � � n, � and fix 0 � 
 � � . It
suffices to treat the case  � 1. Set

� sin 
t � I sin 
 1 � tŽ .
c t � c t , � � , 0 � t � 1.Ž . Ž .i
 sin 
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Note the identity for x � y � m� ,

sin x sin y
sin x � z � sin x � y � z � sin z ,Ž . Ž .

sin x � y sin x � yŽ . Ž .
from which it follows that, for 0 � s � t � u � 1,

sin 
 t � s sin 
sŽ .
c u � s � c u � c u � t .Ž . Ž . Ž .

sin 
t sin 
t

˜Let X be a centered Gaussian random variable in E , of variance I. For0 0
˜ �k ˜k � �, set X � � X . Suppose inductively, for m � 0, 1, 2, . . . , that we cank 0

˜ �mŽ .construct a centered Gaussian process X : t � 2 � such that, for allt
s, t � 2�m � with 0 � t � 1, we have

˜ ˜	� X 
 X � c t .Ž .s s�t

Set h � 2�m �1 and compute
2sin 
h sin 
h 	˜ ˜var X � X � 2 I � c 2h � c 2hŽ . Ž .Ž .ž /0 2 hž / ž /sin 2
h sin 2
h

tan 
h
� I 1 � cos 
 � cos � .Ž .ž /sin 


� �Since 
 � � , we have cos 
 
 cos � , so there is an independent centered
˜Gaussian random variable Y such that X has variance I, whereh

sin 
h˜ ˜ ˜X � X � X � Y .ž /h 0 2 hsin 2
h
m ˜ŽWe repeat this construction, independently, 2 times to obtain X : t �t

�m �1 � �.2 � � 0, 1 , then set

˜ �n ˜ �m �1 � �X � � X , n � �, t � 2 � � 0, 1 .n� t t

�m Ž �Now, for u � 2 � � 0, 1 ,

sin 
h
	˜ ˜� X 
 X � c u � c u � 2h � c u � hŽ . Ž . Ž .Ž .h u sin 2
h

�m Ž .and, for u � 2 � � 0, 1 ,
2sin 
h

	˜ ˜� X 
 X � c u � 2h � 2c u � c u � h � c u .Ž . Ž . Ž . Ž .Ž .h u�h ž /sin 2
h

Hence, for s, t � 2�m �1� with 0 � t � 1, we have

˜ ˜	� X 
 X � c t .Ž .s s�t

This completes the inductive step. Since c is Lipschitz continuous, the usual
application of Kolmogorov’s criterion now gives us a continuous centered
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˜Ž .Gaussian process X : t � � witht

˜ ˜	� X 
 X � c tŽ .s s�t

� �for all s � � and t � 0, 1 . Hence we obtain a continuous stationary centered
Gaussian section of E on setting

� ˜X � � X .t t0 t

Ž .We now have to check that X : t � S is rotation invariant, Markovian andt
locally reversible.

The first is easy, for if � is an isometry of E , commuting with � , then, for0
� �all s � � and t � 0, 1 ,

	 �1˜ ˜�� X 
 � X � �c t � � c t .Ž . Ž .Ž .s s�t

Ž .So X : t � S is rotation invariant. Next, for 0 � s � t � u � 1, we can writet

sin 
 t � s sin 
sŽ .˜ ˜ ˜X � X � X � Y .s 0 t ssin 
t sin 
t

Then we have

sin 
 t � s sin 
sŽ .
	˜�Y 
 X � c u � s � c u � c u � t � 0Ž . Ž . Ž .s u sin 
t sin 
t

˜ Ž .so Y and X are independent. This shows that X : t � S is Markovian. Tos u t
Ž . Žestablish local reversibility, it suffices to show that Y : 0 � s � t and Y :s t�s

.0 � s � t have the same distribution. Then, by the Markov property, it
suffices to show that the centered Gaussian random variables Y and Ys t�s

� �have the same distribution for each s � 0, t . However,

˜I � var Xs
	2 2I sin 
 t � s � c t � c t sin 
 t � s sin 
s � I sin 
sŽ . Ž . Ž . Ž .Ž .

� � var Y ,s2sin 
t

so var Y � var Y as required.s t�s
Ž . Ž .We have shown that X : t � S � OU E . The argument we used, witht

obvious modifications, shows also that there exist continuous stationary
Ž . � �centered Gaussian sections with covariances c �, � for 	 � i � and 	 � 0	

Ž .and, moreover these are all OU E .
In the general case we have

E � E1 	 ��� 	 Ek
0 0 0

and
� � � 
 ��� 
 �1 k

Ž .with � � � n , � for all i and all � distinct. Then the only isometries of Ei i i i 0
commuting with � are those which preserve Ei and commute with � for all i.0 i

i Ž i. 1 kHence, it is easy to check that, if X � OU E for all i, and X , . . . , X are
1 k Ž .independent, then X � X 	 ��� 	 X � OU E .
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Ž . Ž .We turn to the problem of uniqueness. Suppose that X : t � S � OU E .t
Ž .Since X : t � S is rotation invariant, we havet

c t � �c t ��1Ž . Ž .
Ž .for all isometries � commuting with � . By Lemma 2.1, c t respects the

1 k i Ž . Ž .decomposition E 	 ��� 	 E and is given on E for some a t , b t � �, by0 0 0 i i

c t � a t I � b t � .Ž . Ž . Ž .i i i

The components X 1, . . . , X k are therefore independent and it is easy to check
i Ž i. Ž .X � OU E for all i. Thus we are reduced to the case where � � � n, � for

Ž �some � � �� , � and

c t � a t I � b t �Ž . Ž . Ž .
Ž . Ž . Ž .for some a t , b t � �. Since c 0 is nonnegative definite, either X is identi-

Ž .cally zero or, after a suitable rescaling, we can assume that c 0 � I.
Ž . � �Since X : t � S is Gaussian, for each t � 0, 1�2 , there are linear mapst

Ž . Ž .� t , � t on E such that� � 0

˜ ˜ ˜A X � � t X � � t X � Y ,Ž . Ž . Ž .0 � �t � t

˜ ˜where Y is independent of X , X . By local reversibility we can take�t t
Ž . Ž . Ž .� t � � t � � t say. Moreover� �

		 ˜ ˜ ˜ ˜ ˜c t � c t � � X 
 X � X � � t var X � X .Ž . Ž . Ž .ž / ž /0 �t t �t t

˜ ˜ ˜ ˜Ž . Ž .If X � X � 0, we can take � t � 0. If not, then var X � X � 2 I ��t t �t t
Ž . Ž . Ž .c 2 t � c 2 t * is invertible. So, in any case, we can take � t to be a scalar.

� �We now show that the covariance c must be continuous on 0, 1 and
Ž . � �smooth on 0, 1 . By the Markov property and stationarity, for u � t, 1 � t ,

˜	Ž .on multiplying A by X and taking expectations, we obtainu

B c u � � t c u � t � c u � t .Ž . Ž . Ž . Ž . Ž .Ž .
If c � 0 almost everywhere, then for any bounded measurable function �,

1 ˜var X � s ds � 0.Ž .H s
0

˜So, by Fubini’s theorem, X � 0 almost surely, for almost all s, so c iss
identically zero by stationarity. We have already excluded this trivial case, so
there must exist an � 
 0 and a smooth function � on �, supported in
� �� , 1 � � , such that

c u � u du � 0.Ž . Ž .H
�

� �For t � 0, � , we have

c u � u du � � t c u � t � c u � t � u du.Ž . Ž . Ž . Ž . Ž . Ž .Ž .H H
� �
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Since the integral on the right-hand side is a smooth function of t, so is � on
� � � �0, � . Choose now a smooth function � on �, supported in 0, � and of

� �integral 1. Then �� is smooth on � and, for u � � , 1 � � ,

c u � �� t c u � t � c u � t dt .Ž . Ž . Ž . Ž . Ž .Ž .H
�

Since the integral is a smooth function of u and � may be chosen arbitrarily
Ž . Ž .small, this shows that c is smooth on 0, 1 . Now, since � 0 � 1�2, there

Ž . Ž .exists t 
 0 with � t � 0. On letting u� t and u�1 � t in B , we obtain
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .� t c 0 � � � t c 0 and � t c 1 � � � t c 1 . Hence c is continuous on

� �0, 1 .
Ž . Ž . Ž .On differentiating B twice with respect to t at 0, we find � � 0 c� u � 0

Ž . Ž .for all u � 0, 1 . So, either c� � 0 or � � 0 � 0. In the latter case, on
Ž . 2 Ž . Ž .rearranging B , dividing by t and letting t�0, we obtain � 0 c� u �

Ž . Ž .� � 0 c u . So, in any case, c satisfies an equation of the form

c� � � c � 0

Ž . Ž .on 0, 1 for some � � �. If we now impose the boundary conditions c 0 � I
Ž .and c 1 � � , together with the necessary constraint that, for e � E ,0

2 2˜ ˜ ˜ � �e*c u e � � e*X e*X � � e*X � e ,Ž . Ž . Ž . Ž .0 u 0

then we obtain precisely the covariances c , 	2 � �� 2, as required. �	

4. Further properties. We have classified, in terms of their covariance
structure, all the Ornstein�Uhlenbeck processes in a Euclidean vector bundle

Ž .E over S with connection. In particular, we have shown that, if X � OU E ,
i Ž i.then X decomposes into independent components X � OU E correspond-

ing to the canonical decomposition of E. So, for convenience and without loss,
Ž . Ž �we shall assume in this section that � � � n, � for some � � �� , � . Just as

Brownian motion and more classical Ornstein�Uhlenbeck processes have
many different characterizations, so do the processes considered here. These
alternative characterizations form the subject of this section.

First of all, from the proof of Theorem 3.1, we have the following Marko-
Ž .vian description. The Ornstein�Uhlenbeck process with covariance c �, � , for	

�� 2 � 	2 � �, is characterized among stationary continuous Gaussian sec-
tions by the properties:

˜Ž .1. var X � I;0
2. for 0 � s � t � 1 we have

sinh 	 t � s sinh 	sŽ .˜ ˜ ˜X � X � X � Ys 0 tsinh 	t sinh 	t

˜Ž .for some random variable Y, independent of X : t � u � 1 .u
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Moreover, property 2 may be replaced by the weaker condition:

2�. for 0 � t � 1�2 we have

˜ ˜ ˜X � sech 	t X � X �2 � Yž /t 0 2 t

˜Ž .for some random variable Y, independent of X : 2 t � u � 1 .u

Ž .Second, there is a Hilbert space approach. The space of covariantly abso-
lutely continuous sections h: S � E contains a family of Hilbert spaces,
parametrized by 	, where �� 2 � 	2 � �, with norms

1 12 2 22� � � � � �h � �h dt � 	 h dt ,	 H Ht t
0 0

where

d
� ��h � � � h .Ž .t t0 0 t tdt

The generalized Wiener space construction then gives rise to a continuous
centered Gaussian section X characterized by

² :2 � � 2
� h , X � h .	 	

By a standard type of calculation, we can then show that X has covariance
given by

sinh 	
	˜ ˜� X 
 X � c t , � .Ž .0 t 	2	 cosh 	 � cos �Ž .

Ž .Hence we obtain in this way, up to a scaling, all OU E processes, except the
maximally correlated, smooth process corresponding to 	 � i� . Notice that
the marginal variance of X depends on the angle of rotation � , so if this
construction is applied in the general case � � � 
 ��� 
 � , then the marginal1 k
variance of X will not be a multiple of the identity. Of course, if this is
regarded as a defect, it can be remedied by a suitable reweighting of the
Hilbert norms across the decomposition E � E1 	 ��� 	 Ek. We note that the
generalized Wiener space machinery deals quickly with the construction
problem, which we considered at greater length by elementary means. It
would be interesting to have a direct proof of uniqueness by this method: one
would set up the canonical reproducing-kernel Hilbert space for the process,
and then seek to identify it with one of the Hilbert spaces of sections

Ž .considered above by using the special properties of an OU E process. We
have not attempted to carry this through.

In the case where 	 � 0, the differential equation

˙̃ ˜h � g � 	h˙t t t
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gives rise to an isomorphism of the Hilbert space of X and the classical
Cameron�Martin space of Brownian motion for

1 12 2 2 2� � � � � � � �g � g dt � �h � 	h dt � h .˙H H 	t t t
0 0

So we can construct X by solving the linear stochastic differential equation
with boundary conditions, driven by Brownian motion

˜ ˜ ˜ �1 ˜dX � dB � 	 X dt , X � � X .t t t 1 0

We note that no genuine stochastic integrals are needed for this equation, so
the nonadapted boundary condition poses no problem. A general study of

� �some related equations was made by Ocone and Pardoux 8 .
Explicit solution of the differential equation leads to another representa-

tion of X, in terms of an integral kernel with respect to Brownian motion. We
shall first present the integral kernel construction, and then rederive the
differential equation.

Ž .Let B : 0 � t � 1 be a Brownian motion in E and define a Gaussiant 0
˜ ˜Ž .process B : t � � with stationary increments by B � 0 andt 0

˜ �ndB � � dB , n � �, 0 � t � 1.n� t t

Fix 	 
 0 and set

� t � e�	Ž t�1�2.1 .Ž . 0 � t �1

Then define
1�2	˜ ˜X � � t � r dBŽ .Ht rž /sinh 	 �

CŽ .
1�2	 t 1�	Ž t�r�1�2. �	Ž t�r�1�2.� e dB � � e dB .H Hr r½ 5ž /sinh 	 0 t

˜ �n ˜Then X � � X for n � � and 0 � t � 1, so we obtain a continuous,n� t t
stationary, centered, Gaussian, rotation invariant section of E on setting

� ˜X � � X , 0 � t � 1.t t0 t

Moreover, for 0 � t � 1, we have

	 t	 	Žr�1�2. 	Žr�t�1�2.˜ ˜� X 
 X � � e e drH0 t ½ž /sinh 	 0

1
	Žr�1�2. 	Žr�t�1�2.�I e e drH 5

t

� sinh 	t � I sinh 	 1 � tŽ .
� � c � , t ,Ž .	sinh 	

Ž .and on differentiating C we obtain
1�2 	 �2 �	 �2˜ ˜ ˜dX � 	�sinh 	 e � � e dB � 	 X dt �  	, � dW � 	 X dt ,Ž . Ž . Ž .t t t t t
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where
 2 	, � � 2	 cosh 	 � cos � �sinh 	Ž . Ž .

Ž .and where W : 0 � t � 1 is a Brownian motion in E . So we recover, up to at 0
scaling, the differential equation discussed above.

We can also characterize X by means of a stochastic differential equation,
adapted to the filtration

˜FF �  X : 0 � s � t .
 4t s

Consider for now the case 	 
 0. For 0 � t � t � h � 1 we know that

sinh 	h sinh 	 1 � t � hŽ .˜ ˜ ˜X � X � X � Y ,t�h 1 t t , t�hsinh 	 1 � t sinh 	 1 � tŽ . Ž .
where Y is a centered Gaussian, independent of FF . So, as h�0, uni-t, t�h t
formly in t � 1 � � for each � 
 0, we have

	h
�1˜ ˜ ˜X � X � � o h � XŽ .t�h t 0ž /sinh 	 1 � tŽ .

	h cosh 	 1 � tŽ . ˜� � o h X � Y .Ž . t t , t�hž /sinh 	 1 � tŽ .
Moreover

˜ ˜var Y � var X � X � o hŽ . Ž .ž /t , t�h t�h t

� �2c� 0 � , � h � o hŽ . Ž .	

�  2 	, � hI � o h .Ž . Ž .
Ž .Define B : 0 � t � 1 byt

t t�1˜ ˜ ˜ ˜ 	, � B � X � X � 	� X csch 	 1 � s ds � 	 X coth 	 1 � s dsŽ . Ž . Ž .H Ht t 0 0 t
0 0

� �nt �1

� lim Y .Ý k � n , Žk�1.� n
n�� k�0

˜Ž .Then B is a standard Brownian motion in E , adapted to FF and X0 t 0 � t �1
satisfies the stochastic differential equation

˜ �1 ˜ ˜dX �  	, � dB � 	� X csch 	 1 � t dt � 	 X coth 	 1 � t dt .Ž . Ž . Ž .t t 0 t

This all works, with obvious modifications, for the cases 	 � 0 and 	 � i
,
� �0 � 
 � � . We note that the representation of X using a stochastic differ-

ential equation with boundary conditions works, by contrast, only for 	 � 0.

5. Brownian motion of loops. Let E be a Euclidean vector bundle over
S with connection, having holonomy � . Fix 	 
 0 and recall that we set

� sinh 	s � I sinh 	 1 � sŽ .
c s, � � , 0 � s � 1.Ž .	 sinh 	
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Ž .We can use c to construct a Brownian motion x : t � 0 in the space of	 t
Ž . Ž .sections of E. Here x � x : s � S is an OU E process with covariancet st

Ž . Ž .tc �, � for each t � 0 and x : t � 0 has stationary independent increments.	 t
Ž .Then x : s � S, t � 0 has a jointly continuous version and for each s � Sst
Ž . Žthe ray x : t � 0 is a standard Brownian motion in E . We call x : s � S,st s st

.t � 0 the standard Ornstein�Uhlenbeck sheet in E of parameter 	.
Ž .In Section 4 we obtained three representations of OU E processes in

terms of Brownian motion, either by a linear stochastic differential equation
with boundary conditions or by means of an integral kernel or by a nonlinear,
but adapted, stochastic differential equation. To each of these there corre-
sponds a representation of the standard Ornstein�Uhlenbeck sheet in terms

Ž .of a Brownian sheet w : 0 � s � 1, t � 0 , taking values in E . We givest 0
Ž .details for the first of these: x : s � S, t � 0 satisfies a two-parameterst

linear stochastic differential equation of the form
�D d x � �  	, � � d w � 	 � s d x .Ž .s t st s0 s t st t st

� �Here we have use notation consistent with 7 : d stands for the Ito differen-ˆ
tial, � for the Stratonovich differential and D for the covariant Stratonovich
differential. We wrote �� for the parallel translation E � E in the positives0 0 s
sense, as in Section 2, and

1�2	 1�2�1 	, � � 2 I cosh 	 � � � � .Ž . Ž .ž /sinh 	

Consider now a Riemannian manifold M and fix some connection � on M
Ž .which is compatible with the metric. Choose an initial loop x : s � Ss0

having holonomy � . Assume that parallel translation is well defined and0
Ž .continuous along x : s � S . Then we can take E � T M in the aboves0 s x s0

Ž . Ž .discussion and obtain a sheet x : s � S, t � 0 of sections of T M: s � S .st x s0
Ž . ŽFor each s � S, denote by x : t � 0 the stochastic development of x :st st

.t � 0 in M, which is a �-Brownian motion in M, starting from x . We cans0
Ž .show that x : s � S, t � 0 has a jointly continuous version, sost

t � x � x : s � SŽ .t st

is a process of continuous loops in M.
We shall write

� � : T M � T M�s , t t x xst st

Ž .for the parallel translation along x : u � 0 andsu

� �
� � � �

� x : T M � T MŽ . �ss , t ss t x xst st

Ž .for parallel translation along x : r � S in the positive and negative senses.r t
Ž .Also, write � � � x for the holonomy of x .t t t

Ž .In general, x : t � 0 will not be Markov. In particular it remembers thet
Ž .initial holonomy � , so there is little to recommend x : t � 0 as a natural0 t

evolution of loops. Let us suppose, however, that the connection is flat. Then
� � � � �t 0, t0 0 0, 0 t
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and
� � �� � �� .s , t0 s0, t 0, t0 0 s , 0

Set, for T � 0,
T Tx � � x � x , x � x .Ž .st s , T 0 s , T�t s , T st s , T�t

TŽ . ŽThen x : s � S, t � 0 is the standard Ornstein�Uhlenbeck sheet in T M:st x sT
. Ž T .s � S , of parameter 	 and, for each s � S, x : t � 0 is the stochasticst

TŽ . Ždevelopment of x : t � 0 , starting from x . Hence, in the flat case, x :st sT t
.t � 0 is Markov.

To move beyond the flat case, we propose to adopt a differential equations
approach, reflecting the fact that the holonomy of an evolving loop will
change. In the flat case we have

d x � � d xt st s , t0 t st

and
�D d x � �  	, � � d w � 	 � s d x .Ž .s t st s0, 0 0 s t st t st

Hence, at least formally,

D d x � D � d x � � D d xŽ .s t st s s , t0 t st s , t0 s t st

� � ��  	, � � d w � 	 � s d xŽ .s , t0 s0, 0 0 s t st t st

� ��  	, � � � d w � 	 � s d x .Ž . Ž .s0, t t 0, t0 s t st t st

Again formally, in conjunction with the periodic boundary condition d x �t 0 t
Ž .d x , this differential equation should determine x : t � 0 uniquely, ex-t 1t t

Ž .pressing the fact that the Ito differential d x : s � S is an Ornstein�ˆ t st
Ž . Ž .Uhlenbeck process in T M: s � S with covariance c �, � dt. We proposex 	 tst

this differential equation as a good definition of a Brownian motion of loops,
Ž .even when the connection is not flat. We would expect the solution x : t � 0t

to be Markov and to inherit certain symmetry properties from its infinitesi-
mal increments. Indeed, by Theorem 3.1, if one accepts that the increments of
a loop space Brownian motion should have the various natural properties
characterizing Ornstein�Uhlenbeck processes, then any such Brownian mo-
tion would arise in this way.

However, so far we are unable to make sense of the equation in general.
The difficulty lies in the fact that the existing theory of two-parameter

Ž � �.stochastic differential equations see, e.g., 7 relies heavily on adaptedness,
in both parameter directions, whereas here the equation, and in particular
the periodic boundary condition, allows adaptedness in only one direction. A
resolution of this sort of adaptedness problem for stochastic partial differen-
tial equations of hyperbolic type remains an open problem, of importance
going beyond the geometrical exercise considered in this paper.
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