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THE EXPLORATION PROCESS
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Université Paris 6 and Université Paris 11

The main idea of the present work is to associate with a general contin-
uous branching process an exploration process that contains the desirable
information about the genealogical structure. The exploration process ap-
pears as a simple local time functional of a Lévy process with no negative
jumps, whose Laplace exponent coincides with the branching mechanism
function. This new relation between spectrally positive Lévy processes and
continuous branching processes provides a unified perspective on both the-
ories. In particular, we derive the adequate formulation of the classical
Ray–Knight theorem for such Lévy processes. As a consequence of this
theorem, we show that the path continuity of the exploration process is
equivalent to the almost sure extinction of the branching process.

1. Introduction. It has been known for several years that a class of non-
linear operators of the type −�u+uα can be interpreted and studied through
the measure-valued branching processes called superprocesses [15]. In the
special case α = 2, corresponding to the quadratic branching mechanism, a
natural construction of the associated superprocesses involves the path-valued
process known as the Brownian snake [32, 33]. This construction yields de-
tailed information about the genealogical structure of the superprocess and
has interesting applications to the potential theory of the nonlinear operator.
A question remaining open was to extend the Brownian snake construction
to superprocesses associated with more general branching mechanisms. It is
the purpose of the present work to develop the tools that are needed for this
extension. This requires a deep understanding of the genealogical structure
of continuous-state branching processes, and involves a new connection be-
tween branching processes and spectrally positive Lévy processes, which is of
independent interest. The discrete form of this connection is a pathwise con-
struction relating left-continuous random walks and Galton–Watson branch-
ing trees, which can also be interpreted in terms of a last-in first-out queue.
This construction can be viewed as a variant of the classical relation between
queues and branching processes, which was pointed out by Kendall [26] and
has been used since by many authors.

A key role in this work is played by the notion of the exploration process.
Consider first a discrete-time Galton–Watson tree, describing the genealogy of
an ordinary Galton–Watson branching process with offspring distribution ν.
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The exploration process at time n, denoted by Hn, is the generation of the
individual visited at time n, assuming that the individuals of the popula-
tion are visited successively in the lexicographical order (for the usual coding
of the tree), or equivalently according to the law of primogeniture. This ex-
ploration process is closely related to a left-continuous random walk (in the
terminology of Spitzer [42], page 21) with jump distribution µ�k� = ν�k + 1�,
k = −1	0	1	 
 
 
 
 Precisely, the value Wn of the random walk at time n is ob-
tained by adding the number of younger brothers of the individual visited at
time n and of all his ancestors. Conversely, the exploration process is recovered
as a simple functional of the random walk:

�1
1� Hn = Card
{
j� 0 ≤ j < n	 Wj = inf

j≤l≤n
Wl

}



We are here interested in continuous versions of this correspondence. It is
well known [28] that continuous-state branching processes are the possible
scaling limits of Galton–Watson branching processes. A fundamental idea of
the present work is that one can associate with a general continuous-state
branching process an exploration process that contains all the desirable in-
formation about the genealogical structure. In this setting, the role of the
left-continuous random walk W is played by a spectrally positive Lévy pro-
cess X.

To understand our construction, it is worth considering first the simple case
when the Lévy process X = �Xt	 t ≥ 0� is a sum of (positive) discrete jumps
and a drift part −αt, where α > 0. We can interpret this Lévy process in terms
of a last-in first-out (LIFO) queue with one server: the jumps of X correspond
to arrival times of customers, the size of a jump is the service required by
the corresponding customer and α represents the output rate of the server.
According to the LIFO rule, each new customer is served in priority by the
server, independently of the customers already in the line. This interpretation
yields a branching structure on the set of jumps of the Lévy process X: the
jump, or customer, arriving at time t is a descendant of the jump s if and only if
the customer s is still in the line at the arrival of the customer t. Analytically,
this is equivalent to the condition

Xs− < inf
s≤u≤t

Xu


The generation Nt of the jump t is the number of customers in the queue
at time t, or equivalently the number of instants s < t such that the previ-
ous inequality holds [compare with formula (1.1)]. This branching structure
yields a Galton–Watson process whose offspring distribution can be computed
explicitly in terms of the Lévy measure of X (see the remark after Proposition
3.2). In addition, we also consider the process ρt which gives for every time
t the state of the queue at this time, that is, the residual service times of all
customers present in the queue, in their order of arrival. This process is a
nice Markov process (in contrast to the number Nt of customers in the queue,
which is not Markovian) and has interesting duality properties (Propositions
3.4 and 3.5).
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Our main interest is in the case of a general spectrally positive Lévy pro-
cess X. In the present paper, we assume for simplicity that X does not drift
to +∞ as t → ∞ and has no Gaussian part. The distribution of X is then
characterized by its “Laplace transform”

E�exp−λXt� = exp tψ�λ�	 λ > 0	

where the Laplace exponent ψ�λ� is of the form

ψ�λ� = αλ+
∫
�0	∞�

�e−λr − 1 + λr�π�dr�	

where α ≥ 0 and the Lévy measure π�dr� is a σ-finite measure on �0	∞� such
that ∫

�0	∞�
�r ∧ r2�π�dr� < ∞


The most interesting case is when X has infinite variation, which is equiv-
alent to the condition

∫
�0	1�rπ�dr� = ∞. Then we can define for every t (not

only for jump times) a height Ht that corresponds to the notion of genera-
tion in the discrete jump case. Precisely, consider the time-reversed process
X̂

�t�
s = Xt −X�t−s�−, for 0 ≤ s ≤ t (by convention X0− = 0), and its associated

supremum process Ŝ
�t�
s = sup�0	 s
 X̂

�t�
r . Then Ht is defined as the local time at

level 0 at time t of the reflected Lévy process Ŝ�t� − X̂�t�. Informally, Ht ac-
counts for the “number” of instants s ≤ t such that X̂

�t�
s = Ŝ

�t�
s or equivalently

X�t−s�− ≤ inf �t−s	 t
 Xr. This is of course analogous to the definition of Nt in
the discrete jump case.

The height process �Ht	 t ≥ 0� is the key to our constructions. It is inter-
preted as the exploration process associated with a continuous-state branching
process Z whose branching mechanism function ψ is the Laplace exponent of
X. Recall that the continuous-state branching process with branching mech-
anism ψ [in short, the CSBP(ψ)] is the strong Markov process Z in R+ whose
transition kernels are characterized by their Laplace functional

�1
2� E
(
exp−λZt � Z0 = x

) = exp−xut�λ�	
where ut�λ� is the unique nonnegative solution of the integral equation

�1
3� ut�λ� +
∫ t

0
ψ�us�λ��ds = λ	 λ ≥ 0	 t ≥ 0


The previous interpretation of the height process can be made rigorous in sev-
eral ways. We show that H appears as the scaling limit of discrete exploration
processes corresponding to Galton–Watson branching processes that converge
to Z after rescaling. Alternatively, we obtain the following striking analogue
of a classical Ray–Knight theorem about Brownian local times [27]. Let x > 0
and let τx be the hitting time of −x by X. Then the random measure �x on
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R+ defined by 〈
�x	 ϕ

〉 = ∫ τx

0
dtϕ�Ht�

has a density which is distributed as the process Z started at x (Theorem
4.2). Intuitively, the “time spent” at a given level by the exploration process
corresponds to the size of the population of the tree at that level. The previous
result can be stated for a more general class of Lévy processes [35] including
the special case when X is linear Brownian motion. In that case, the result
reduces to the Ray–Knight theorem, and Z is Feller’s diffusion, which is the
simplest continuous-state branching process [corresponding to ψ�λ� = cλ2].

We use the previous result to investigate the continuity properties of the
height process. We prove (Theorem 4.7) that H has a continuous version if
and only if ∫ ∞ dλ

ψ�λ� < ∞


This condition is known to be equivalent to the almost sure extinction of Z.
If it does not hold, the process H has a very wild behavior.

The height process H is not a Markov process. As in the discrete jump
case, it can, however, be interpreted as the length of a generalized queue ρt,
which is a nice Markov process. The existence and properties of this process
ρt will be important in the construction of Markov snakes associated with
general superprocesses. In fact, the results of the present work show that the
snake construction of quadratic superprocesses [32] can be adapted formally to
superprocesses with a general branching mechanism (see, e.g., [16] or [11] for
the general theory of superprocesses). At the end of Section 3, we briefly give a
discrete version of the method. Details of the construction will be presented in
the forthcoming paper [35], where we also extend some results of the present
work to more general spectrally positive Lévy processes.

The paper is organized as follows. In Section 2, we briefly present the ex-
ploration process associated with a Galton–Watson tree and explain its con-
nection with a random walk. In Section 3, we deal with the case of (spectrally
positive) Lévy processes with finite variation. Although more general, this case
is essentially similar to the discrete jump case described previously. Section
4 contains the main results, concerning the infinite variation case. Finally,
we give in Section 5 a limit theorem showing that the process H of the infi-
nite variation case can be obtained as a scaling limit of discrete exploration
processes.

Let us now comment on the relationship between the present work and
the existing literature. Lamperti [29] showed that a general continuous-state
branching process can be obtained from a spectrally positive Lévy process
by a random time change. This observation was applied by Bingham [8] to
investigate properties of continuous-state branching processes. Lamperti’s re-
sult and the present work thus give two different transformations connecting
a continuous-state branching process to the same Lévy process. Both these
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transformations preserve (the size of) the jumps, but of course not their loca-
tion in time. The relation between Galton–Watson trees and left-continuous
random walks which is described in Section 2 is a variant of Kendall’s con-
nection between queues and branching processes ([26], page 168; see also [3],
page 64). This connection has been treated and exploited by numerous authors
in different forms: see, in particular, [21] and [13], page 1020. A nice conse-
quence of these relations between trees and random walks is the fact (already
implicit in [26]) that the total progeny of a Galton–Watson process has the
same distribution as a certain hitting time for an associated left-continuous
random walk (cf. [14] for a different approach). However, we stress that, in
contrast to Kendall [26] and most of the subsequent authors who were only
interested in the size of the population at every time, we establish a corre-
spondence between the genealogical tree of the population and the positive ex-
cursion of the random walk. In this connection, our use of the LIFO discipline
in Section 3 is crucial. The first-in first-out (FIFO) discipline would give a ge-
nealogical structure different from the one considered here, and would not be
suitable for the passage to the limit that we have in mind. We also refer to [7]
and [9], for connections between spectrally positive Lévy processes and queue-
ing systems, and to [43], for a recent study of trees associated with queues.
The discrete result of Section 2 can also be seen as a generalization of the
well-known relationship between simple random walk and the Galton–Watson
branching tree with a geometric offspring distribution [23]. More generally, the
discrete constructions connecting branching trees with random walks are of-
ten related to combinatorial results (see the recent review of Pitman [40] and
the references therein). As a final remark, the connections between Lévy pro-
cesses and branching processes that are studied in the present work are in the
spirit of the numerous papers connecting linear Brownian motion to random
trees (see in particular [38], [2] and [31]). In the terminology of Aldous [2],
our exploration process H should be understood as the search-depth process
describing the “continuum random tree” associated with a general continuous-
state branching process. This extends the well-known case of Feller’s diffusion,
where the search-depth process is (reflecting) linear Brownian motion (see [2]
and also [30]).

After the publication of the note [34] presenting our main results, we learnt
of some recent preprints independent of the present work but closely related
to Sections 2 and 3 below. Borovkov and Vatutin [10] give a slightly different
version of the correspondence of Section 2. Bennies and Kersting [4] use the
same correspondence to derive certain properties of Galton–Watson branching
processes. Finally, there are some connections between Section 3 below and
the recent work of Geiger [19, 20]. In particular, the pruned tree process of
[20] is related to the process ρ of Section 3 in the discrete jump case.

2. Discrete Galton–Watson trees and random walks. In this section,
we introduce the exploration process of a discrete Galton–Watson tree and
show that it can be written as a simple functional of an associated random
walk. The proofs are elementary and will be merely sketched.
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We first define the Galton–Watson tree with a given offspring distribution.
This construction has been known for a long time (see in particular [39]).
We follow the presentation of Neveu [37]. Let N∗ = �1	2	3	 
 
 
� be the set of
positive integers, and let

U =
∞⋃
n=0

�N∗�n	

where by convention �N∗�0 = ���. An element u of �N∗�n is written u =
u1 · · ·un, and we set �u� = n. If u = u1 · · ·um and v = v1 · · ·vn belong to
U, we write uv = u1 · · ·umv1 · · ·vn for the concatenation of u and v. In par-
ticular u� = �u = u. We write u < v for the lexicographical order on
U� � < 1 < 11 < 12 < 121, for example.

A tree τ is a finite subset of U such that the following hold:

1. � ∈ τ;
2. if v ∈ τ and v = uj for some j ∈ N∗, then u ∈ τ;
3. for every u ∈ τ, there exists a number ku�τ� ≥ 0 such that uj ∈ τ if and

only if 1 ≤ j ≤ ku�τ�.
We denote by T the set of all trees. If τ is a tree and u ∈ τ, we define the shift
of τ at u by Tuτ = �v ∈ U	 uv ∈ τ�. Note that Tuτ ∈ T.

Let µ be a probability measure on N. We assume that µ is critical or sub-
critical, meaning that

∞∑
k=1

kµ�k� ≤ 1

and µ�1� < 1. The law of the Galton–Watson tree with offspring distribution
µ is the unique probability measure Pµ on T such that the following hold:

1. Pµ�k� = j� = µ�j�, j ∈ N;
2. for every j ≥ 1 with µ�j� > 0, the shifted trees T1τ	 
 
 
 	Tjτ are indepen-

dent under the conditional probability Pµ�· � k� = j� and their conditional
distribution is Pµ.

We next introduce the exploration process. Let τ ∈ T and σ = σ�τ� =
Card�τ�. Denote by u�0� = � < u�1� < · · · < u�σ − 1� the elements of τ listed
in lexicographical order. Let also � stand for a cemetery point. The exploration
process �Hn�τ�	 n ≥ 0� associated with τ is then defined by

Hn�τ� =
{ �u�n��	 if 0 ≤ n ≤ σ − 1	
�	 if n ≥ σ


At an intuitive level, one visits successively all “individuals” of the tree in
the lexicographical order, starting from � at time 0, and Hn represents the
generation of the individual visited at time n. It is easy to check that the
function n → Hn�τ� determines the tree τ.

In general, the process Hn is not Markovian under Pµ, and it is not clear
how to describe its distribution. However, we can define a related Markov
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process as follows. If u = u1 · · ·up ∈ U and k ≤ p, we set �u
k = u1 · · ·uk, so
that �u
k is the ancestor of u in the kth generation of the tree. Then, for any
n ∈ �0	1	 
 
 
 	 σ − 1� and j ∈ �1	 
 
 
 	Hn�, we set

Bn	j�τ� = Card
{
v ∈ τ� �v� = j	 �u�n�
j−1 = �v
j−1	 u�n� < v

}
	

which represents the number of “younger” brothers of the ancestor of u�n� in
the jth generation.

Proposition 2.1. The process �ρn	 n ≥ 0� defined by

ρn =
{ �Bn	1	 
 
 
 	Bn	Hn

�	 if n < σ	

�	 if n ≥ σ	

is under Pµ a Markov chain with values in
⋃∞

n=0 Nn∪���. The transition kernel
of this Markov chain is described as follows. If b = �b1	 
 
 
 	 bh� ∈ ⋃∞

n=0 Nn, then

Q�b	 �b	 k�� = µ�k+ 1�	 k ∈ N	

Q�b	 b̃� = µ�0�	
where b̃ = �b1	 
 
 
 	 bm−1	 bm −1� if m = sup�j ∈ �1	 
 
 
 	 h�	 bj > 0� > 0, b̃ = �
if b1 = · · · = bh = 0. Furthermore, Q��	�� = 1.

The statement of the proposition is intuitively clear. Let us briefly sketch
a heuristic argument. At time n, we are visiting the individual u�n�, and
because of the lexicographical order of visits, we do not know yet whether
this individual has children or not. For every l ≥ 1, the individual u�n� has
l children with probability µ�l�, and in that case u�n + 1� = u�n�1 is the
first child of u�n� and ρn+1 = �ρn	 l−1� by definition. On the other hand, with
probability µ�0�, u�n� has no child. Then u�n+1� will be the first younger (i.e.,
not yet visited) brother of the last ancestor of u�n� [including u�n� himself]
that has at least one younger brother. In that case we get ρn+1 = ρ̃n.

Corollary 2.2. Set

Wn =


Hn∑
j=1

Bn	j	 if n < σ	

�	 if n ≥ σ


Then W is under Pµ a random walk on the integers started at 0, with jump
distribution ν�k� = µ�k+ 1�, k = −1	0	1	2	 
 
 
 	 and killed at its first hitting
time of −1. Furthermore, for n < σ ,

�2
1� Hn = Card
{
j� 0 ≤ j < n	 Wj = inf

j≤l≤n
Wl

}



The first part of the corollary is obvious from the form of the kernel Q in
Proposition 2.1. As for (2.1), notice that the condition Wj = inf j≤l≤n Wl holds



220 J.-F. LE GALL AND Y. LE JAN

if and only if n < inf�k > j	 Wk < Wj� =� kj. However, it is clear from our
construction that kj is the time of the first visit of an individual that is not a
descendant of u�j�. Hence, the right-hand side of (2.1) is exactly the number
of ancestors of u�n�, that is, �u�n�� = Hn.

The point of the previous corollary is that the exploration process is de-
termined as a simple functional of the left-continuous random walk W. This
is of course similar to the classical correspondence between simple random
walk and the geometric Galton–Watson tree [23]. One can also compare the
results of this section with the well-known embedding of a Galton–Watson
branching process in random walk (see, e.g., [36]), which is a discrete form
of Lamperti’s embedding. However, note that, in contrast to the previous con-
struction, this embedding does not give access to the family structure of the
branching process.

Much of what follows in Sections 3 and 4 is devoted to studying continuous
analogues of the correspondence (2.1) and of the process �ρn	 n ∈ N�. In this
continuous setting, W is replaced by a spectrally positive Lévy process. The
analogue of H studied in Section 4 can be interpreted as the exploration pro-
cess associated with a continuous-state branching process. This interpretation
is justified by the limit theorems proved in Section 5.

3. Lévy processes with finite variation.

3.1. Assumptions and preliminaries. In this section, we consider a Lévy
process X on the real line with no negative jumps and paths of finite varia-
tion. We always assume that the process X starts at 0 under the probability
measure P = P0. The Lévy measure π of X is a measure supported on �0	∞�
such that ∫ ∞

0
�r ∧ 1�π�dr� < ∞


The process X can be decomposed as the sum of a subordinator Yt =∑
0≤s≤t �Xs and a drift part Zt = βt	 β ∈ R. Recall that∑

s��Xs>0

δ�s	 �Xs�

is a Poisson point measure on R2
+ with intensity dsπ�dr�. In particular

E�∑0≤s≤t �Xs� = t
∫∞

0 rπ�dr� and, for λ > 0,

E�exp�−λXt�� = exp�tψ�λ��	
where

ψ�λ� = −βλ+
∫ ∞

0
�e−λr − 1�π�dr�


We will only consider the case when X is recurrent or drifts to −∞. This
property holds if and only if E�Xt� ≤ 0, or equivalently∫ ∞

0
rπ�dr� + β ≤ 0
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Note that in particular
∫∞

0 rπ�dr� < ∞. We set α = −β ≥ 0. To avoid trivial
cases we also assume that π �= 0 and thus α > 0.

We will need a few simple facts about the behavior of X. First, the point
0 is irregular for �0	∞� ([6], Corollary VII.5). A short argument can be given
as follows. If γ�t� = inf�s > t	 Xs > Xt�, P�γ�t� > t� is independent of t.
Certainly γ�t� > t if the derivative of the map s → Xs at s = t exists and is
(strictly) negative. However, this derivative is dt-a.e. equal to −α by a stan-
dard derivation theorem. As a consequence, the supremum process of X only
increases by discrete jumps.

Write γ = γ�0� for the hitting time of �0	∞�. The joint distribution of
�Xγ	�Xγ� is given by the following formula ([6], Theorem VII.17):

�3
1� E�1�γ<∞� f�Xγ	�Xγ�� = α−1
∫
π�dy�

∫ y

0
dxf�x	y�


Let us briefly give a proof of (3.1), as one of the intermediate steps will be
needed later. First note that �Xγ > 0, because otherwise the strong Markov
property at γ gives a contradiction. By translation invariance, there exists a
constant c > 0 such that, for every Borel subset B of �−∞	0�,

�3
2� E

(∫ γ

0
1B�Xs�ds

)
= cm�B�	

where m is Lebesgue measure. Then

E�1�γ<∞� f�Xγ	�Xγ�� = E

( ∑
s��Xs>0

1�s≤γ�1��Xs>−Xs−� f�Xs	�Xs�
)

= E

(∫ γ

0
ds

∫
�−Xs−	∞�

f�Xs− + r	 r�π�dr�
)

= c
∫ 0

−∞
dx

∫
�−x	∞�

f�x+ r	 r�π�dr�


Formula (3.1) will follow if we can check that c = α−1. By taking f = 1, we
get P�γ < ∞� = c

∫
rπ�dr�. In the recurrent case [α = ∫

rπ�dr�], we have
P�γ < ∞� = 1 and the desired result follows at once. In the transient case, we
note that the potential kernel B → E�∫∞

0 1B�Xs�ds� is on �−∞	0
 a multiple
of Lebesgue measure m. The constant is easily computed from a renewal-type
argument or some Fourier calculations:

E

(∫ ∞

0
1B�Xs�ds

)
=

(
α−

∫
rπ�dr�

)−1

m�B�


On the other hand the Markov property at γ leads to

E

(∫ ∞

0
1B�Xs�ds

)
= �P�γ = ∞��−1 E

(∫ γ

0
1B�Xs�ds

)



Combining these formulas with the identity P�γ < ∞� = c
∫
rπ�dr� yields

the desired result c = α−1.
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Denote by It = inf �0	 t
 Xr the infimum process of X and by St = sup�0	 t
 Xr

its supremum process. Then X−I and S−X are strong Markov processes ([6],
Chapter VI; this fact holds for a general Lévy process). From our assumptions
and the previous remarks, it is immediate to check that 0 is a regular recurrent
point for X − I. From the fact that 0 is irregular for �0	∞� (with respect to
X) and a time-reversal argument we have also P�Xt = It� = P�St = 0� > 0.
Hence a local time at 0 for X− I is given by

4t =
∫ t

0
1�Xs=Is� ds


We denote by N the excursion measure away from 0 for X−I associated with
this local time. The measure N can be computed explicitly:

�3
3� N =
∫
π�dr�P0

r	

where P0
r stands for the law of X started at r and stopped at T0 = inf�s ≥

0	 Xs = 0�. The first step to prove (3.3) is to observe that excursions of X− I
away from 0 must start with a jump. This follows via a time-reversal argument
from the fact that the maximum process of X only increases by jumps: if an
excursion of X− I were leaving 0 continuously, then we could find a rational
q such that the time-reversed process X̂�q� reaches continuously a (strictly)
positive level, which is impossible. Once we know that excursions start with
a jump, we apply the classical formulas of excursion theory, which give, for
τ�1� = inf�t� 4t = 1�,

N�f�X0�� = E

(∫ τ�1�

0
dt1�Xt−=It�f��Xt�

)
=

∫
f�r�π�dr�	

and (3.3) follows easily.

3.2. The queueing system representation. We now explain how the Lévy
process X can be interpreted as describing the evolution of a queue, which in
turn will determine a branching structure. Consider first the simple special
case where π is a finite measure, Yt = ∑

0≤s≤t �Xs is a compound Poisson
process: The jumps of X occur on a discrete set of times, these jumps are
distributed according to the law π�dr�/π�R+� and the intervals between two
successive jumps are exponentially distributed with parameter π�R+�. There-
fore �Xt	 t ≥ 0� belongs to the set � of all functions �ω�t�	 t ≥ 0� of the
type ω�t� = u�t� − αt, where u is a sum of discrete positive jumps . We can
interpret the trajectory �X�t�	 t ≥ 0� as describing the evolution in time of a
queue LIFO (last-in, first-out) with one server, whose service output rate is α.
A jump of X at time t corresponds to the arrival of a new customer requiring a
service equal to �Xt. The server will immediately start the service of this new
customer and this service will be completed at time t + α−1 �Xt, unless it is
interrupted by another new arrival, and so on. When the server has completed
the service of a customer, he comes back to the service of the last arrived cus-
tomer whose service is not completed (if there is any). The customer arrived



BRANCHING PROCESSES IN LÉVY PROCESSES 223

at time t will still be in the system at time t′ > t if and only if

Xt− < inf
t≤r≤t′

Xr	

and the quantity inf t≤r≤t′ Xr −Xt− then represents the remaining part of his
service at time t′. We denote by Nt the number of customers in the queue at
time t:

Nt = Card
{
s ∈ �0	 t
	 Xs− < inf

s≤r≤t
Xr

}
and by �t = �s1

t ≤ · · · ≤ s
Nt

t � the set of arrival times of these customers. We
also let ρt�s1

t �	 
 
 
 	 ρt�sNt

t � be the corresponding services remaining at time t
[ρt�s� = inf s≤r≤t Xr −Xs−]. Observe the easy identity∑

s∈�t

ρt�s� = Xt − It


Hence, Xt − It exactly corresponds to the load of the server at time t. The
quantity −It/α represents the total amount of time before t during which the
server was idle.

In the general case when π may be an infinite measure, �Xt	 t ≥ 0� belongs
to the set ¯� of trajectories of the type ω�t� = u�t�−αt, where u�t� is a sum of
positive jumps. The previous interpretation still make sense. We again denote
by �t the set �s ≤ t	 ρt�s� = inf s≤r≤t Xr −Xs− > 0� and by Nt the cardinal of
�t, which may now be infinite.

A truncation argument will be useful to study the case π�R+� = ∞. For
every ε > 0, we set

Xε
t = ∑

0≤s≤t

�Xs 1��Xs>ε� − αt


Then Xε
t corresponds to the evolution of a LIFO queue where the services

required by the customers are larger than ε. Decreasing ε means adding new
customers with smaller services. Then �Xε

t 	 t ≥ 0� belongs to � and con-
verges to �Xt	 t ≥ 0� uniformly on compact sets. With an obvious notation,
� ε

t increases toward �t and thus Nε
t increases towards Nt as ε goes to 0. Also,

for every s ∈ �t, ρ
ε
t �s� increases to ρt�s�, and

Xt − It = lim
ε→0

↑ �Xε
t − Iεt �

again represents the load of the server at time t. We can thus interpret the
pair ��t	 ρt� as describing the evolution of a generalized queue where the total
number of customers in the system can be infinite.

Remark. As was pointed to us by J. Pitman, the previous construction
has some relation with the work [1] of Adhikari on skip free processes. In a
somewhat different context, the sets Mn introduced in [1] correspond to the
level sets of our process Nt.
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3.3. The branching structure. The previous considerations applied to any
element of � or ¯� . We will now use the probabilistic structure of X to get
more information.

Lemma 3.1. For every t > 0	 P�Nt < ∞� = 1. Moreover, P-a.s., for every
t > 0, the elements of �t can be ordered in a strictly increasing sequence s1

t <
s2
t < · · ·, which is finite if t is a time of jump for X.

Proof. Recall from Section 1 the notation X̂
�t�
s , Ŝ�t�

s for the time-reversed
process at t and its supremum process. Notice that, for 0 < u ≤ t, t − u ∈ �t

if and only if Ŝ�t�
u > Ŝ

�t�
u−. Obviously, �Ŝ�t�

s 	 0 ≤ s ≤ t� and �Ss	 0 ≤ s ≤ t� have
the same distribution.

We saw that the set �s > 0	 Ss > Ss−� is discrete and thus �s ∈ �0	 t
	 Ss >
Ss−� is a.s. finite, for every t. By the previous observation, this gives Nt < ∞
a.s. In particular, Nr is a.s. finite for every positive rational r.

Then notice that, for s	 s′ ∈ �t, s < s′ if and only if Xs− < Xs′−. The second
assertion will thus follow if we can check that P-a.s. for every t > 0	 ε > 0,
�s ∈ �t	 Xs− < Xt − ε� is finite. To this end, note that by the right continuity
of paths the latter set is contained in �r for some rational r > t. If t is a time
of jump, then it is clear that �t = �s ∈ �t	 Xs− < Xt−ε� for some ε > 0. This
completes the proof. ✷

For every p ≥ 0, we define a continuous process Zp by

Z
p
t =

∫ t

0
1�Ns=p� ds


By Lemma 3.1,
∑∞

p=0 Z
p
t = t. Let Zε	p be associated with the truncated Lévy

process Zε introduced previously. By dominated convergence, Zε	p
t → Z

p
t as

ε decreases to zero. In particular, Z0
t = limZ

ε	0
t = lim−Iεt /α = −It/α. We

also observe that Xt = It if and only if Nt = 0. The only if part is trivial. For
the reverse implication, observe that It < Xt implies that Iεt < Xε

t for ε > 0
small, which in turn gives Nt ≥ Nε

t ≥ 1

For every x > 0, set τx = inf�t	 Xt = −x�. Note that τx = inf�t	 Xt− = −x�,

a.s., and so it is clear that τεx ↑ τx as ε ↓ 0, a.s. By the previous observations,
Z0

τx
= x/α. The next proposition gives for a fixed x the law of the process

�Zp
τx	 p ≥ 0�


Proposition 3.2. �Zp
τx	 p ≥ 0� is a Markov chain in R+ whose transition

kernel P�u	dv� is determined by its Laplace transform:∫
exp�−λv�P�u	dv� = exp−u

∫ (
1 − exp

(
−λr

α

))
π�dr�


Remark. The kernel P verifies the branching property: P�u	 ·� ∗ P�u′	 ·� =
P�u+ u′	 ·�.
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Proof of Proposition 3.2. By passing to the limit ε → 0, we may assume
in proving Proposition 3.2 that π�R+� < ∞. Then let T1 < T2 < · · · be the
sequence of stopping times such that

�T1	T2	 
 
 
� = �t > 0	 Xt− = It	 �Xt > 0�
and for every n let Un = inf�t > Tn	 Xt = XTn−�. The strong Markov prop-
erty of X shows that the variables T1	T2−U1	 
 
 
 	Tn+1−Un	 
 
 
 are indepen-
dent and exponentially distributed with parameter π�R+�. Hence, the random
variable

jx �= sup�n	 T1 + �T2 −U1� + · · · + �Tn −Un−1� ≤ x/α�
is Poisson with parameter xπ�R+�/α. Clearly Tn ≤ τx if and only if n ≤ jx.

Then observe that the processes Xi = �XTi+t − XTi
	 0 ≤ t ≤ Ui − Ti�

are independent and distributed as �Xt	 t ≤ τξ�, where ξ is a random vari-
able independent of X with distribution π/π�R+�. These processes are also
independent of the quantities Tn+1 − Un	 n ∈ N, hence of jx. From our con-
struction, if t ∈ �Ti	Ui�, Nt = 1+Ni

t−Ti
(with an obvious notation) and Nt = 0

if t /∈ ⋃
i�Ti	Ui�. It follows that

�Zp
τx
	 p = 1	2	 
 
 
� �d�=

( jx∑
i=1

Zi	p−1	 p = 1	2	 
 
 

)
	

where the processes Zi = �Zi	k	 k = 0	1	 
 
 
� are independent (and indepen-
dent of jx) and distributed as Zτξ

. Using the obvious additivity property of
the laws of Zτx

, we get that

�Zp
τx
	 p = 1	2	 
 
 
� �d�= �Zp−1

τU
	 p = 1	2	 
 
 
�	

where U is independent of X and distributed as the sum of jx independent
copies of ξ:

E�exp�−λU�
 = exp
(
−x

α

∫
�1 − exp�−λr��π�dr�

)



Proposition 3.2 now follows easily. ✷

Remarks. (a) Suppose that π�R+� < ∞ and denote by J
p
t the number of

jumps of the process N from p to p+ 1 before time t (in particular J0
τx

= jx).
In other words, Jp

t represents the number of arrivals, before time t, at times
when the number of customers in the system is p. Then �Jp

τx	 p ≥ 0� is a
Galton–Watson branching process with offspring distribution

ν�k� =
∫ �rπ�R+�/α�k

k!
exp

(
−rπ�R+�

α

)
π�dr�
π�R+�




(Compare with [3], page 64.) This follows from the arguments used in the
previous proof: Conditionally on J0

τx
= k, the process �Jp

τx	 p = 1	2	 
 
 
� is
distributed as the sum of k independent copies of �Jp−1

τξ 	 p = 1	2	 
 
 
�, and the
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distribution of J0
τξ

is ν. Note that the mean of ν is
∑∞

k=0kν�k� = α−1
∫
rπ�dr�,

and so the Galton–Watson process J
p
τx is critical or subcritical according as X

is recurrent or drifts to −∞.
(b) When π�R+� = ∞, one easily checks that

P�Zp
τx

> 0� = lim
λ↓0

E�1 − exp−λZp
τx
� = 1

for every p. This property, which obviously does not hold when π�R+� < ∞,
is related to the fact that �t	 Nt = ∞� is not empty. Indeed, we can easily
construct a (random) sequence �tn� such that �Xtn

> 0 and tn < tn+1 <
inf�s > tn	 Xs = Xtn−�. Clearly Ntn

≥ n and t = lim ↑ tn satisfies Nt = ∞.
This argument shows in fact that �t	 Nt = ∞� is dense in R+.

3.4. The Markov process ρ. We will now investigate the process ρt =
�ρt�s�	 s ∈ �t� which gives for every t ≥ 0 the state of the queue at time t. By
Lemma 3.1, the set �t can be written as an increasing sequence s1

t < s2
t < · · ·

which may be finite or infinite. As usual, we denote by l1 the Banach space
of all sequences a = �ak	 k = 1	2	 
 
 
� of real numbers such that

∑ �ak� < ∞.
Since

∑
s∈�t

ρt�s� = Xt − It < ∞ for every t ≥ 0, a.s., we can view �ρt�t≥0 as
a random process with values in l1, taking ρk

t = ρt�skt � if k ≤ Nt and ρk
t = 0

otherwise. In particular, ρt = 0 if and only if Nt = 0. Lemma 3.1 shows
that, for every fixed t, ρt a.s. belongs to the subset l1

0 of finitely supported
sequences.

We denote by ��t� the canonical filtration of X augmented as usual by the
negligible sets of �∞.

Proposition 3.3. The process �ρt	 t ≥ 0� is a cadlag strong Markov process
with respect to the filtration ��t�, and 0 is a recurrent point for this process.
An invariant measure for �ρt	 t ≥ 0� is

ν�>� = >�0� + N
(∫ T0

0
>�ρs�ds

)
= >�0� +

∞∑
k=1

Rk
∫
>�x1	 
 
 
 	 xk	0	0	 
 
 
�π⊗k�dx1 · · ·dxk�	

where π�dr� = �∫ rπ�dr��−1π��r	∞��dr and R = α−1
∫
rπ�dr�.

Proof. We first introduce some notation. Denote by l1
+ the subset of all

elements of l1 with nonnegative components. For a ∈ l1
+, the “length” of a is

�a� = ∑∞
j=1 aj. If a ∈ l1

+ and h > 0, we let kha be that member of l1
0 whose

length is ��a�−h�+ and which agrees with a up to the last nonzero component
of kha. More precisely, kha = 0 if �a� ≤ h. If �a� > h, we may find a unique
integer m such that ∑

i≥m

ai > h ≥ ∑
i>m

ai
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and we take �kha�i = 0 if i > m, �kha�i = ai if i < m and, finally, �kha�m =∑
i≥m ai − h, in such a way that �kha� = �a� − h. Notice that kha ∈ l1

0.
Next, let a ∈ l1

+ ∩ l1
0 and b ∈ l1

+. We let �a	 b
 be the element of l1
+ obtained

by concatenating a and b: If m = sup�i	 ai > 0�, �a	 b
i = ai if i ≤ m and
�a	 b
i = bi−m if i > m.

For every s	 t ≥ 0, set X
�t�
s = Xt+s −Xt, I

�t�
s = inf �0	 s
 X

�t�
r . Then, a.s. for

every s > 0, t ≥ 0, we have I
�t�
s < 0 (if this were not the case, a time-reversal

argument would give a contradiction with the fact that the maximum of X
only increases by jumps). Let �ρ�t�

s 	 s ≥ 0� be the analogue of �ρs	 s ≥ 0� for
the shifted function �X�t�

s 	 s ≥ 0�. Then a.s. for every t ≥ 0, s ≥ 0, ρ�t�
s can be

seen as an element of l1
+. We claim that, a.s. for every t ≥ 0, s > 0,

�3
4� ρt+s = [
k−I

�t�
s
ρt	 ρ

�t�
s

]



This identity is an elementary consequence of our definitions.
The right-continuity of the process ρ follows at once, observing that, a.s. for

every t ≥ 0,

lim
s↓0

I
�t�
s = 0	 lim

s↓0
�ρ�t�

s � = 0


The existence of left limits follows similarly. In fact, ρ and X have the same
discontinuity times and ρt = �ρt−	 �Xt
, where we abuse notation by writing
�Xt for the sequence whose only nonzero element is the first one, which is
equal to �Xt.

The identity (3.4) also shows how to define the process ρ started at an
arbitrary element a ∈ l1

+:

ρa
t = �k−It

a	 ρt


The strong Markov property for ρ then follows from (3.4) and the strong
Markov property for X.

From the fact that 0 is regular and recurrent for X − I, it is immediate
that 0 is a regular recurrent point for ρ, and it is also clear that a choice of
the associated excursion measure is the law of �ρt	 t ≥ 0� under N (to define
properly ρt under N, it is necessary to take account of the initial “jump at
time 0”). It is then classical (and easy to prove) that an invariant measure for
ρ is

ν�B� = 1B�0� + N
(∫ T0

0
1B�ρt�dt

)
= 1B�0� +

∫
π�dr�E0

r

(∫ T0

0
1B�ρt�dt

)
	

by (3.3). By Lemma 3.1, ν is supported on l1
0. Fix k ≥ 1 and let B be a

Borel subset of �0	∞�k, which we identify with the set of all sequences
�a1	 
 
 
 	 ak	0	0	 
 
 
� such that �a1	 
 
 
 	 ak� ∈ B. To compute ν�B�, denote by
B̃ the set of all finite cadlag paths ω� �0	 t
 → R whose maximum has exactly
k successive jumps α1	 
 
 
 	 αk such that �αk	 
 
 
 	 α1� ∈ B. Let γ1	 
 
 
 	 γn	 
 
 
 be
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the successive times of increase of S. Using the convention X0− = 0 to define
X̂

�t�
t = Xt, we have then

ν�B� =
∫
π�dr�E0

r

(∫ T0

0
1B�ρt�dt

)
=

∫
π�dr�E0

r

(∫ T0

0
1B̃�X̂�t��dt

)
=

∫
π�dr�

∫ ∞

0
dtE0

(
1B̃��X�0	 t�	Xt + r
�1�St−Xt<r�

)
=

∫
π�dr�E0

(
1�γk−1<∞�

∫ γk

γk−1

dt1B�Xt + r−St	Xγk−1
−Xγk−2

	 
 
 
 	Xγ1
�

× 1�St−Xt<r�

)
where we used the notation �X�0	 t�	Xt + r
 to denote the cadlag path on �0	 t

that coincides with Xs for s < t and equals Xt + r for s = t. Conditionally on
the event �γk−1 < ∞�, the variables Xγ1

	 
 
 
 	Xγk−1
− Xγk−2

are independent
and identically distributed. Furthermore, by (3.1), their common conditional
distribution is π, and P�γk−1 < ∞� = P�γ1 < ∞�k−1 = Rk−1. Using also the
strong Markov property at γk−1, we get

ν�B� = Rk−1
∫
π⊗�k−1��dx2 · · ·dxk�

×E

(∫ γ

0
dt

∫
π�dr�1�Xt>−r�1B�Xt + r	 x2	 
 
 
 	 xk�

)
= α−1Rk−1

∫
π⊗�k−1��dx2 · · ·dxk�

∫ 0

−∞
dy

∫ ∞

−y
π�dr�1B�r+ y	x2	 
 
 
 	 xk�

= Rk
∫
π⊗k�dx1 · · ·dxk�1B�x1	 
 
 
 	 xk�	

using (3.2) (with c = α−1) for the second equality. This completes the proof of
Proposition 3.3. ✷

3.5. Duality properties. We now proceed to investigate the dual process of
ρ with respect to the reference measure ν. This leads to a process η which
has also a simple interpretation in terms of the queueing system. In the same
way as ρ represents the remaining service times due to the customers in the
system at time t, ηt gives the service times already accomplished for these
customers. More precisely, ηt = �η1

t 	 η
2
t 	 
 
 
�, where ηk

t = 0 if k > Nt and, if
k ≤ Nt,

ηk
t = �Xskt

− ρk
t = Xskt

− inf
skt ≤r≤t

Xr	

in the notation of Lemma 3.1.
Because

∑
0≤s≤t �Xs < ∞, it is clear that the process η lives in l1

+. Obviously,
P�ηt ∈ l1

0� = 1 for every t ≥ 0.
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Proposition 3.4. The pair �ρ	η� is a cadlag strong Markov process with
values in �l1

+�2. An invariant measure for �ρ	η� is given by

A�>� = >�0� +
∞∑
k=1

Rk
∫
θ⊗k�dx1 dy1 
 
 
 dxk dyk�

×>��x1	 
 
 
 	 xk	0	 
 
 
�	 �y1	 
 
 
 	 yk	0	 
 
 
��	
where the measure θ is defined on �0	∞�2 by∫

θ�dxdy�f�x	y� =
(∫

π�dz� z
)−1 ∫

π�dz�
∫ z

0
dxf�x	 z− x�


The dual process of �ρ	η� with respect to A is �η	 ρ�.

Remark. The process η is not a strong Markov process: When π is finite,
the strong Markov property fails at the first jump of X.

Proof of Proposition 3.4. We first extend the identity (3.4). For h > 0
and �a	 b� ∈ �l1

+�2 we define k̃h�a	 b� = �a′	 b′� as follows. If �a� ≤ h, k̃h�a	 b� =
0. If �a� > h, we take a′ = kha, we then let m ≥ 1 be as in the definition of
kha and we set

b′i =


0	 if i > m	

bi	 if i < m	

bm +
( ∑

i≥m

ai − h

)
	 if i = m


Then (3.4) is easily strengthened to

�ρt+s	 ηt+s� = [
k̃−I

�t�
s
�ρt	 ηt�	 �ρ�t�

s 	 η
�t�
s �]	

for every t ≥ 0, s > 0, a.s. (the concatenation in the right-hand side acts
separately on the components ρ and η). The strong Markov property of the
pair �ρ	η� follows in a straightforward way, as well as the caldlag property of
the paths.

The calculation of the invariant measure is similar to the proof of Proposi-
tion 3.3, observing now that the excursion measure of �ρ	η� away from 0 is
the law of �ρ	η� under N. We use (3.1) again at the end of the proof.

The last assertion of Proposition 3.4 follows from the next proposition by
standard arguments.

Proposition 3.5. The processes �ρ�T0−t�−	 η�T0−t�−�0≤t≤T0
and �ηt	 ρt�0≤t≤T0

have the same distribution under N.

Proof. We first observe that we may restrict our attention to the case
when π is finite. In fact, if ρε	 ηε denote the analogues of ρ	η for Xε,
we can argue as follows. Proposition 3.5 is equivalent to the assertion that
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Fig. 1.

�ρ�τx−s�−	 η�τx−s�−�0≤s≤τx
and �ηs	 ρs�0≤s≤τx

have the same distribution under P0.
If we know Proposition 3.5 when π is finite, we get that �ρε

�τεx−s�−	 η
ε
�τεx−s�−�0≤s≤τεx

and �ηε
s	 ρ

ε
s�0≤s≤τεx

have the same distribution. We can then let ε go to 0, ob-
serving that τεx → τx, and ρε

t → ρt, η
ε
t → ηt for every t ≥ 0, P0-a.s.

We thus assume that π�R+� < ∞. We then use a marked tree representa-
tion of the excursions of X−I, which is most easily described via the queueing
system representation. Each customer or jump of X (including the initial one
at time 0) is represented by one vertex of the tree. The initial customer cor-
responds to the root of the tree. Then the children of any customer are those
customers who interrupt his service. In addition, each vertex is marked by
two positive quantities. The first one is the service required by the given cus-
tomer (the size of the jump). The second mark (defined except for the root)
is the service already accomplished for his “father” before the given customer
interrupts it. We think of the first mark as a vertical line segment (whose
length is the size of the jump), which is divided into subintervals correspond-
ing to periods of uninterrupted service. Each subdivision point therefore corre-
sponds to exactly one child of the given customer (the second mark of this child
is the distance between the subdivision point and the top of the segment) and
the number of children is the number of subdivision points. See Figure 1 for
the tree associated with a given path of �Xt	 0 ≤ t ≤ T0� under N.

To specify the distribution of the tree under the excursion measure N, we
observe that the lengths of the different segments are independent and iden-
tically distributed according to π/π�R+�, and that for a given segment the
subdivision points are distributed according to a Poisson point measure with
intensity π�R+�α−1 dx (independently of the size of the segment and inde-
pendently for the different segments). This description follows from a minor
modification of the proof of Proposition 3.2 (conversely, this result also follows
from the tree representation).

We can recover the processes ρ and η by considering the motion of a particle
that runs along the segments at constant speed α, starting from the top of
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the root segment (cf. the right part of Figure 1). When the particle reaches
a subdivision point of one segment, it jumps to the top of the corresponding
“child” segment. On the other hand, when the particle has finished visiting a
segment, it goes back to the corresponding subdivision point of the “father”
segment. The particle stops when it reaches the bottom of the root segment.
The process ρt is then obtained by considering for each ancestor (segment)
of the segment visited at time t the length of the part that has not yet been
visited. For ηt, one considers instead the length of the part that has already
been visited at time t.

Suppose that we reverse time in the motion of the particle, which will
now start from the bottom of the root segment. From the previous interpre-
tation of ρt, ηt, the effect of this operation is to replace the pair �ηt	 ρt�0≤t≤T0

by �ρ�T0−t�−	 η�T0−t�−�0≤t≤T0
. However, the probabilistic structure of the tree

shows that this time-reversal operation does not affect the law of the process
�ηt	 ρt�0≤t≤T0

. The desired result follows. ✷

3.6. Combining branching and spatial motion. We will now explain a
snakelike construction of certain branching Markov chains, which can be seen
as a toy model for the construction of superprocesses in [35]. This should also
be compared to the Brownian snake of [32] and [33]. We consider an auxiliary
measurable space �E	� � on which a transition kernel Q is given. Denote by
Qy the law of the Q-Markov chain started at y ∈ E. The canonical process on
EN is denoted by �Yn	 n ∈ N�.

Fix a point y0 ∈ E. We can then define an extension �ρt	 qt�t≥0 of the Markov
process �ρt�t≥0 as follows. For each t ≥ 0, qt is a (finite or infinite) sequence
�q0

t 	 q
1
t 	 
 
 
� in E, and q0

t = y0. If N�qt� denotes the cardinality of the sequence
qt, we have N�qt� = Nt+1 for every t ≥ 0 a.s. Furthermore, the process �qt�t≥0
is (time-inhomogeneous) Markov under the conditional distribution knowing
�ρt�t≥0, and its transition kernels are described as follows. Let 0 ≤ s < t and
let ms	 t = inf �s	 t
 Nr. Then the conditional distribution of qt, given qs and the
process �ρr�r≥0, is as follows:

1. the distribution of �Y0	Y1	Y2	 
 
 
 	YNt
� under Qy0

if ms	 t = 0;
2. the distribution of �q0

s 	 q
1
s 	 
 
 
 	 q

ms	 t
s 	Y1	 
 
 
 	YNt−ms	 t

� under Qq
ms	 t
s

if
ms	 t >0.

It is easy to construct a good version of the process �qt�t≥0 in such a way that
qi
t = qi

s for every i ≤ ms	 t and every s < t, a.s. This version is unique up to
indistinguishability.

For every integer k ≥ 0, let Z̃x
k be the random element of Mf�E� defined by

Z̃x
k =

∫ τx

0
1�Nt=k� δqk

t
dt


Proposition 3.6. The process �Z̃x
k	 k ∈ N� is a Markov chain in Mf�E�

started at α−1xδy0
and whose transition kernel P̃�ζ	 dξ� is characterized by its
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Laplace functional∫
exp�− ξ	4!� P̃�ζ	 dξ�

= exp
(
−

∫
ζ�dy�

∫
Q�y	dz�

∫
π�dr� �1 − exp�−r4�z�/α��

)
	

for any nonnegative measurable function 4 on E.

Proposition 3.6 can be proved in a way similar to Proposition 3.2 when
π�R+� < ∞. When π�R+� = ∞ it is preferable not to use the approximations
Xε as in the proof of Proposition 3.2, but to rely instead on the excursion
theory for X− I. We leave details to the reader.

4. The infinite variation case.

4.1. Assumptions and preliminaries. Let X be a general Lévy process on
the real line with no negative jumps and no Gaussian part. According to [6],
Chapter VII, we have then E�exp−λXt
 < ∞ for every λ ≥ 0, t ≥ 0, and this
Laplace transform can be written in the form

E�exp−λXt
 = exp tψ�λ�	
with

ψ�λ� = aλ+
∫ ∞

0
�e−λr − 1 + λr1�r≤1��π�dr�	

where a ∈ R and π, the Lévy measure of X, is such that∫ ∞

0
�1 ∧ r2�π�dr� < ∞


As in the previous section, we assume that X does not drift to +∞. This
implies that X has first moments and thus the Lévy measure satisfies the
stronger condition ∫ ∞

0
�r ∧ r2�π�dr� < ∞


We can then rewrite ψ in the form

ψ�λ� = αλ+
∫ ∞

0
�e−λr − 1 + λr�π�dr�	

and by Corollary VII.2 of [6], X does not drift to +∞ if and only if α ≥ 0,
which we also assume from now on. Note that the function ψ is Lipschitz on
compact subsets of �0	∞�.

In contrast with Section 3, we now consider the case when the paths of X
have infinite variation, which is equivalent to∫ 1

0
rπ�dr� = +∞
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The theory developed in Section 3 can be extended to this different (and more
difficult) context.

We start by recalling some important facts about the Lévy process X. In
contrast to the finite variation case of Section 3, 0 is now regular for �0	∞�
([6], Corollary VII.5). As a consequence, 0 is regular for itself, with respect to
the strong Markov process S−X. We can thus consider the local time at 0 of
S−X, denoted by �Lt	 t ≥ 0�, which is uniquely defined up to a multiplicative
constant. In the case α > 0, where X drifts to −∞, L∞ is finite a.s. and has
an exponential distribution.

Denote by �si	 ti�	 i ∈ I, the excursion intervals of S−X away from 0. The
point measure ∑

i∈I	 ti<∞
δ�Lti

	 �Sti
	 �Xti

��dldxdy�

is distributed as 1�l<ζ�� �dldxdy�, where � is a Poisson measure on R+×R2
+

with intensity dln�dxdy�, and ζ is an independent exponential time (ζ = ∞
in the recurrent case α = 0). We may and will choose the normalizing factor
in the definition of L so that

n�dxdy� = 1�0	 y
�x�dxπ�dy�

This result is indeed the analogue of (3.1) and can be proved by similar argu-
ments. We refer the reader to [5], Corollary 1 (see also [41]).

Set βε = n�R+ × �ε	∞�� = ∫
�ε	∞� yπ�dy�. Note that βε ↑ ∞ as ε ↓ 0. By

standard arguments for Poisson measures, we have, a.s. for every u ≥ 0,

L∞ ∧ u = lim
ε↓0

1
βε

Card �i ∈ I	 Lti
≤ u	 �Xti

≥ ε�

= lim
ε↓0

1
βε

Card �s ∈ �0	∞�	 Ls ≤ u	 Xs > Ss−	 �Xs ≥ ε�


It follows that, a.s. for every t ≥ 0,

�4
1� Lt = lim
ε↓0

1
βε

Card �s ∈ �0	 t
	 Xs > Ss−	 �Xs ≥ ε�


4.2. The branching structure of discrete jumps. Let � = �s ≥ 0	 �Xs > 0�.
As in Section 3, we can interpret each s ∈ � as the arrival time of a customer
claiming a service �Xs. Note, however, that the total quantity of services
claimed during any nontrivial finite interval will be infinite a.s., so that in
some sense the output rate of the server must also be infinite.

For every s ∈ � , set

R�s� = inf�t > s	 Xt ≤ Xs−�	
which in the previous interpretation corresponds to the time when the cus-
tomer who arrived at s exits the system.

Let ε > 0 and define � ε = �s ∈ � 	 �Xs ≥ ε�. For every t ≥ 0, set

Nε�t� = Card �s ∈ � ε	 s ≤ t < R�s��
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and

Zε
n�t� =

∫ t

0
1�Nε�s�=n� ds	 n ∈ N


For x > 0, set τx = inf�t ≥ 0	 Xt = −x�. The next result is analogous to
Proposition 3.2.

Proposition 4.1. Let

ψε�λ� = αλ+
∫
�0	 ε�

�e−λr − 1 + λr�π�dr� + λ
∫
�ε	∞�

rπ�dr�	

and let Kε be the inverse function of ψε [Kε�ψε�λ�� = λ for λ ∈ R+]. The
process �Zε

n�τx�	 n ≥ 0� is a Markov chain in R+ whose initial distribution νε
and transition kernel Pε are characterized as follows:∫

νε�du� exp�−λu� = exp�−xKε�λ��	∫
Pε�u	dv� exp�−λv� = exp

(
−u

∫
�ε	∞�

�1 − exp�−rKε�λ���π�dr�
)



Proof. We first observe that, from the strong Markov property at τx, it
is immediate to check that �Zε

n�τx+y�	 n ≥ 0� has the same distribution as
�Zε

n�τx� + Z̃ε
n�τ̃y�	 n ≥ 0�, where �Z̃ε

n�τ̃y�	 n ≥ 0� is an independent copy of
�Zε

n�τy�	 n ≥ 0�.
Then consider the sequence of stopping times defined inductively by

T1 = inf�t ≥ 0	 t ∈ � ε�	
Tn+1 = inf�t ≥ R�Tn�	 t ∈ � ε�


Write R�T0� = 0 by convention. The processes

Yi
t = XR�Ti−1�+t −XR�Ti−1�	 0 ≤ t < Ti −R�Ti−1�	

defined for every i ≥ 1, are independent and identically distributed. Further-
more, the classical construction of Lévy processes shows that their common
distribution is the law of the Lévy process with Laplace exponent ψε (denoted
by Y), killed at an independent exponential time with parameter π��ε	∞��.
Informally, Y is obtained from X by removing the jumps of size at least ε.
Next observe that Nε�t� = 0 if and only if t ∈ �R�Ti−1�	 Ti� for some i ≥ 1. If

γε�t� = inf�s ≥ 0	 Zε
0�s� > t�	

it follows that the process X
�ε�
t �= Xγε�t� has the same distribution as Y. Note

that

Zε
0�τx� = inf�t ≥ 0	 X

�ε�
t = −x� =� τ�ε�

x 	

and by a classical result for spectrally positive Lévy processes ([6], Theorem
VII.1) we have

�4
2� E�exp−λZε
0�τx�� = exp−xKε�λ�	

which gives the desired formula for the Laplace functional of νε.
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By the strong Markov property again, we also know that the processes

Xi
t = XTi+t −XTi

	 0 ≤ t < R�Ti� −Ti	

defined for i ≥ 1, are independent (and independent of X�ε�) and distributed
as the process �Xt	 0 ≤ t < τξ�, where ξ is an independent variable with law
π��ε	∞��−11�x≥ε�π�dx�. Also notice that, for t ∈ �Ti	R�Ti��, we have

�4
3� Nε�t� = 1 +Ni
ε�t−Ti�	

with an obvious notation.
Set

Jε�τx� = Card �i ≥ 1	 Ti < τx�


By previous considerations, Jε�τx� is the number of jumps over �0	 τ�ε�
x � of

a Poisson process with parameter π��ε	∞��, independent of X�ε�. Hence,
conditionally on X�ε�, Jε�τx� has a Poisson distribution with parameter
π��ε	∞��τ�ε�

x . Also notice that the pair �τ�ε�
x 	Jε�τx�� is independent of the

processes Xi, i ≥ 1.
It follows from the previous observations, and in particular from (4.3), that,

for every p ≥ 1,

Zε
p�τx� =

Jε�τx�∑
i=1

Z
ε	 i
p−1	

where the processes Zε	i are independent [and independent of the pair
�τ�ε�

x 	Jε�τx��] and distributed as Zε�τξ�. Recall that Zε
0�τx� = τ

�ε�
x . From the

additivity property mentioned at the beginning of the proof, we get

�4
4� (
Zε

0�τx�	 �Zε
p�τx�	 p ≥ 1�) �d�= �Zε

0�τx�	 �Z̃ε
p−1�τ̃U�	 p ≥ 1��	

where the notation Z̃	 τ̃ refers to an independent Lévy process X̃ distributed
as X and the variable U is independent of X̃ and conditionally on X is dis-
tributed as the sum of Jε�τx� independent copies of ξ. Hence, using (4.2),

E�exp−λZε
1�τx� � Zε

0�τx�
 = E�exp−λZ̃ε
0�τ̃U� � Zε

0�τx�

= E�exp−UKε�λ� � Zε

0�τx�


= exp
(
−Zε

0�τx�
∫
�ε	∞�

�1 − exp�−rKε�λ���π�dr�
)



The proof of Proposition 4.1 is then easily completed by an induction argument
using the identity (4.4). ✷
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4.3. The height process. We will now introduce the analogue of the process
Nt of Section 3. We apply the considerations of the end of Section 4.1 to the
time-reversed process X̂�t� and its supremum Ŝ�t�. We denote by Ht the local
time at 0, at time t, of the process Ŝ�t� −X̂�t�. The process �Ht	 t ≥ 0� is called
the height process associated with X. Note that, by (4.1) for Lt, we have for
every t ≥ 0, a.s.,

�4
5�
Ht = lim

ε↓0

1
βε

Card
{
s ∈ �0	 t
	 Xs− < inf

s≤r≤t
Xr	 �Xs ≥ ε

}
= lim

ε↓0

1
βε

Nε�t�


This approximation allows us to take a measurable version of the process
�Ht	 t ≥ 0� in order to define the random measure �x (independent of the
chosen version) that appears in the following theorem.

Theorem 4.2. Let x > 0 and let �x be the random measure on R+ defined
by

 �x	 ϕ! =
∫ τx

0
ϕ�Hs�ds


The measure �x has a.s. a cadlag density �Zx�u�	 u ≥ 0� with respect to
Lebesgue measure on R+, and the process �Zx�u�	 u ≥ 0� is a continuous-state
branching process with branching mechanism ψ started at x.

Proof. Let �Zu	 u ≥ 0� be a CSBP(ψ) started at x. We can easily extend
(1.2) and (1.3) to get a formula for the finite-dimensional marginals of the
process Z: for 0 ≤ t1 < · · · < tn and λ1	 
 
 
 	 λn ≥ 0,

E

(
exp−

n∑
j=1

λj Ztj

)
= exp−xv�0�	

where �v�t�	 t ≥ 0� is the unique nonnegative solution of the integral equation

v�t� +
∫ ∞

t
ψ�v�s��ds =

n∑
j=1

λj1�0	 tj
�t�


(Note that the uniqueness of the solution is a straightforward consequence of
Gronwall’s lemma.) When n = 1, this is merely a rewriting of (1.2)–(1.3). In
the general case, we argue by induction on n, using the Markov property of
Z at time t1. Then let ϕ be a nonnegative continuous function with compact
support on R+. By approximating ϕ with suitable step functions, we deduce
from the above that

E

(
exp−

∫ ∞

0
Zsϕ�s�ds

)
= exp−xw�0�	
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where �w�t�	 t ≥ 0� is the unique nonnegative solution of the integral equation

�4
6� w�t� +
∫ ∞

t
ψ�w�s��ds =

∫ ∞

t
ϕ�s�ds


We will verify that

E�exp− �x	 ϕ!� = exp−xw�0�	
where w solves (4.6). It follows that the random measure �x has the same dis-
tribution as the random measure ϕ → ∫∞

0 Zsϕ�s�ds. By standard arguments,
this implies that �x has a cadlag density which is a CSBP(ψ) started at x.

In order to compute the Laplace functional of �x, we observe that, from the
approximation (4.5) for Ht,∫ τx

0
ϕ�Hs�ds = lim

ε↓0

∫ τx

0
ϕ�β−1

ε Nε�s��ds = lim
ε↓0

∞∑
k=0

ϕ�kβ−1
ε �Zε

k�τx�


Therefore,

E

[
exp−

∫ τx

0
ϕ�Hs�ds

]
= lim

ε↓0
E

[
exp−

∞∑
k=0

ϕ�kβ−1
ε �Zε

k�τx�
]



Proposition 4.1 allows us to compute the right-hand side of the previous for-
mula. Set

wε
0 = −1

x
log E

[
exp−

∞∑
k=0

ϕ�kβ−1
ε �Zε

k�τx�
]

and, for λ ≥ 0,

Uε�λ� =
∫
�ε	∞�

�1 − exp�−rKε�λ���π�dr�


By Proposition 4.1 and finitely many successive applications of the Markov
property (recall that ϕ has compact support), we get

wε
0 = Kε

(
ϕ�0� +Uε

(
ϕ

(
1
βε

)
+Uε

(
ϕ

(
2
βε

)
+ · · ·

)))



Then, for every integer k ≥ 0, set

w̃ε
k = 1

βε

(
ϕ

(
k

βε

)
+Uε

(
ϕ

(
k+ 1
βε

)
+Uε

(
ϕ

(
k+ 2
βε

)
+ · · ·

)))
and note that w̃ε

k = 0 for all k sufficiently large. It is easy to verify that, for
every integer l ≥ 0,

w̃ε
l = 1

βε

∞∑
k=l

(
ϕ

(
k

βε

)
+(

Uε�βεw̃
ε
k+1�−βεw̃

ε
k+1

)) = 1
βε

∞∑
k=l

(
ϕ

(
k

βε

)
+θε�w̃ε

k+1�
)
	

where, for λ ≥ 0,

θε�λ� =
∫
�ε	∞�

�1 − exp�−rKε�βελ�� − rλ�π�dr�
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For t ∈ R+, set w̃ε�t� = w̃ε
�βεt
, where �s
 denotes the integral part of s. If t is

of the form t = β−1
ε l, we have

�4
7� w̃ε�t� =
∫ ∞

t
ϕ

( �sβε

βε

)
ds+

∫ ∞

t+1/βε

θε�w̃ε�s��ds


Now notice that from our definitions

ψε�Kε�βελ�� − θε�λ� = ψ�Kε�βελ�� + βελ	

and ψε�Kε�βελ�� = βελ by the definition of the function Kε. Therefore,

θε�λ� = −ψ�Kε�βελ��	
and in particular θε takes only nonpositive values. Then observe that

lim
ε↓0

ψε�λ�
βελ

= 1	

uniformly on compact subsets of �0	∞�. It easily follows that Kε�βελ� con-
verges to λ, hence θε�λ� converges to −ψ�λ� uniformly on compact sets. Note
that the property θε ≤ 0 combined with (4.7) gives a uniform upper bound
on the functions w̃ε. From (4.7), Gronwall’s lemma and the Lipschitz property
of ψ, it is then a simple matter to verify that w̃ε converges uniformly to the
unique nonnegative solution w of (4.6). In particular, w̃ε

0 converges to w�0� and
wε

0 = Kε�βεw̃
ε
0� also converges to w�0�. This implies that E�exp− �x	 ϕ!
 =

E�exp− ∫ τx
0 ϕ�Hs�ds
 = exp−xw�0� as desired. ✷

4.4. The Markov process ρ. We will now introduce the analogue of the pro-
cess ρt of Section 3. To this end, it will be convenient to derive some additional
information about the process �Ht	 t ≥ 0�. For ε > 0 and 0 ≤ s ≤ t, we set

Ist = inf
s≤r≤t

Xr	

Nε�s	 t� = Card �u ∈ �0	 s
	 Xu− < Iut 	 �Xu ≥ ε�

In particular, Nε�t	 t� = Nε�t�.

Proposition 4.3. Almost surely for every t > 0 and every s ∈ �0	 t�, the
limit

Hs
t = lim

ε→0
β−1
ε Nε�s	 t�

exists and defines a continuous monotone increasing function of s ∈ �0	 t�. The
formulas

H′
t = lim

s↑t	 s<t
↑ Hs

t �t > 0�	 H′
0 = 0	

give a lower semicontinuous version of the process �Ht	 t ≥ 0� with values in
�0	∞
.
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Proof. (a) We first fix t > 0. Let L�t� = �L�t�
s 	 0 ≤ s ≤ t� be the local time

at 0 of Ŝ�t� − X̂�t�, so that Ht = L
�t�
t . Then, from the approximation (4.1) for

local time, we have, a.s. for every s ∈ �0	 t
,
lim
ε↓0

β−1
ε Nε�s	 t� = lim

ε↓0
β−1
ε Card

{
u ∈ �t− s	 t�	 X̂

�t�
u > Ŝ

�t�
u−	 �X̂

�t�
u > ε

}
= L

�t�
t −L

�t�
t−s


This shows that the first part of the proposition holds for a fixed t > 0, even
with s ∈ �0	 t
.

(b) By step (a), we may find a negligible set � such that the first part
of the proposition holds for every rational t > 0 outside � . We then argue
outside � . Let t > 0. First assume that Ist < Xt for every s < t. Then, for any
δ ∈ �0	 t�, we may find a rational q > t such that Ist = Isq for every s ∈ �0	 t−δ�.
Clearly, we have also Nε�s	 t� = Nε�s	 q� for every s ∈ �0	 t − δ�, and we see
that the first part of the proposition holds for t because it does for q and δ is
arbitrary.

If Irt = Xt for some r < t, we argue differently. Set γt = sup�s < t	 Xs <
Xt� (sup � = 0) and pick any rational q ∈ �γt	 t�. Clearly, Nε�s	 t� = Nε�s ∧
γt	 t� = Nε�s ∧ γt	 q� for every s ∈ �0	 t�, and the desired result follows.

(c) Step (a) shows that, for every fixed t > 0, H′
t = lim ↑ Hs

t = Ht
t = Ht a.s.

Hence the process �H′
t	 t ≥ 0� is a version of H.

(d) Let t > 0. For s′ < s < t, it is obvious that Hs′
t ≤ Hs′

s ≤ H′
s. Hence,

lim inf
s↑t

H′
s ≥ Hs′

t

and, by letting s′ ↑ t,

lim inf
s↑t

H′
s ≥ H′

t


(e) Let t ≥ 0. As in step (b) consider γt = sup�s < t	 Xs < Xt�. From
our definitions it is immediate that H′

t = H′
γt

. On the other hand, if s < γt,
Ist < Xt and thus Ist = Isr for every r > t sufficiently close to t. Hence, for any
δ > 0, for r > t sufficiently close to t, we have Nε�s	 r� = Nε�s	 t� = Nε�s	 γt�
for every s ∈ �0	 γt − δ
. It follows that

lim inf
r↓t

H′
r ≥ Hγt−δ

γt

and, since δ was arbitrary,

lim inf
r↓t

H′
r ≥ H′

γt
= H′

t
 ✷

From now on, we deal only with the lower semicontinuous version of H
constructed in Proposition 4.3 but write H instead of H′. For every t ≥ 0, we
let ρt be the random measure on R+ defined by

 ρt	 ϕ! =
∫
�0	 t


dsI
s
t ϕ�Hs

t�	
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where the notation dsI
s
t refers to the finite measure on �0	 t
 associated with

the cadlag increasing function s → Ist , and by convention Ht
t = Ht. Obviously

the total mass of ρt is  ρt	1! = Xt −I0
t . Furthermore, a.s. for every t > 0 such

that ρt �= 0,

suppρt = �0	Ht
	
where suppρt denotes the topological support of ρt. The inclusion suppρt ⊂
�0	Ht
 is trivial. The reverse inclusion is easy for a fixed time t > 0, because
the local time at 0 of S − X only increases when S increases. The fact that
the result holds simultaneously for all t > 0 follows from arguments similar
to the proof of the previous proposition. We let Mf�R+� be the set of all finite
measures on R+, equipped with the weak topology.

Proposition 4.4. The process �ρt	 t ≥ 0� is a cadlag strong Markov process
in Mf�R+�.

Proof. We first explain how to define the process ρ started at an arbitrary
µ ∈ Mf�R+�. To this end, we introduce some notation analogous to Section 3.
Let µ ∈ Mf�R+� and a ≥ 0. If a ≤  µ	1!, we let kaµ be the unique finite
measure on R+ such that, for every r ≥ 0,

kaµ��0	 r
� = µ��0	 r
� ∧ � µ	1! − a�

In particular,  kaµ	1! =  µ	1! − a. If a ≥  µ	1!, we take kaµ = 0.

If µ ∈ Mf�R+� has compact support and ν ∈ Mf�R+�, we define the con-
catenation �µ	 ν
 ∈ Mf�R+� by the formula∫

�µ	 ν
�dr�ϕ�r� =
∫
µ�dr�ϕ�r� +

∫
ν�dr�ϕ�m+ r�	

where m = sup�suppµ�.
With this notation at hand, the law of the process ρ started at µ ∈ Mf�R+�

is defined as the distribution of the process ρ
µ
t = �k−It

µ	 ρt
 (this makes sense
because, a.s. for every t > 0, k−It

µ has compact support).
We then verify that the process ρ has the stated properties. For simplicity

we deal only with the case when the initial value is 0, that is, with the process
�ρt	 t ≥ 0� defined as previously (the results are then immediately extended
using the formula for ρµ

t ). Let t ≥ 0 and let ϕ be a bounded continuous function
on R+. Then

 ρt	 ϕ! =
∫
�0	 t


dsI
s
t ϕ�Hs

t� =
∫
�0	 t


dsI
s
t 1�Xs−<Xt� ϕ�Hs

t�


On the one hand, the measures dsI
s
t′ converge in the variation norm to dsI

s
t as

t′ ↓ t. On the other hand, from our definition of Hs
t , it is immediately checked

that, for any s ≤ t such that Xs− < Xt, H
s
t′ = Hs

t for all t′ > t sufficiently
close to t. It follows that

lim
t′↓t

 ρt′	 ϕ! =  ρt	 ϕ!
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As for left limits, note that the measures dsI
s
t′ converge to 1�0	 t��s�dsI

s
t as

t′ ↑ t, t′ < t, again in the variation norm. By an argument exactly similar to
the above, it follows that

lim
t′↑t	t′<t

 ρt′	 ϕ! =
∫
�0	 t�

dsI
s
t ϕ�Hs

t�


We see in particular that ρ and X have the same discontinuity times and that

ρt = ρt− + �Xt δHt



We now turn to the strong Markov property. Let T be a stopping time of the
filtration ��t�t≥0. We will express ρT+t in terms of ρT and the shifted process

X
�T�
r = XT+r − XT in a way similar to Section 3. We let I

�T�
t = inf �0	 t
 X

�T�
t

be the minimum process of X�T�. We then claim that, for any (finite) stopping
time T, we have, a.s. for every t > 0,

�4
8� ρT+t =
[
k−I

�T�
t
ρT	 ρ

�T�
t

]
	

where ρ
�T�
t obviously denotes the analogue of ρt when X is replaced by X�T�.

When we have proved (4.8), the strong Markov property of the process ρ fol-
lows by standard arguments, using the previous representation of the process
started at µ.

For the proof of (4.8), let t > 0 and consider the case when −I
�T�
t <  ρT	1! =

XT − IT. The other case is similar and easier. For simplicity, write η = −I
�T�
t .

Set

r = sup�u ≤ T	 Xu− ≤ XT − η�

From our definitions, it is easy to verify that

IsT+t =
{
IsT	 if s < r	

XT − η	 if r ≤ s ≤ T	

and

Hs
T+t =

{
Hs

T	 if s < r	

Hr
T	 if r ≤ s ≤ T


It follows that

�4
9�
∫
�0	T


dsI
s
T+tϕ�Hs

T+t� =
∫
�0	 r�

dsI
s
Tϕ�Hs

T� + �XT − η−Xr−�ϕ�Hr
T�

=  kηρT	ϕ!


On the other hand, denote by Ĩst and H̃s
t the analogues of Ist and Hs

t for the
shifted process X�T�, and set

v = sup�u ≤ t	 Ĩut = −η�
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(v is the time at which X�T� reaches its minimum on �0	 t
). It is again easy
to check that

IT+s
T+t =

{
XT − η	 if 0 ≤ s < v	

XT + ĨsT	 if v ≤ s ≤ t	

and

HT+s
T+t =

{
Hr

T	 if 0 ≤ s < v	

Hr
T + H̃s

t	 if v ≤ s ≤ t


It follows that

�4
10�

∫
�T	T+t


dsI
s
T+tϕ�Hs

T+t� =
∫
�v	 t


dsĨ
s
tϕ�Hr

T + H̃s
t�

=
∫
ρ
�T�
t �dx�ϕ�Hr

T + x�


Note that Hr
T = sup�suppkαρT� by the property suppρT = �0	HT
. Formula

(4.8) then follows from (4.9) and (4.10). ✷

Remark. The property (4.8) [or (3.4)] is reminiscent of the evolution mech-
anism of the Brownian snake in [32] and [33]: the value of the process at time
T+t is obtained by “erasing” the value at time T on a certain length and then
“extending” it independently.

We will not push further the study of the process ρ, although all results
obtained in Section 3 can be extended to the present setting. In particular, one
can give a description of the invariant measure of ρ analogous to Proposition
3.3 and state duality properties similar to Proposition 3.4. These results should
be derived in a more general setting in a forthcoming paper.

4.5. Continuity of the height process. We will now get a necessary and
sufficient condition for the continuity of the process �Ht	 t ≥ 0�. We need two
preliminary lemmas, which are of independent interest. Recall the notation
X�T� from the previous proof.

Lemma 4.5 (Subadditivity property). Let T be a finite stopping time. Then
a.s. for every t ≥ 0,

HT+t ≤ HT +H
�T�
t 	

where H�T� denotes the height process associated with X�T�.

Proof. This is a straightforward consequence of (4.8). ✷

Lemma 4.6. Almost surely for every t < t′, the process H takes all values
between Ht and Ht′ on the time interval �t	 t′
.
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Proof. Suppose first that Ht′ > Ht and set

u = sup�r ∈ �t	 t′
	 Irt′ = Itt′ �

Then Xu− = Itt′ , and it is clear from our definitions that Hu ≤ Ht. For every
s ∈ �u	 t′�, set

u�s� = sup
{
r ∈ �s	 t′
	 Irt′ = Ist′

}
	

and note that Xu�s�− = Ist′ . From the definitions again it is easy to check that
Hs

t′ = Hu�s�. However, by Proposition 4.3, �Hs
t′	 u ≤ s < t′� contains the

interval �Hu
t′	Ht′ � = �Hu	Ht′ �. The desired result follows.

In the case Ht > Ht′ , we argue differently. By the lower semicontinuity of
H, it is enough to consider one fixed value of t > 0. Then, for every a ∈ �Itt′	Xt
,
set

u�a� = inf�r ≥ t	 Xr− ≤ a� ≤ t′


From (4.8), we have ρu�a� = kXt−aρt. Hence, Hu�a� = sup�suppρu�a�� varies
continuously with a. However, Hu�Xt� = Ht and it is trivial that Hu�It

t′ � ≤ Ht′ .
This completes the proof. ✷

Theorem 4.7. The process �Ht	 t ≥ 0� is continuous if and only if∫ ∞ dλ

ψ�λ� < ∞


If this condition does not hold, then the set of values taken by H on any non-
trivial open interval contains a half-line �a	∞�.

Remark. Theorem 4.7 is stated for the lower semicontinuous version of
H given by Proposition 4.3. In the case

∫∞
ψ�λ�−1dλ = ∞, it is, however,

immediate from Theorem 4.7 that any version of H must be unbounded on
any nontrivial interval.

Proof of Theorem 4.7. We first recall some well-known facts. Let �Zu	
u ≥ 0� be a CSBP(ψ) started at x > 0, and let ζ = inf�u ≥ 0	 Zu = 0�. By the
strong Markov property, Zu = 0 for every u ≥ ζ. Note that the solution ut�λ�
of (1.3) satisfies, for λ > 0, ∫ λ

ut�λ�
du

ψ�u� = t


By letting λ → ∞, it easily follows that P�ζ < ∞� = 1 or 0 according as∫∞
ψ�λ�−1 dλ is finite or infinite. Moreover, in the case

∫∞
ψ�λ�−1 dλ < ∞, we

have, for every δ > 0,

�4
11� P�ζ > δ� = P�Zδ > 0� = 1 − exp−xuδ�∞�	
where 0 < uδ�∞� < ∞, uδ�∞� ↓ 0 as δ ↑ ∞.
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We apply these results in combination with Theorem 4.2. First assume that∫ ∞
ψ�λ�−1 dλ = ∞


By Theorem 4.2 and the previous remarks, we have, for every x > 0,

sup
0≤s≤τx

Hs = ∞ a.s.

Since τx ↓ 0 as x ↓ 0 we also have

sup
0≤s≤a

Hs = ∞

for every a > 0 a.s. Then, if �a	 b� is a nontrivial open subinterval of �0	∞�,
we can apply the last observation to the shifted process X�a�. Since it is trivial
that Ha+t ≥ H

�a�
t for every t ≥ 0 a.s., we get

sup
a≤s≤b

Hs ≥ sup
0≤s≤b−a

H
�a�
s = ∞ a.s.

The last assertion of Theorem 4.7 is then a consequence of Lemma 4.6.
Suppose now that

∫∞
ψ�λ�−1 dλ < ∞. From Theorem 4.2, the facts recalled

at the beginning of the proof and the lower semicontinuity of H, it follows
that, for every x > 0,

sup
0≤s≤τx

Hs < ∞ a.s.

and more precisely, by (4.11),

P
[

sup
0≤s≤τx

Hs > δ
]
= 1 − exp−xuδ�∞�


This last identity shows that

lim
x↓0

P
[

sup
0≤s≤τx

Hs > δ
]
= 0

and thus

�4
12� lim
t↓0

Ht = 0 a.s.

The continuity of H will follow from Lemma 4.6 if we can check that the
number of upcrossings of H along any fixed interval �a	 a+h
, h > 0, is finite
over a finite time interval. To this end, set σ0 = 0 and define by induction, for
every n ≥ 1,

τn = inf�t ≥ σn−1	 Ht ≥ a+ h�	
σn = inf�t ≥ τn	 Ht ≤ a�
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Note that Hσn
≤ a by the lower semicontinuity of H. From Lemma 4.5, we

have a.s. for every t ≥ 0,

Hσn+t ≤ Hσn
+H

�σn�
t 	

and it follows that τn+1 − σn ≥ ηn, where ηn = inf�t ≥ 0	 H
�σn�
t ≥ h�.

The strong Markov property implies that the variables ηn are independent
and identically distributed. Furthermore ηn > 0 a.s. by (4.12). It follows that∑∞

n=0 ηn = ∞ a.s., and thus τn ↑ ∞ as n ↑ ∞. This completes the proof. ✷

5. From discrete exploration processes to the height process.

5.1. Preliminaries. In this section, we consider a continuous-state branch-
ing process Z = �Zt	 t ≥ 0� with initial value Z0 = 1 and with branching
mechanism ψ of the same form as in Section 4:

ψ�λ� = αλ+
∫ ∞

0
�e−λr − 1 + λr�π�dr�	

where the measure π is such that
∫∞

0 �r ∧ r2�π�dr� < ∞,
∫ 1

0 rπ�dr� = ∞ and
α ≥ 0. We also denote by X the Lévy process with Laplace exponent ψ as in
Section 4.

Our goal is to show that, for a sequence of rescaled Galton–Watson branch-
ing processes that converge in distribution to Z, the corresponding exploration
processes, as defined in Section 2, also converge in distribution, after a suit-
able rescaling, to the height process H of Section 4 associated with the Lévy
process X.

We assume that we are given a sequence �µp� of probability measures on
N that are critical or subcritical [

∑
kµp�k� ≤ 1] and two sequences βp	 λp

of positive numbers such that βp → ∞, λp/βp → ∞, λp/β
2
p → 0 and the

following conditions hold:

(a) lim
p→∞

λp

βp

( ∞∑
k=0

kµp�k� − 1
)

= −α�

(b) for every continuous function ϕ from R+ into R such that �ϕ�r�� ≤ C�r∧
r2� for some constant C, we have

lim
p→∞λp

∞∑
k=0

ϕ

(
k

βp

)
µp�k� =

∫ ∞

0
ϕ�r�π�dr�


These conditions are stronger than what we really need (see [12] for similar
statements under weaker hypotheses). It is, however, easy to construct exam-
ples where they hold. We may in fact start from any sequence βp converging
to ∞, then define λp by the relation

�5
1�
∞∑
k=1

k

βp

π

([
k

βp

	
k+ 1
βp

))
= λp

βp

− α	
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and µp by

µp�k� = 1
λp

π

([
k

βp

	
k+ 1
βp

))
if k ≥ 1	

µp�0� = 1 −
∞∑
k=1

µp�k�


The properties λp/βp → ∞, λp/β
2
p → 0 are easy from (5.1) and our assump-

tions on π. Condition (a) is trivial from (5.1). Furthermore, (b) follows from
dominated convergence and the identity

λp

∞∑
k=0

ϕ

(
k

βp

)
µp�k� =

∞∑
k=0

ϕ

(
k

βp

)
π

([
k

βp

	
k+ 1
βp

))



For every p, let νp be the probability measure on �−1	0	1	2	 
 
 
� defined
by νp�k� = µp�k + 1�. Denote by Wp = �Wp

k	 k ≥ 0� a random walk started
at 0 with jump distribution νp, and by Yp = �Yp

k	 k ≥ 0� a Galton–Watson
branching process with offspring distribution µp started at Y

p
0 = �βp
 (recall

that �x
 denotes the integral part of x).

Proposition 5.1. We have

lim
p→∞

(
β−1
p W

p
�λpt
	 t ≥ 0

)
= �Xt	 t ≥ 0�

and

lim
p→∞

(
β−1
p Y

p
��λp/βpt�
	 t ≥ 0

)
= �Zt	 t ≥ 0�	

where both convergences hold in distribution in the Skorokhod space D�R+	R�.

Proof. The first convergence is a special case of well-known limit theo-
rems for random walks or processes with independent increments (see, e.g.,
[25]). Let f be a truncation function, that is, a continuous function with com-
pact support from R into R such that f�x� = x for every x belonging to a
neighborhood of 0. It easily follows from (a) and (b) that

lim
p→∞λp

∞∑
k=−1

f

(
k

βp

)
νp�k� = −α+

∫ ∞

0
�f�r� − r�π�dr�	

lim
p→∞λp

∞∑
k=−1

f

(
k

βp

)2

νp�k� =
∫ ∞

0
f�r�2 π�dr�

and, for every bounded continuous function ϕ that vanishes on a neighborhood
of 0,

lim
p→∞λp

∞∑
k=−1

ϕ

(
k

βp

)
νp�k� =

∫ ∞

0
ϕ�r�π�dr�
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The first part of the proposition then follows as a very special case of Theorem
VII.3.4 in [25].

The second assertion of the proposition can be obtained from the first one
and the results in Section 3 of [22] (in particular Theorems 3.1 and 3.4).
Grimwall [22] takes λp = pβp, but our statement can be deduced easily from
this special case by renumbering the sequences λp	βp. An alternative ap-
proach is to derive the second convergence from the first one by using the
(easy) discrete form of Lamperti’s embedding (see [24] and [17], page 390, for
this method). ✷

5.2. The basic limit theorem. We now turn to the convergence of explo-
ration processes. For every p ≥ 1, we denote by Hp = �Hp

n	 n ≥ 0� the
exploration process of a sequence of independent Galton–Watson trees with
offspring distribution µp. More precisely, this means in the notation of Sec-
tion 2 that

H
p
k = Hk−�σ�τ1�+···+σ�τn−1���τn�

if σ�τ1� + · · · + σ�τn−1� ≤ k < σ�τ1� + · · · + σ�τn�	
where �τn	 n≥1� is a sequence of independent trees distributed according
to Pµp

.
As in Section 4, we denote by H = �Ht	 t ≥ 0� the height process associated

with the Lévy process X.

Proposition 5.2. We have

lim
p→∞

(
βp

λp

H
p
�λpt
	 t ≥ 0

)
= �Ht	 t ≥ 0�	

in the sense of weak convergence of the finite-dimensional marginals.

Proof. From an immediate extension of the results of Section 2, we may
assume that

H
p
k = Card

{
j ∈ �0	1	 
 
 
 	 k− 1�	 W

p
j = inf

j≤l≤k
W

p
l

}
	

where the random walks Wp are as previously. Then, for each fixed k, Hp
k has

the same law as 4
p
k , where

4
p
k = Card

{
j ∈ �1	 
 
 
 	 k�	 W

p
j = sup

0≤l≤j

W
p
l

}



From Proposition 5.1 and Skorokhod’s representation theorem, we may as-
sume that

�5
2� lim
p→∞

(
β−1
p W

p
�λpt
	 t ≥ 0

)
= �Xt	 t ≥ 0�
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a.s. in the sense of Skorokhod’s topology on D�R+	R�. We will then prove that,
for every fixed t > 0,

�5
3� lim
p→∞

βp

λp

4
p
�λpt
 = Lt

in probability, where L stands for the local time at 0 of S−X as in Section 4.
To this end, we introduce the weak ladder times of the random walk

Wp� Tp
0 = 0 and

T
p
1 = inf�n > 0	 Wp

n ≥ 0�	
T

p
m+1 = inf

{
n > Tp

m	 Wp
n ≥ W

p

T
p
m

}
	

where inf � = ∞. We then consider the corresponding ladder heights W
p

T
p
m

.
By the strong Markov property, conditionally on the event �Tp

m < ∞�, the
random variable 1�Tp

m+1<∞��Wp

T
p
m+1

−W
p

T
p
m
� is independent of the past of Wp up

to time T
p
m, and its conditional distribution is the law of 1�Tp

1 <∞�W
p

T
p
1
. Using a

discrete form of the arguments involved in the proof of (3.1), it is elementary
to check that

�5
4� P
(
T

p
1 < ∞	 W

p

T
p
1
= j

) = νp��j	∞��	 j ≥ 0


This identity is a special case of the Wiener–Hopf factorization for random
walks (see [18], Exercise 3, Section XII.10, for a closely related result). In
particular,

�5
5� P�Tp
1 < ∞� =

∞∑
j=0

νp��j	∞�� =
∞∑
k=0

kµp�k�

converges to 1 as p → ∞ by assumption (a).
Let δ > 0 and set

γ�δ� =
∫ ∞

δ
π��x	∞��dx	

γp�δ� =
∑

j>βpδ
νp��j	∞��∑

j≥0 νp��j	∞�� = P
(
W

p

T
p
1
> βpδ � Tp

1 < ∞)
	

Lδ
t = Card�s ≤ t	 Xs > Ss− + δ�	

l
p	δ
k = Card�j < k	 W

p
j+1 > W

p

j + βpδ�	
where W

p

j = sup�Wp
i 	 0 ≤ i ≤ j�. Note that, with probability 1, Lδ

t = Lδ′
t for

all δ′ in a neighborhood of δ. From the convergence (5.2), it is then easy to
obtain

�5
6� lim
p→∞ l

p	 δ
�λpt
 = Lδ

t a.s.

On the other hand, by the same argument as for (4.1), using the form of
the measure n�dxdy� in Section 4.1, we know that

�5
7� lim
δ→0

γ�δ�−1Lδ
t = Lt a.s.
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Finally, we can also relate l
p	 δ
�λpt
 to 4

p
�λpt
. Trivially, 4p

T
p
k
= k on �Tp

k < ∞�
and, on the other hand, from previous remarks and formulas (5.4) and (5.5)
we know that

�5
8�
(
1�Tp

k<∞�l
p	 δ

T
p
k
	 k = 1	2	 
 
 


) �d�=
(

1�k≤ζ�
k∑

i=1

εi	 k = 1	2	 
 
 

)
	

where the variables εi are independent Bernoulli random variables with
P�εi = 1� = γp�δ�, and ζ is an integer-valued random variable, independent
of the sequence �εi� and such that P�ζ ≥ k� = P�Tp

1 < ∞�k for every k ≥ 0.
Notice that

γp�δ� =
∑∞

k=0�k− 1 − �βpδ
�+ µp�k�∑∞
k=0 kµp�k�




By assumption (a),
∑∞

k=0 kµp�k� converges to 1. Using assumption (b) with
ϕ�r� = �r− δ�+, we easily get

�5
9� lim
p→∞

λp

βp

γp�δ� =
∫ ∞

0
�r− δ�+ π�dr� = γ�δ�


For a fixed A > 0, set Ap = �Aλp/βp
 + 1. Then

sup
j≤T

p
Ap

∣∣∣∣βp

λp

(
4

p
j − γp�δ�−1l

p	 δ
j

)∣∣∣∣ = sup
0≤k≤Ap

1�Tp
k<∞�

∣∣∣∣βp

λp

(
k− γp�δ�−1l

p	 δ

T
p
k

)∣∣∣∣	
and, using (5.8),

E

(
sup

0≤k≤Ap

1�Tp
k<∞�

∣∣∣∣βp

λp

(
k− γp�δ�−1l

p	 δ

T
p
k

)∣∣∣∣2)

≤ E

(
sup

0≤k≤Ap

∣∣∣∣ βp

λpγp�δ�
( k∑

i=1

�εi −E�εi��
)∣∣∣∣2)

≤ 4
(
βp

λp

)2

γp�δ�−2 E

(( Ap∑
i=1

�εi −E�εi��
)2)

≤ 8�A+ 1� βp

λp

γp�δ�−1


From (5.9), we obtain

�5
10� lim sup
p→∞

E

(
sup

j≤T
p
Ap

∣∣∣∣βp

λp

(
4

p
j − γp�δ�−1l

p	 δ
j

)∣∣∣∣2) ≤ 8�A+ 1�
γ�δ� 


To complete the argument, fix ε > 0. We first choose A large enough so
that P�Lt ≥ A − 3ε� < ε. By (5.7) and (5.10), we can then choose δ > 0 and
p0 = p0�δ� such that

�5
11� P
(∣∣γ�δ�−1Lδ

t −Lt

∣∣ > ε
)
< ε
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and

�5
12� P

(
sup

j≤T
p
Ap

∣∣∣∣βp

λp

(
4

p
j − γp�δ�−1l

p	δ
j

)∣∣∣∣ > ε

)
< ε if p ≥ p0


By (5.6) and (5.9), we have also, for p ≥ p1�δ�,

�5
13� P

(∣∣∣∣ βp

λpγp�δ�
l
p	 δ
�λpt
 − γ�δ�−1Lδ

t

∣∣∣∣ > ε

)
< ε


Combining the previous estimates gives, for p ≥ p0 ∨ p1,

P

(∣∣∣∣βp

λp

4
p
�λpt
 −Lt

∣∣∣∣ > 3ε
)

≤ 3ε+P
(�λpt
 > T

p
Ap

)



Moreover, by using (5.12) and then (5.11) and (5.13) again, we have for p
sufficiently large

P
(
T

p
Ap

< �λpt

) ≤ P

(
T

p
Ap

< ∞	 l
p	 δ
�λpt
 ≥ l

p	 δ

T
p
Ap

)
≤ ε+P

(
βp

λpγp�δ�
l
p	 δ
�λpt
 ≥ A− ε

)
≤ 3ε+P�Lt ≥ A− 3ε�
≤ 4ε	

by the choice of A. This completes the proof of (5.3).
We may then replace Wp by the time-reversed random walk Ŵ

p
k = W

p
�λpt
 −

W
p
�λpt
−k, for 0 ≤ k ≤ �λpt
. Under (5.2), we have also

lim
p→∞

(
β−1
p Ŵ

p
�λps
	 0 ≤ s ≤ t� = �X̂�t�

s 	 0 ≤ s ≤ t�	

a.s. in D��0	 t
	R�. Since H
p
�λpt
 = 4̂

p
�λpt
, with obvious notation, we get from

(5.3) that

lim
p→∞

βp

λp

H
p
�λpt
 = L̂

�t�
t = Ht	

in probability. This completes the proof of Proposition 5.2. ✷
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