
The Annals of Probability
1999, Vol. 27, No. 2, 684–730

ON THE CONSTRUCTION AND SUPPORT PROPERTIES OF
MEASURE-VALUED DIFFUSIONS ON D⊆⊆⊆RRR

d WITH
SPATIALLY DEPENDENT BRANCHING1

By János Engländer and Ross G. Pinsky

Technion–Israel Institute of Technology

In this paper, we construct a measure-valued diffusion on D ⊆ R
d

whose underlying motion is a diffusion process with absorption at the
boundary corresponding to an elliptic operator

L = 1
2∇ · a∇ + b · ∇ on D ⊆ R

d

and whose spatially dependent branching term is of the form β�x�z −
α�x�z2, x∈D
 where β satisfies a very general condition and α > 0. In
the case that α and β are bounded from above, we show that the measure-
valued process can also be obtained as a limit of approximating branching
particle systems.

We give criteria for extinction/survival, recurrence/transience of the
support, compactness of the support, compactness of the range, and lo-
cal extinction for the measure-valued diffusion. We also present a number
of examples which reveal that the behavior of the measure-valued diffu-
sion may be dramatically different from that of the approximating particle
systems.

1. Introduction. In this paper, we investigate certain properties of
measure-valued diffusions X�t� = X�t
 ·� on an arbitrary domain D ⊆ R

d,
where the underlying motion is a diffusion process with absorption at the
boundary corresponding to the elliptic operator

�1�1� L = 1
2∇ · a∇ + b · ∇ on D ⊆ R

d


and the spatially dependent branching term is of the form φ�z� = β�x�z −
α�x�z2, x ∈ D, with α, β ∈ Cη�D�, η ∈ �0
1
 and α > 0. We will assume that the
diffusion matrix a = �ai
 j� satisfies

∑d
i
 j=1 aij�x�vivj > 0
 for all v ∈ R

d \ �0�
and all x ∈ D and that ai
 j, bi ∈ C1
 η�D�. Under these conditions, there
exists a unique solution to the generalized martingale problem for L on D

and this solution is a diffusion process Y�t� on the one-point compactification
D∗ = D ∪ � of D with � playing the role of a cemetery state [14].

Let �F�D� denote the space of finite measures onD. Under the assumption
that α > 0 and β is bounded from above, we can construct a finite measure-
valued process via its log-Laplace functional. We first show that for each g ∈
C+
b �D�, the cone of bounded, continuous, nonnegative functions on D, there
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exists a minimal, nonnegative solution u ∈ C2
1�D× �0
∞�� ∩C�D× �0
∞��
to the semilinear equation

�1�2�
ut = Lu+ βu− αu2
 �x
 t� ∈ D× �0
∞�


u�x
0� = g�x�
 x ∈ D�
Furthermore, we show that u�·
 t� is bounded for all t ≥ 0 and that if α and β
are bounded, then u is the unique solution to the mild equation

�1�3� u�·
 t� = Ttg +
∫ t

0
dsTsφ�u�·
 t− s��


where Tt denotes the semigroup for the diffusion processY�t�. LettingVt�g�=
u�·
 t�, it then follows that Vt+s�g� = VtVs�g�. From this we can show that

�1�4� � �t
 µ
g� ≡ exp
(
−
∫
D
Vtg�x�µ�dx�

)

 g ∈ C+

b �D�
 µ ∈ �F�D�

is a Laplace transition functional. For each µ ∈ �F�D�, this uniquely deter-
mines a probability measure Pµ on C��0
∞�
�F�D�� whose expectation Eµ
satisfies

�1�5� � �t
 µ
g� = Eµ exp�−�X�t�
 g�� for g ∈ C+
b �D�
 µ ∈ �F�D��

See Theorem A1 in Appendix A for the precise statement of the result and
for its proof.

Definition 1.1. The measure-valued diffusion process �Pµ
µ ∈ �F�D��
defined above will be called the �L
β
α�D�-superprocess.

Remark. We note that this definition will later be extended to a more
general class of β’s.

If we make the additional assumption that α is bounded from above, then
we can show that the �L
β
α
D� superprocess arises as the weak limit of a
rescaled, high density branching particle system. LetY�t� denote the diffusion
process corresponding to the solution of the generalized martingale problem
for L on D. The diffusion lives on D∗ = D ∪ ���, entering � and remaining
there forever once it leaves D. For each positive integer n, consider Nn par-
ticles, each of mass 1/n, starting at points x�n�i �0� ∈ D, i = 1
2
 � � � 
Nn
 and
performing independent branching diffusion according to the motion process
Y�t�, with branching rate cn
 c > 0, and branching distribution �p�n�

k �x��∞k=0,
where

e�x� ≡
∞∑
k=0

kp
�n�
k �x� = 1 + γ�x�

n



v2�x� ≡
∞∑
k=0

�k− 1�2p
�n�
k �x� =m�x� + o�1� as n→ ∞ uniformly in x,
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m
γ ∈ C�D� and m�x� > 0. Let Nn�t� denote the number of particles alive at
time t and denote their positions by �Xn

i �t��Nn�t�
i=1 . Denote by �F�D� (�F�D∗�)

the space of finite measures on D (D∗). Define an �F�D∗�-valued process
Xn�t� by Xn�t� = �1/n�∑Nn�t�

1 δXn
i �t��·�. Denote by P�n� the probability mea-

sure on D��0
∞�
�F�D∗�� corresponding to Xn�t�� Assume that m�x� and
γ�x� are bounded from above. We show that ifw−limn→∞Xn�0� = µ ∈ �F�D�,
then the measure Pµ ∈ C��0
∞�
�F�D�� defined in (1.5) satisfies

Pµ = P∗
µ

∣∣
D

where P∗
µ = w− lim

n→∞P
�n�


where β = cγ�x� and α�x� = 1
2cm�x�, and where the weak limit is taken in

the Skorohod space D��0
∞�
�F�D∗��. Furthermore, Pµ is shown to solve
an appropriate martingale problem. See Theorem A2 in Appendix A for the
precise statement of the result and for its proof. See also [3].

We now define the properties which will be investigated in this paper

Definition 1.2. A path X�·� of the measure-valued diffusion survives if
X�t� �= 0 for all t ≥ 0 and becomes extinct ifX�t� = 0 for all sufficiently large t.
The measure-valued process corresponding to Pµ becomes extinct (survives)
if Pµ�X�·� survives� = 0 �> 0�.

Remark. Note that extinction for the process can be characterized by the
existence of a Pµ-almost surely finite stopping time ζ such that Pµ�X�t� = 0,
for t > ζ� = 1.

In the sequel we will frequently use the notation A�B, which means that
A is bounded and Ā ⊂ B.

Definition 1.3. The measure-valued process corresponding to Pµ exhibits
local extinction if for each D0 �D, there exists a Pµ-almost surely finite stop-
ping time ζD0

such that Pµ�X�t
D0� = 0, for t > ζD0
� = 1.

Definition 1.4. Let X�t� be a process that survives.

(i) The support of the measure-valued process corresponding to Pµ is re-
current if

Pµ
(
X�t
B� > 0 for some t ≥ 0 �X�t� survives

) = 1


for every open B ⊂ D.
(ii) (a) Let d ≥ 2. The support of the measure-valued process corresponding

to Pµ is transient if

Pµ
(
X�t
B� > 0 for some t ≥ 0 �X�t� survives

)
< 1


for all B�D for which D \B is connected and suppµ ∩ B̄ = ��
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(b) Let d = 1. The support of the measure-valued process corresponding
to Pµ is transient if

Pµ
(
X�t
B� > 0 for some t ≥ 0 �X�t� survives

)
< 1


either for all B�D, satisfying supB < inf supp�µ� or for all B�D satisfying
inf B > sup supp�µ��

Definition 1.5. Let µ ∈ �F�D� be compactly supported. The measure-
valued process corresponding to Pµ possesses the compact support property if

Pµ

( ⋃
0≤s≤t

suppX�s��D

)
= 1 for all t ≥ 0�

Remark. From the results in the paper, it will follow that if any one of
the properties in Definitions 1.2–1.5 holds for some Pµ with µ �= 0 of compact
support, then it in fact holds for every Pµ with µ �= 0 of compact support.

One of the key tools for studying the above properties is a kind of h-
transform for measure-valued processes (not in the sense of Doob), which we
develop in Section 2. All the support properties of the superprocess will be
shown to be invariant under h-transforms.

In Sections 3 and 4, we state our results concerning extinction/sur-
vival, local extinction, transience/recurrence and the compact support prop-
erty. Some of our results give conditions for the above properties to hold in
terms of the behavior of certain solutions to the semilinear equation while
other results give conditions for the above properties to hold depending on
the recurrence/transience or the conservativeness/nonconservativeness of the
underlying diffusion process on D.

The results concerning transience/recurrence and local extinction extend
the results in [15] where α and β are positive constants, D = R

d, and the
diffusion process corresponding to L is conservative.

In Section 5, we use the results of Sections 3 and 4 to provide some exam-
ples which run counter to the intuition one might glean from considering the
measure-valued process as a scaled high-density limit of branching diffusions.
In one example, we have

L = exp
( �x�2
d

)(
1
2
�− x

d
· ∇

)
on D = R

d
 β = 0
 and α = 1�

The diffusion process Y�t� corresponding to L is a positive recurrent, time-
changed Ornstein–Uhlenbeck process. Since β = 0, the branching in the
approximating particle system is critical, and since α = 1, the offspring dis-
tribution in the particle system has bounded variance. Thus, the measure-
valued process arises as the scaled, high-density limit of a branching positive
recurrent diffusion where the branching is critical and has finite variance.
Nonetheless, it turns out that the measure-valued process does not possess
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the compact support property. We also provide examples to show that many of
the conditions imposed in the theorems are necessary for the results to hold.

The proofs of the results of Sections 3 and 4 are given in Section 7. In
Section 6, we present a decomposition theorem for surviving measure-valued
diffusions in terms of a superprocess which becomes extinct but which is en-
riched by an immigration process. This result generalizes [5], which treated
the case α = 1 and β = 0. As an application, we point out two results from
previous sections which can be proven alternatively using this decomposition.

In Appendix A, we state and prove the two existence theorems for measure-
valued diffusions which were described at the beginning of this section. Ap-
pendix B gives a summary of results concerning critical and subcritical elliptic
operators. These results are needed from time to time in the proofs as well as
in the statements of certain theorems.

In the sequel, the notation Pµ, Eµ and X�t� will be used for the measure-
valued diffusion and the notationQx,Ex andY�t� will be used for the diffusion
on D corresponding to L. Let τD = inf�t ≥ 0� Y�t� �∈ D�� Then, Y�t� is called
conservative if Qx�τD <∞� = 0 and nonconservative if Qx�τD <∞� > 0.

2. The h-transform for measure-valued processes and the �L
�

��D�-superprocess for more general �’s. In this section we define a kind
of “h-transform,” but not in the sense of Doob. Using this h-transform, we
will extend the definition of the �L
β
α�D�-superprocess to certain un-
bounded β’s.

Let �X�t��t≥0 be a finite measure-valued process with Laplace-transition
functional

�2�1�
� �s
 t
 µ
φ� ≡ E(

exp�−�X�t�
 φ�� �X�s� = µ)

φ ∈ C+

b �D�
 µ ∈ �F�D��
Let 0 < h be a measurable function on D. Let φ = hψ and µ = �1/h�ν (i.e.
dν/dµ = h). Letting Xh�t� ≡ hX�t� (i.e., dXh�t�/dX�t� = h), we have

�2�2�
�

(
s
 t


1
h
ν
hψ

)
= E

(
exp

(−�X�t�
 hψ�) ∣∣∣∣X�s� = 1
h
ν

)

= E(
exp

(−�Xh�t�
 ψ�) �Xh�s� = ν)�
Define the functional

�2�3� � h�s
 t
 ν
ψ� ≡ �

(
s
 t


1
h
ν
hψ

)
for ν ∈ �h�D�
 ψ ∈ C+
 h

b �D�


where �h�D� ≡ �ν ∈ � �D�
 �1/h�ν ∈ �F�D�� and C+
 h
b �D� ≡ �ψ� hψ ∈

C+
b �D��� By (2.2), there exists a unique measure-valued process Xh�t� with

values in �h�D�, such that

� h�s
 t
 ν
ψ� = E(
exp�−�Xh�t�
 ψ�� �Xh�s� = ν)


where

�2�4� ν ∈ �h�D�
 ψ ∈ C+
 h
b �D��
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SinceXh�·� =d hX�·�, it follows that the support of the measure-valued process
is invariant under h-transforms.

Define �C�D� ≡ �µ ∈ �F�D�� supp�µ��D�� The processXh�·� is uniquely
determined by its Laplace transition functional � h�s
 t
 ν
φ� restricted to
ν ∈ �C�D� and φ ∈ C+

c �D�, where C+
c �D� denotes the space of nonnegative,

continuous, compactly supported functions on D. Thus, in the sequel we will
work with these spaces rather than with the h-dependent spaces appearing
in (2.4).

We now apply the h-transform to the �L
β
α�D�-superprocess X�t�. Let
� �u� ≡ Lu + βu − αu2 on D and let h ∈ C2
 η�D� satisfy h > 0 in D. Define
the h-transform of the linear operator L in the usual way; namely, Lhf =
�1/h�L�hf�. Then

Lhf = Lh0 + Lh
h



where

�2�5� Lh0 ≡ L+ a∇h
h

∇�

Define the h-transform of � by

�2�6� � h�u� ≡ 1
h
� �hu� = Lh0u+ �L+ β�h

h
u− αhu2


and Vht �g� by Vht �g� ≡ �1/h�Vt�hg� for g ∈ C+
c �D�� [We must restrict g to

C+
c �D� in order to ensure that the new initial condition is bounded.] Then it is

easy to see that Vht �g� is the minimal nonnegative solution for the equation

ut = � h�u�

u�·
0� = g


and that

� h�t
 µ
g� ≡ E(
exp�−�Xh�t�
 g�� �Xh�0� = µ)

= exp
(
−
∫
D
Vht g�x�µ�dx�

)



for g ∈ C+
c �D�, µ ∈ �C�D�� [Note that Vht �g� is not bounded in general for t >

0, but rather belongs to the space C+
 h
b �D�.] Thus the quadruple �L
β
α�D�

transforms into the quadruple �Lh0 
 βh
 αh�D�, where

�2�7� Lh0 = L+ a∇h
h

∇
 βh = �L+ β�h
h

and αh = αh�

Of course, it is possible to have supD β
h = ∞ even though supD β < ∞. The

process corresponding to �Lh0 
 βh
 αh�D� is not finite measure-valued in gen-
eral, but rather �h�D�-valued. Moreover dXh�t�/dX�t� = h, for all t ≥ 0�

From the point of view of partial differential equations, we have defined
a transformation on semilinear elliptic operators which gives a one-to-one
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correspondence between positive solutions for the corresponding operators. For
later use, we point out that in the particular case that 0 < h satisfies Lh +
βh− αh2 = 0 on D, the h-transform leads to the quadruple �Lh0 
 αh
 αh�D�.

As will be clear in the sequel, the h-transform is a very useful technique for
proving theorems and for coming up with interesting examples. However, it
should also be pointed out that the h-transform technique allows one to define
a unique measure-valued (but generally not finite measure-valued) process for
a somewhat more general class of β’s. Recall that in Section 1, we defined
the �L
β
α�D�-superprocess under the assumption that β is bounded from
above. Let

λc = λc�L+ β� ≡ inf
{
λ ∈ R� ∃u > 0 satisfying �L+ β− λ�u = 0 in D�

denote the generalized principal eigenvalue for L+ β on D, and assume that

�2�8� λc�L+ β� <∞�
(See Appendix B for more on the generalized principal eigenvalue.) The proba-
bilistic audience likely to read this paper might prefer the following equivalent
definition of λc (see [14]):

λc = sup
A�D

lim
t→∞

1
t

logEx

(
exp

(∫ t
0
β�Y�s��ds

)
� τA > t

)



for any x ∈ D
 where τA = inf �t ≥ 0� Y�t� �∈ A�. From the above probabilistic
representation of λc�L + β�, it is clear that λc�L + β� < ∞ if β is bounded
from above. For any λ ≥ λc, there exists a function 0 < φ ∈ C2
 η�D� such
that �L+ β�φ = λφ on D. Making an h-transform with h = φ, one sees from
�2�7� that the quadruple �L
β
α�D� transforms into �Lφ0 
 λ
 αφ�D�� The latter
quadruple corresponds to an �F�D�-valued process, X�t�, according to the
results of Section 1. Thus, by the h-transform theory above, �L
β
α�D� will
correspond to the �1/φ�D�-valued process,X1/φ�t��Note that this construction
does not depend on φ or λ. Indeed, let λ1, λ2 ≥ λc and let �L + β − λ1�φ1 =
�L + β − λ2�φ2 = 0 on D, where φ1, φ2 > 0. Let �Lφi0 
 λi
 αφi�D� correspond
to Piµ, i = 1
2. Then �P1

µ�1/φ1 coincides with �P2
µ�1/φ2 for any µ ∈ �C�D�,

because their Laplace functionals coincide on C+
c �D��

We summarize the above in a proposition.

Proposition 2.1. Let λc�L + β� < ∞ and let α > 0 on D. Then there
exists a unique Borel measure-valued Markov process X�t� such that for any
ν ∈ �C�D� and g ∈ C+

c �D�,

Eν exp
(−�X�t�
 g�) = exp

(
−
∫
D
u�x
 t� ν�dx�

)



where u�x
 t� is the minimal positive solution to (1.2). If β is bounded from
above, then the above statement holds for g ∈ C+

b �D� and for ν ∈ �F�D�.
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Remark. In the proofs we will use the following modification of the log-
Laplace equation given in Proposition 2.1:

EX�t� exp
(−�g
X�T��)

= exp
(−�u�·
T�
X�t��) Pµ-a.s. for T
 t > 0�

This follows easily for supβ < ∞ by the fact that X�t� ∈ �F�D�, Pµ-a.s.
and by the last sentence in Proposition 2.1. The general case can be reduced
to the case when β = const by an h-transform (see the paragraph before
Proposition 2.1).

Note. The process appearing in Proposition 2.1 with this weaker condition
on β will still be called an �L
β
α�D�-superprocess. Survival, extinction, local
extinction, recurrence/transience and h-transforms can be defined similarly for
this more general setup as well.

The extension from the condition that β be bounded from above to the more
general condition that λc�L+β� <∞ is most significant in bounded domains.
Indeed, if D = R

d
 L has constant coefficients, and lim�x�→∞
 x/�x�∈U β�x� = ∞

whereU ⊂ Sd−1 is an open set, then it can easily be shown that λc�L+β� = ∞.
On the other hand, if D is a smooth bounded domain and L = 1

2�, then
λc�L + β� < ∞ as long as β is locally bounded and β�x� ≤ 1

8�dist�x
 ∂D��−2,
for x near ∂D [9].

In the sequel we shall assume without further mention that β satisfies (2.8).

3. Extinction/survival, the range of the process and the compact
support property. We begin with a theorem which characterizes extinc-
tion/survival in terms of a certain solution to the semilinear equation.

Theorem 3.1. Let �Dn�∞n=1 be a sequence of bounded domains with smooth
boundaries such that Dn �Dn+1 �D, n = 1
2
 � � �,

⋃∞
n=1Dn = D and let

�gn�∞n=1 be an increasing sequence of smooth functions on D satisfying 0 ≤
gn ≤ n and

gn�x� =
{
n
 x ∈ Dn

0
 x ∈ D \Dn+1�

Let un�x
 t� be the minimal nonnegative solution to

�3�1�
ut = Lu+ βu− αu2 in D× �0
∞�


u�·
0� ≡ gn�
Then u�x
 t� ≡ limn→∞ un�x
 t� exists and is finite for t > 0. It is the minimal
positive solution to

�3�2�
ut = Lu+ βu− αu2 in D× �0
∞�


u�·
0� ≡ ∞
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and it satisfies

�3�3� exp
(
−
∫
D
u�x
 t�µ�dx�

)
= Pµ

(�X�t�
1� = 0
)

 µ ∈ �C�D��

Furthermore, w�x� ≡ limt→∞ u�x
 t� exists, solves the equation

�3�4� Lu+ βu− αu2 = 0 on D

and is either identically zero or positive everywhere on D. Moreover,

�3�5� Pµ�extinction� = exp
(
−
∫
D
w�x�µ�dx�

)

 µ ∈ �C�D��

Finally, letting

�3�6� P̃µ�·� ≡ Pµ� · � extinction�

then P̃µ corresponds to the quadruple �L
β− 2αw
α�D��

Remark. If β is bounded from above, the function gn may be replaced by
the constant n; see the last sentence in Proposition 2.1.

The next theorem characterizes the compact embeddedness of the range of
the process in terms of the largest solution to the semilinear equation (3.4).

Theorem 3.2. Let C denote the event that the range of the process is com-
pactly embedded in D; that is,

C ≡
{ ⋃
t≥0

supp�X�t���D

}
�

There exists a maximal nonnegative solution to (3.4), wmax, and

�3�7� Pµ�C� = exp
(
−
∫
D
wmax µ�dx�

)
∀µ ∈ �C�D��

Also

�3�8� Pµ�C ∩ survival� = 0 ∀µ ∈ �C�D��

The following theorem relates the compact support property to the solutions
w and wmax appearing in Theorems 3.1 and 3.2, respectively.

Theorem 3.3. Let w and wmax be as in Theorems 3.1 and 3.2. Let C denote
the event that the range of the process is compactly embedded in D. Consider
the following three conditions:

(i) The compact support property holds;
(ii) Pµ�Cc ∩ extinction� = 0 for any µ ∈ �C�D�;

(iii) w = wmax�

Then �i� → �ii� ↔ �iii��
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If w = 0 then the three conditions are equivalent. Furthermore, if any of
(i)–(iii) holds, then Pµ�survival� > 0 if and only if (3.4) possesses a positive
solution.

Remark. From Theorem 3.3 and from (3.8), it follows that if the compact
support property holds, then

Pµ�C$extinction� = 0 for any µ ∈ �C�D�, where $ denotes
symmetric difference.

When the compact support property holds, we can use Theorem 3.3 to prove
the following simple sufficient condition for survival.

Corollary 3.1. Assume that the compact support property holds. If 0 <
inf x∈D�β/α��x�, then Pµ�survival� > 0, for all µ ∈ �C�D��

Remark. If the compact support property does not hold, then the second
sentence of Corollary 3.1 is not true in general; see Example 5.3.

We now give an alternative equivalent condition for the compact support
property.

Theorem 3.4. Let u�x
 t� denote the maximal nonnegative solution to

�3�9� ut = Lu+ βu− αu2 on D× �0
∞�

limt→0 u�x
 t� = 0�

Then

Pµ

( ⋃
s≤t

suppX�s��D

)
= exp

(
−
∫
D
u�x
 t�µ�dx�

)
for µ ∈ �C�D��

In particular then, the �L
β
α�D�-superprocess has the compact support prop-
erty if and only if u ≡ 0 is the unique nonnegative solution to (3.9).

The next theorem gives a sufficient condition for u = 0 to be the unique
nonnegative solution to (3.9) in terms of α
β and the coefficients of L, in the
case D = R

d.

Theorem 3.5. Let D = R
d. Assume that inf x∈R

d α > 0, that β is bounded
from above, that

sup
�v�=1

d∑
i
 j=1

aij�x�vivj ≤ c
(
1 + �x�2)

and that

�b̂�x�� ≤ c�1 + �x��
for some c > 0, where b̂i ≡ bi + 1

2

∑d
j=1�d�aij�/dxj�. Then u = 0 is the unique

nonnegative solution to (3.9) and thus the �L
β
α�D�-superprocess has the
compact support property.
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Remark. In the linear case, that is, α ≡ 0, the question of whether u = 0 is
the unique nonnegative solution to (3.9) has been studied by numerous authors
starting with Widder (see [1], [12], for example). We note that uniqueness in
the linear case does not imply uniqueness for α > 0 in general. For example,
consider L = 1

2�d2/dx2�, β = 0, α = 0 and D = R. Then u = 0 is the unique
nonnegative solution to (3.9) (see [1]). However, if α�x� = exp�−�x2+1�2�, mak-
ing an h-transform with h = 1/α and using Theorem 3.4 and Theorem 3.6(i),
it is easy to show that there exists a nonzero nonnegative solution to (3.9).
On the other hand, in Example 5.4, the operator L corresponds to a non-
conservative diffusion, β = 0, but the compact support property holds. By
Theorem 3.4, there is no nonnegative solution to (3.9) but Px�TD ≤ t�� 0 is
a solution to (3.9) if α is replaced by zero. The condition in Theorem 3.5 is
weaker then the conditions appearing in the literature for the linear case. In
the linear case one typically requires a two-sided bound on �aij� of the form
c1�1 + �x�2�γ ≤ sup�v�=1

∑d
i
 j=1 aij�x�vivj ≤ c2�1 + �x�2�γ for some γ ∈ �0
1
�

We now give a connection between the compact support property and the
conservativeness of the underlying diffusion process.

Theorem 3.6. Let w be as in Theorem 3.1 and Lw0 be as in (2.5).

(i) Assume that inf x∈D�β/α� > 0. If L corresponds to a nonconservative
diffusion on D, then the �L
β
α�D�-superprocess does not possess the compact
support property.

(ii) Assume that w > 0, that is, that Pµ�survival� > 0
 for 0 �= µ ∈ �C�D��
If Lw0 corresponds to a nonconservative diffusion on D, then the �L
β
α�D�-
superprocess does not possess the compact support property.

Remark. If inf x∈D�β/α� ≤ 0, then the second sentence in (i) is not true in
general; see Example 5.4.

When L corresponds to a recurrent diffusion on D and w is bounded, then
the compact support property implies the uniqueness of the nonnegative so-
lution for the semilinear elliptic equation.

Theorem 3.7. Assume that L corresponds to a recurrent diffusion on D.
Then there is at most one positive bounded solution to

�3�10� Lu+ βu− αu2 = 0 in D�

In particular, it follows from Theorem 3.3 that if the �L
β
α�D�-superprocess
possesses the compact support property and 0 < w is bounded, then w is the
unique positive solution to (3.10).

We conclude this section with an explicit calculation in the case that L is
conservative onD and α, β are constants. This will be useful when considering
the examples.
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Proposition 3.1. Assume that L is conservative on D. Let α > 0 and β be
constants. Let Pµ correspond to the quadruple �L
β
α�D�� Define

�3�11� uβ
α�t� ≡



β

α
�1 − e−βt�−1
 β �= 0


1
αt

 β = 0�

Then u�x
 t� = uβ
α�t� is the minimal positive solution to (3.2), and thus by
(3.3) and (3.5),

�3�12�
Pµ

(�X�t�
1� = 0
) = exp

(−u�β
α
 t��µ
1�)
 µ ∈ �F�D�


w = β+
α

and

�3�13� Pµ�extinction� = exp
(
−β+
α

�µ
1�
)

 µ ∈ �F�D�


where β+ ≡ β ∨ 0�

Proof. First, let β �= 0. Let

�3�14� 0 < uδ�·
 t� = uδ�t� ≡
β

α

(
1 − exp�−β�t+ δ��)−1

on D× �0
∞�� Then uδ�0� = �β/α��1− e−βδ�−1 ≡ λ�δ�� Note that λ�δ� → ∞ as
δ→ 0. Easy computation shows that uδ solves

�3�15� uδ�t� = λ�δ� +
∫ t

0
dsφ�uδ�t− s��


where φ�z� = βz − αz2. Since uδ depends only on t and �Pt� is conservative,
(3.15) is equivalent to

�3�16� uδ�t� = Ptλ�δ� +
∫ t

0
dsPsφ�uδ�t− s���

It then follows that uδ is the minimal nonnegative solution to (3.1) with gn
replaced by the constant n = λ�δ�� (See the remark following Theorem 3.1.)
Thus, by Theorem 3.1, it follows that u�x
 t� (defined in Theorem 3.1) satisfies

�3�17� u�x
 t� = lim
δ→0

uδ�λ
 t� =
β

α

(
1 − e−βt)−1�

furthermore,

�3�18� w�x� = lim
t→∞

u�x
 t� = β+
α
�

For β = 0, define uδ�·
 t� = 1/α�t+ δ� and use a similar argument. ✷
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4. Recurrence and transience of the support. Local extinction. We
begin with a theorem which was proved in [15] in the case that α and β are
positive constants and D = R

d. The proof in our more general setup is almost
exactly the same, except for the finiteness of the function φ on D \ D̄0.

Theorem 4.1. LetD0 �D have a smooth boundary. Let �Dn� be a sequence
of domains satisfying Dn �Dn+1 � D̄0, n = 1
2
 � � � and

⋃∞
1 Dn = D0, and

let �ψn�∞n=1 be a nondecreasing sequence of functions satisfying ψn ∈ C+
c �D�,

ψn�x� = n for x ∈ Dn, ψn�x� = 0 for x /∈ D̄0 and 0 ≤ ψn ≤ n. Let un�x
 t�
denote the minimal positive solution to

�4�1�
ut = Lu+ βu− αu2 + ψn on D× �0
∞�


u�·
0� = 0�

Then

φn�x� ≡ lim
t→∞

un�x
 t�

exists for x ∈ D, φn ∈ C2
 η�D�, and φn is the minimal positive solution to

�4�2� Lu+ βu− αu2 + ψn = 0 in D�

Furthermore,

φ�x� = lim
n→∞φn�x�

exists in the extended sense, for x ∈ D, φ ∈ C2
 η�D \ D̄0� and φ�x� = ∞ for
x ∈ D̄0� Then φ is the minimal positive solution to

�4�3�
Lu+ βu− αu2 = 0 in D \ D̄0


lim
x→∂D0

u�x� = ∞�

(Note that D \ D̄0 is not connected if ∂D0 is not connected.)
Moreover, if µ ∈ �C�D�, then

�4�4� Pµ�X�t
D0� = 0
 ∀ t ≥ 0� = exp
(
−
∫
D
φ�x�µ�dx�

)
�

Theorem 4.2. Assume that w > 0; that is Pµ�survival� > 0
 for 0 �= µ ∈
�C�D�� Let φ and D0 be as in Theorem 4.1 and assume that ∂D0 is connected.
Then exactly one of the following two possibilities occurs:

(i) φ > w on D \ D̄0 for any D0 �D and the support of the �L
β
α
D�-
superprocess is recurrent;

(ii) lim inf x→∂D�φ/w��x� = inf x∈D\D̄0
�φ/w��x� = 0 for any D0 �D and the

support of the �L
β
α
D�-superprocess is transient.
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Moreover, if (i) occurs, then

�4�5�
Pδx

(
X�t
D0� = 0 for all t > 0 � extinction

)
= exp�−�φ−w��x��
 x ∈ D \ D̄0�

Remark. Using the Markov property, it is easy to see that if the support
of X�t� is recurrent, then

Pµ
(
X�t
D0� > 0 for arbitrary large values of t � survival

) = 1


for µ ∈ �C�D� and D0 ⊂ D� Consequently, recurrence excludes local extinc-
tion.

We now state a theorem which will be used in the proofs and which may be
of independent interest.

Theorem 4.3. Let L̂ = L+a∇Q · ∇ in D ⊂ R
d, d ≥ 1
 where Q ∈ C2
 η�D�.

If L corresponds to a recurrent (transient) diffusion process and Q is bounded
from above (below), then L̂ also corresponds to a recurrent (transient) diffusion
process.

We now give conditions for the recurrence/transience of the support in terms
of w and L.

Theorem 4.4. Assume that w > 0; that is, Pµ�survival� > 0
 0 �= µ ∈
�C�D��

(a) If Lw0 corresponds to a recurrent diffusion, then the support of X�t� is
recurrent.

(b) If L corresponds to a recurrent diffusion and w is bounded then the
support of X�t� is recurrent.

(c) If β/α is bounded from above and supD w = ∞, then the support ofX�t�
is transient.

Corollary 4.1 (Comparison). Let Pµ and P̂µ correspond to �L
β
α�D�
and �L
 β̂
 α̂�D�, respectively. Assume that L corresponds to a recurrent diffu-
sion, that Pµ�survival� > 0 for 0 �= µ ∈ �C�D� and that the support of the

�L
β
α�D�-superprocess is recurrent. Assume furthermore that β̂ ≤ β, α̂ ≥ α
and that β/α is bounded from above. Then the �L
 β̂
 α̂�D�-superprocess either
dies out or has recurrent support.

The following theorem is an application of the above comparison result. It
generalizes the result in [15], where the theorem was proved for constant α,
β > 0.

Theorem 4.5. Let L correspond to a recurrent diffusion on D, and let
inf x∈D α > 0, supx∈D β <∞.
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(a) If w > 0, that is Pµ�survival� > 0, for 0 �= µ ∈ �C�D�, then the support
of the �L
β
α�D�-superprocess is recurrent.

(b) Assume in addition that 0�β. Then w > 0 and the support of the
�L
β
α�D�-superprocess is recurrent.

Conditions for having a transient support are more complicated. Before pre-
senting the following theorem, we note that in the sequel we will frequently
use concepts and results from the so-called criticality theory of second-order
elliptic operators. The definitions for subcritical, critical and supercritical op-
erators, for the generalized principal eigenvalue of L on D (λc�L
D�), and for
the generalized principal eigenvalue at ∞ ofL onD (λc
∞�L
D�) are presented
in Appendix B. We will use these concepts without further reference.

Theorem 4.6. Let X�t� correspond to �L
β
α�D�� Assume that:

(i) L corresponds to a transient diffusion on D�
(ii) λc
∞�L+β� < 0 if d ≥ 2 and either λc
+∞�L+β� < 0 or λc
−∞�L+β� < 0

if d = 1�
(iii) inf x∈D w > 0�

Furthermore, assume one of the following:

(iv) the compact support property holds;
(iv′) β ≥ 0 and Qx�τD <∞� �= 1.

Then the support of X�t� is transient.

Remark. (a) If (iv) holds in the above theorem, then (iii) is automatically
satisfied if inf x∈D�β/α� > 0 or, more generally, if there exists a u such that
inf x∈D u > 0 and Lu+βu− αu2 ≥ 0� This follows from Theorem 3.3, from the
construction of wmax and from Proposition 7.1.

(b) Let α and β be positive constants. If (i) and (ii) hold and furthermore
Y�t� is conservative on D, then (iv′) is trivially satisfied and (iii) holds by
Proposition 3.1. Thus the support of the superprocess is transient. This par-
ticular case was proved in [15] for D = R

d.

We now present characterizations for the recurrence of the support in terms
of the behavior of the nonnegative solutions for the corresponding semilinear
elliptic equation on D and on exterior domains in D.

We shall need the concept of positive solutions of minimal growth. If ;�D,
then 0 < u ∈ C2�D\;̄�∩C�D\;� is called a positive solution of minimal growth
(at ∂D) if it satisfies (3.4) with D replaced by D \ ;̄ and for any ;′, satisfying
;�;′ �D and any û ∈ C2�D\ ;̄′�∩C�D\;′� which solves Lû+βû−αû2 = 0
on D \ ;̄′, there exists a c > 0 such that u ≤ cû on D \;′� Note that if u and
v are positive solutions of minimal growth, then c < u/v < C for constants c,
C > 0.

The next theorem connects the concept of recurrent support to the mini-
mality of elliptic solutions on D.
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Theorem 4.7. Assume that the �L
β
α�D�-superprocess survives and sat-
isfies the compact support property. The support of the superprocess is recurrent
if and only if every positive solution of (3.4) is of minimal growth. Moreover,
the above condition is sufficient for the recurrence of the support even if the
compact support property fails.

The next theorem expresses the recurrence of the support in terms of posi-
tive elliptic solutions on exterior domains.

Theorem 4.8. Assume that the �L
β
α�D�-superprocess survives and sat-
isfies the compact support property. The support of the superprocess is recurrent
if and only if for any ;�D with smooth boundary, the following exterior prob-
lem has a unique solution:

�4�6�
Lu+ βu− αu2 = 0 in D \ ;̄


lim
x→∂;

u�x� = ∞�

Moreover, the above condition is sufficient for the recurrence of the support even
if the compact support property fails. When a unique solution to (4.6) exists,
then any u > 0 satisfying Lu+ βu− αu2 = 0 in D \ ;̄ is a positive solution of
minimal growth at ∂D�

We close this section with a characterization of local extinction.

Theorem 4.9. The support of X�t� corresponding to �L
β
α�D� exhibits
local extinction if and only if there exists a positive solution u to the equation
�L+ β�u = 0 on D.

The proof of Theorem 4.9 will be omitted since it is virtually identical to
the proof given in [15] for the case that α, β > 0 constants.

Remark. If there is no positive solution to the equation �L+β�u = 0 onD,
then the operator is said to be supercritical; this is equivalent to λc�L+β� > 0,
where λc�L+ β� denotes the generalized principal eigenvalue of L+ β on D.
(See Appendix B for more elaboration.)

Since extinction implies local extinction, we immediately get the following
sufficient condition for survival:

Corollary 4.2. If there does not exist a u > 0 satisfying �L+β�u = 0 onD
[that is, if λc�L+β� > 0 onD], thenPµ�X�t�survives� > 0
 for 0 �≡ µ ∈ �C�D�.

5. Examples. In this section, we present several examples to illustrate
the results of the previous sections. In the first two examples, we show that
the global behavior of the superprocess may be very different from the global
behavior of the approximating particle system. In the last three examples as
well as in the first example, we show that certain conditions appearing in the
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statements of some of the theorems are necessary for the validity of the results.
Our method is based on the use of appropriate h-transforms. Recall that an
h-transform leaves the support of the measure valued process invariant (see
Section 2). Consequently, all the concepts defined for the support ofX�t� in the
previous sections (survival/extinction, the compact support property, local ex-
tinction, transcience/recurrence) are invariant under h-transforms. Note that
w and wmax (defined in Theorems 3.1 and 3.2) transform into w/h and wmax/h.
This can be seen easily from the construction of w and wmax.

Example 5.1. Consider the superprocess corresponding to the quadruple

�5�1�
(

1
2
�− x

d
· ∇
0
 exp

(−�x�2/d)�Rd)

The underlying motion corresponding to

L = 1
2�− x

d
· ∇ on R

d

is an Ornstein–Uhlenbeck process, which is positive recurrent. Since β = 0
and α�x� = exp�−�x�2/d�, the superprocess may be obtained as the scaled, high
density limit as n→ ∞ ofO�n� critical, binary branching Ornstein–Uhlenbeck
processes, each of mass 1/n and with spatially dependent branching intensity
n exp�−�x�2/d�. Note that the probability that a particleY�t� has not branched
by time t is exp�− ∫ t

0 nα�Y�s��ds�; thus, since the Ornstein–Uhlenbeck process
is recurrent and the branching is critical, it follows that the branching particle
system will become extinct with probability 1. On the other hand, we have the
following result.

Claim 5.1. (i) The superprocess corresponding to (5.1) survives; in fact,

sup
x∈R

d

Pδx�survival� = 1�

(ii) The superprocess corresponding to (5.1) exhibits local extinction and
thus, in particular, its support is transient.

Remark. Recall, that in Theorem 4.4(b) we proved that if the underlying
diffusion is recurrent and if in addition, the w-function for the process is
positive and bounded, then the support is recurrent. Thus Example 5.1 also
shows that the assumption on the boundedness of w is necessary.

Proof. In order to calculate w, we will obtain the quadruple (5.1) as the h-
transform of another quadruple whose w-function is easy to calculate. Let L̂ =
1
2�+x/d·∇ in R

d and consider the superprocess on R
d corresponding to L̂, β =

1, and α = 1; that is, corresponding to the quadruple �L̂
1
1
Rd�. Let ŵ denote
the w function from Theorem 3.1 for the �L̂
1
1
Rd�-process. From Proposi-
tion 3.1, we conclude that ŵ = 1. The function φ�x� = exp�−�x�2/d� satisfies
�L̂+ 1�φ = 0. Applying an h-transform with h = φ, if follows from (2.7) that
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the quadruple �L̂
1
1
Rd� transforms into (5.1). Thus w�x� = ŵ�x�/φ�x� =
exp��x�2/d�. Since Pδx�survival� = 1 − exp�−w�x��, (i) now follows. The tran-
sience of the support follows directly from Theorem 4.4(c) (or indirectly from
the local extinction property proved in the line below). Local extinction for
(5.1) follows from Theorem 4.9 since u ≡ 1 satisfies �L+ β�u = Lu = 0. ✷

Remark. One can also get an example where L corresponds to a positive
recurrent diffusion process and the support of the superprocess is transient
without exhibiting local extinction. Replace β ≡ 0 by β = α in the above
example; then Theorem 4.9 together with Theorem 4.6.3 in [14] guarantee
that the support of the corresponding process does not exhibit local extinction.
By comparison, the new w-function is even larger and thus there is a positive
probability of survival. By Theorem 4.4(c), the support of the corresponding
process is transient.

Example 5.2. Consider the superprocess corresponding to the quadruple

�5�2�
(

exp
( �x�2
d

)(
1
2
�− x

d
· ∇

)

0
1�Rd

)
�

The underlying motion corresponding to L = exp��x�2/d�� 1
2�− �x/d� · ∇� is a

time-changed Ornstein–Uhlenbeck process; since exp��x�2/d� ≥ 1, it is positive
recurrent. Since β = 0 and α = 1, the process may be obtained as the scaled,
high density limit of O�n� critical, binary branching time-changed Ornstein–
Uhlenbeck processes, each of mass 1/n and with constant branching inten-
sity n. By the argument given in the first example, the particle system becomes
extinct with probability 1. Also, since the underlying process is conservative,
the particle system obviously possesses the compact support property.

Claim 5.2. The superprocess corresponding to (5.2) becomes extinct; how-
ever, it does not possess the compact support property.

Proof. By Proposition 3.1, w = 0 for the quadruple (5.2), and thus the
superprocess becomes extinct. On the other hand the function u�x� ≡
exp��x�2/d�, which was the w function for the quadruple (5.1), satisfies Lu +
βu − αu2 = Lu − u2 = 0. Thus, wmax > 0 = w for the quadruple (5.2), and it
follows from Theorem 3.3 that the compact support property does not hold. ✷

Example 5.3. Consider the superprocess corresponding to the quadruple

�5�3�
(

exp
( �x�2
d

)(
1
2
�+ x

d
· ∇

)

 exp

( �x�2
d

)

 exp

( �x�2
d

)
�Rd

)

In this example, β/α = 1. According to Corollary 3.1, if inf x∈D�β/α��x� > 0,
and if in addition the compact support property holds, then the superprocess
survives. The claim below shows that the additional condition concerning the
compact support property is necessary.
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Claim 5.3. The superprocess corresponding to (5.3) becomes extinct.

Proof. The quadruple (5.3) may be obtained as the h-transform of the
quadruple (5.2) via the function h = exp��x�2/d�. Since the superprocess cor-
responding to (5.2) becomes extinct, so does the superprocess corresponding
to (5.3). ✷

Example 5.4. Consider the superprocess corresponding to the quadruple

�5�4�
(
c�x�

(
1
2
d

dx2
+ d

dx

)

0
 c�x��R

)



where c�x� > 0 and c�x� = �x�l for large �x�, with l > 1. By Feller’s test
for explosion ([13], Theorem 5.1.5) and some elementary analysis, it follows
that the diffusion process corresponding to L = c�x�� 1

2�d2/dx2� + �d/dx��
is nonconservative. According to Theorem 3.6(i), if the underlying diffusion is
nonconservative and inf x∈D�β/α� > 0, then the compact support property does
not hold. The claim below shows that the additional condition concerning β/α
is necessary.

Claim 5.4. The range of the superprocess corresponding to (5.4) is almost
surely compactly embedded and thus, in particular, the superprocess possesses
the compact support property.

Proof. Consider the quadruple ��1/c�x��L
0
1
 �Rd�. The diffusion cor-
responding to the operator �1/c�x��L is conservative, and by Theorem 3.5,
the compact support property holds for this quadruple. Thus, it follows from
Proposition 3.1 and Theorem 3.3 that wmax = w = 0 for this quadruple. In par-
ticular then, there are no positive solutions u to �1/c�x��Lu − u2 = 0. Thus,
there are also no positive solutions u to Lu− c�x�u2 = 0; hence wmax = w = 0
for the original quadruple (5.4), and it follows by Theorem 3.2 that the range
of the process corresponding to the quadruple (5.4) is almost surely compactly
embedded. ✷

Example 5.5. Consider the superprocess corresponding to the quadruple

�5�5� ( 1
2�+ kx · ∇
 kd+ ε
 exp�k�x�2��Rd)


where ε > 0. The diffusion corresponding to L = 1
2� + kx · ∇ is conservative.

Also, we have λ∞c = −∞, if d ≥ 2, and λ±∞
c = −∞, if d = 1 ([15], Example 2).

Thus conditions (i), (ii) and (iv′) of Theorem 4.6 hold. According to that the-
orem, if in addition to the above conditions, inf x∈R

d w�x� > 0 [condition (iii)],
then the support of the superprocess would be transient. The claim below
shows the necessity of condition (iii) concerning w. [For examples where (i),
(iii) and (iv′) are satisfied in Theorem 4.6, but (ii) is not and the superprocess
has a recurrent support, see [15], Theorem 4.]
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Claim 5.5. The superprocess corresponding to (5.5) survives and has a
recurrent support.

Proof. We have λc�L� = −kd ([14], Example 2). Since λc�L� �= λ∞c , if
d ≥ 2, and λc�L� �= λ±∞

c , if d = 1, it follows from Theorem 4.7.2 in [14]
that L− λc�L� on R

d is a critical operator. The ground state for L− λc�L� is
φc�x� = exp�−k�x�2�. Let β = kd+ ε and α = exp�k�x�2�. Note that

λ∞c �L+ β� = −∞�
Make an h-transform on �L
β
α�Rd� with h = φc. Then

�L+ β�φc = �L+ kd�φc + ε

where �L + kd�φc corresponds to a recurrent diffusion process. The h-trans-
formed superprocess corresponds to ��L + kd�φc
 ε
 ε�D�� Since �L + kd�φc
corresponds to a recurrent diffusion process, by Theorem 4.5(b), the process
survives with positive probability and the support is recurrent. The same holds
then for the original process as well.

Remark. Claim 5.5 also shows that the result in Corollary 4.1 does not
hold in general for transient diffusions. Indeed, 1 ≤ α
 but, using Theorem 4.6,
it is easy to show that the superprocess corresponding to �L
β
1�Rd� has a
transient support.

6. Decomposition with immigration. In this section we present a gen-
eralization of the result in [5] on the decomposition of superprocesses with
immigration. Let � �D� denote the class of discrete measures on D and let
X�t� correspond to the quadruple �L
β
α�D�. Denote the corresponding prob-
abilities by �Pµ�. Let X̃�t� be the superprocess corresponding to the quadruple
�L
β− 2αw
α�D�
 where w is as in Theorem 3.1. By Theorem 3.1, X̃�t� cor-
responds to Pµ� · � extinction�. Let Bν�s� denote the branching diffusion with
motion process corresponding to Lw0 on D and branching term αw�x��z2 − z�
[that is, binary branching at the spatially dependent rate αw�x�], with initial
measure ν ∈ � �D�. Denote by N�s� the number of particles at time s for
s ≥ 0, and let

Zν�s� = 2
N�s�∑

1

α�Bνi�s��δBνi �s� for Bν�s� = {
Bνi�s�

}N�s�
i=1 �

Conditional on �Zν�s��∞s=0, let �R�t�
Pµ
 ν� be the superprocess obtained by
taking the process X̃�t� with starting measure µ and adding immigration,
where the immigration at time t is according to the measure Zν�t�. This is
described mathematically by the conditional Laplace functional

�6�1�
E
µ
 ν

(
exp

(−�R�t�
 f� − �Z�t�
 k�) ∣∣Zν�s�
 s ≥ 0
)

= exp
(−�µ
 ũf�·
 t�� −

∫ t
0
ds�Zν�s�
 ũf�·
 t− s�� − �Zν�t�
 k�

)





704 J. ENGLÄNDER AND R. G. PINSKY

for f
 k ∈ C+
c , where ũf denotes the minimal nonnegative solution to (1.2) with

g replaced by f and β and α replaced by �β − 2αw� and α
 respectively (see
also [5] and references therein). Denote by Nµ the law of the Poisson random
measure on D with intensity wµ and define the random initial measure η by

� �η� ≡ δµ ×Nµ�

Theorem 6.1. The law of R�t� under P
η is Pµ.

In [5], this result was proved when α and β are constant and the underly-
ing motion is a conservative Markov process (note that if L corresponds to a
conservative diffusion and α and β are positive constants, then αw = β and
Lw = L). The proof of Theorem 6.1 is a modification of the proof of Theorem 3.2
in [5], using Theorem 3.1 of this paper.

Remark. Letting k = 0 and choosing appropriate functions f in (6.1), it is
not hard to give alternative proofs for Theorem 4.4(a) and Theorem 3.6(ii).

Sketch of the proof. First, note that it is enough to prove the statement
for β = const. This follows by applying an h-transform with an h for which
βh = constant. (The existence of such an h follows by the paragraph before
Proposition 2.1.) Recall that Xh�t� = hX�t�. On the other hand, since αh =
αh, wh = w/h, and the new starting measure is hµ, the branching rate αw
and the intensity wµ for the Poisson random measure are invariant under
h-transforms, while the immigration term Zν�t� transforms into h ·Zν�t�.

Assume now that β = const. Using the method of the proof of Theorem 3.2
in [5], one has to show two things: that the one-dimensional distributions of
R�t� under δµ ×Nµ and the one-dimensional distributions of X�t� under Pµ
coincide, and that R�t� under δµ×Nµ is a Markov process. For the latter, one
can use Lemma 3.3 in [5] the same way as it is used in the proof of Theorem 3.2
in [5]. Concerning the one-dimensional distributions, the statement can be
formulated as follows. Let f ∈ C+

b �D�� Let u be the minimal nonnegative
solution to

�6�2�
ut = Lu+ βu− αu2 on D× �0
∞�


u�·
0� = f

and let ũ be the minimal nonnegative solution to

�6�3�
ut = Lu+ �β− 2αw�u− αu2 on D× �0
∞�


u�·
0� = f�
Then u− ũ = wG, where G is the minimal nonnegative solution to

�6�4�
Gt = Lw0G− αw�G2 −G� + 2αũ�1 −G� on D× �0
∞�


G�·
0� = 0
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(cf. [5], page 194). (Note that u − ũ is nonnegative by equation (22) in [5],
or alternatively by the parabolic maximum principle.) Using the fact that
Lw/w = αw − β and applying an h-transform on (6.4) with h = 1/w, one
obtains that wG is the minimal nonnegative solution to

�6�5�
vt = Lv+ �β− 2αũ�v− αv2 + 2αwũ on D× �0
∞�


v�·
0� = 0�

A simple computation shows that u − ũ also satisfies (6.5). In order to com-
plete the proof, we have to show the minimality of u − ũ. Recall that by the
construction of u in Lemma A1, u (ũ) is given as the monotone increasing
limit of certain solutions un (ũn), where un�·
 t� (ũn�·
 t�) vanishes outside Dn,
Dn �D for all t ≥ 0. Since u− ũ = limn→∞�un − ũn�, the minimality of u− ũ
follows by the parabolic maximum principle. ✷

7. Proofs for Sections 3 and 4. In the sequel we will frequently use the
following two maximum principles. In [15], these maximum principles were
proved for β, α > 0 constants; the proofs go through for our case without
difficulty.

Proposition 7.1 (Elliptic maximum principle). Let D ⊂ R
d be a bounded

C2
 η-domain, η ∈ �0
1
 and let β, α ∈ Cη�D̄�
 α > 0. Let v1, v2 ∈ C2
 η�D� ∩
C�D̄� satisfy v1, v2 > 0 in D, Lv1 +βv1 − αv2

1 ≤ min�0
Lv2 +βv2 − αv2
2� in D

and v1 ≥ v2 on ∂D. Then v1 ≥ v2 in D̄.

Proposition 7.2 (Parabolic maximum principle). LetD ⊂ R
d be a bounded

region and let β
α ∈ Cη�D̄�
 η ∈ �0
1
, with α > 0. Let 0 ≤ v1, v2 ∈ C2
1�D ×
�0
∞��∩C�D̄×�0
∞�� satisfy Lv1+βv1−αv2

1−�v1�t ≤ Lv2+βv2−αv2
2−�v2�t

in D× �0
∞�, v1�x
0� ≥ v2�x
0� for x ∈ D, and v1�x
 t� ≥ v2�x
 t� for x ∈ ∂D
and t > 0. Then v1 ≥ v2 in D̄× �0
∞�.

In the sequel we will use the following more general form of the log-Laplace
equation as well:

Eµ exp
(
−�g
X�t�� −

∫ t
0
�ψ
X�s��ds

)
= exp

(
−
∫
D
u�x
 t�µ�dx�

)



for all

0 ≤ g
 ψ ∈ Cc�D�
 µ ∈ �C�D�

where u ∈ C2
1�D× �0
∞�� is the minimal nonnegative solution of the equa-
tion

ut = Lu+ βu− αu2 + ψ on D× �0
∞�

u�·
0� = g�·��

(See [8], page 96.)
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We will also need the following lemma.

Lemma 7.1. Let x0 ∈ D and R > 0 be such that BR�x0��D� Then for any
t > 0
 and any finite measure µ compactly supported in BR�x0�,

Pµ
(�1
X�t�� = 0
X�s
D \BR�x0�

) = 0 for 0 ≤ s ≤ t) > 0�

Proof. Fix x0 ∈ D and R > 0 such that BR�x0��D. Let α ≥ A and β ≤ B
on BR�x0�. Define the events

Et ≡
{�1
X�t�� = 0

}

 At ≡

{
X�s
D \BR�x0�� = 0
0 ≤ s ≤ t}�

Let �ψn� be a nondecreasing sequence of smooth functions, satisfying 0 ≤
ψn ≤ n and

ψn�y� =
{

0
 if
∣∣y− x0

∣∣ ≤ R

n
 if y ∈ D \BR+1/n�x0��

Let un be the minimal nonnegative solution to

ut = Lu+ βu− αu2 + ψn on D× �0
∞�

u�·
0� = gn


where �gn� is as in the statement of Theorem 3.1. Then using the log-Laplace
equation, it is easy to see that

�7�1�
Pµ�Et ∩At� = lim

n→∞Eµ exp
(
−�gn
X�t�� −

∫ t
0
�ψn
X�s��ds

)

= lim
n→∞ exp

(
−
∫
un�x
 t�dµ

)
�

Without loss of generality, we may take x0 = 0. Define

fδ�t� = 1 + 1
t+ δ
 δ > 0�

Let η�x� be a smooth function defined on R
d and satisfying 0 ≤ η�x� ≤ �x� and

η�x� = �x�
 for �x� ≥ R/2� Define ρ�x� = �R − η�x��−2 and Gc
λ = C + λρ�x��
Let vδ�x
 t� = fδ�t�Gc
λ�x�� Clearly,

�7�2�
inf
�x�<R

vδ�x
0� → ∞ as δ→ 0 and

lim
�x�→R

vδ�x
 t� = ∞ ∀ t > 0�

Furthermore, for C and λ sufficiently large,

�7�3� Lvδ + βvδ − αv2
δ − �vδ�t ≤ Lvδ +Bvδ −Av2

δ − �vδ�t ≤ 0 in BR�x0��
To see this, write

Lvδ +Bvδ −Av2
δ − �vδ�t

= fδ
(
LGc
λ +BGc
λ −AG2

c
 λ� +A�fδ − f2
δ�G2

c
 λ −Gc
λf′δ�
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One can check that LGc
λ + BGc
λ − AG2
c
 λ ≤ 0 for C, λ large. Moreover, if

C ≥ 1/A, then AGc
λ ≥ 1 and thus

A
(
fδ − f2

δ

)
G2
c
 λ −Gc
λf′δ = Gc
λ

(
−AGc
λ
t+ δ + 1

�t+ δ�2
�1 −AGc
λ�

)
< 0�

Using (7.2), (7.3) and the parabolic maximum principle, it follows that, for
n ≥ 1


un�x
 t� ≤ v0�x
 t� ≡
(

1 + 1
t

)(
C+ λ�R− η�x��−2) for �x� < R


if C and λ are large enough. Therefore, by (7.1),

Pµ�Et ∩At� ≥ exp
(
−
∫
v0�x
 t�dµ

)
> 0� ✷

The following proposition will be used several times.

Proposition 7.3. The function φ from Theorem 4.1 is a positive solution
of minimal growth at ∂D.

Proof. For the case that α, β = const, D = R
d and Y�t� is conservative,

this follows by the construction of φ in [15], page 250, or by [15], equation (5.7)
and the paragraph that follows. The same proof goes through in general. ✷

Proof of Theorem 3.1. (i) As a first step, we construct u. It is easy to see
that

�7�4� lim
n→∞ exp

(−�gn
X�t��) = 1��1
X�t��=0��

Let µ ∈ �C�D�� Using the log-Laplace equation, we have

�7�5� Eµ exp
(−�gn
X�t��) = exp

(
−
∫
D
un�x
 t�µ�dx�

)



where un is the minimal nonnegative solution to

ut = Lu+ βu− αu2 on D× �0
∞�

u�·
0� ≡ gn�

By (7.5), it follows that un is monotone nondecreasing in n. Thus, from (7.4)
and (7.5), we have

�7�6�
Pµ

(�1
X�t�� = 0
) = lim

n→∞ exp
(
−
∫
D
un�x
 t�µ�dx�

)

= exp
(
−
∫
D
u�x
 t�µ�dx�

)

for µ ∈ �C�D�, where u�x
 t� ≡ limn→∞ un�x
 t�� For t > 0, the boundedness of
u�·
 t� on compact subsets of D follows from Lemma 7.1. Using an argument
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similar to the one appearing in [15], page 260, it follows that u > 0 solves
ut = Lu+βu−αu2 onD×�0
∞�� From (7.6) it follows that u�x
 t� is monotone
nonincreasing in t. Letting w�x� ≡ limt→∞ u�x
 t�
 and using the fact that∫
D u�x
 t�µ�dx� <∞, t > 0, we conclude that

�7�7� Pµ(extinction) = exp
(
−
∫
D
w�x�µ�dx�

)

 µ ∈ �C�D��

We now show that w ∈ C2
 η�D� and that w satisfies Lw + βw − αw2 = 0
in D. Let �Dm�∞m=1 be a sequence of domains with smooth boundaries such
that Dm �Dm+1 �D, m = 1
2
 � � � 


⋃∞
1 Dm = D. Let Y�t� be the diffusion

corresponding to L on D with the expectations �Ex� and let

τm ≡ inf
{
t ≥ 0� Y�t� /∈ Dm

}
�

By Itô’s formula, we have

un�x
 t� = Exun
(
Y��t− 1� ∧ τm�
 t− �t− 1� ∧ τm

)
+Ex

∫ �t−1�∧τm

0
�βun − αu2

n��Y�s�
 t− s�ds

It then follows by dominated convergence that

u�x
 t� = Exu
(
Y��t− 1� ∧ τm�
 t− �t− 1� ∧ τm

)
+Ex

∫ �t−1�∧τm

0
�βu− αu2��Y�s�
 t− s�ds�

Letting t→ ∞, it follows again by the dominated convergence theorem that

w�x� = Exw�Y�τm�� +Ex
∫ τm

0
�βw− αw2��Y�s�
 t− s�ds�

Let f1�x� = Exw�Y�τm�� and let f2�x� = Ex
∫ τm

0 �βw − αw2��Y�s�
 t − s�ds�
Let Gm denote the Green’s function for L in Dm. Then, as is well known,

f1�x� =
∫
∂Dm

∂Gm
∂ny

�x
y�w�y�dy


where ∂/∂ny denotes the inward normal derivative with respect to y, and

f2�x� =
∫
Dm

Gm�x
y��βw− αw2��y�dy�

Since L has nice coefficients and ∂Dm is a smooth boundary, �∂Gm/∂ny��x
y�
and Gm�x
y� are continuous in x for x �= y. Using this along with the domi-
nated convergence theorem, the fact that w is bounded on compacts and the
fact that

∫
Dm
Gm�x
y�dy <∞, it follows that f1 and f2 are continuous; thus

w is continuous. Once we know that w is continuous, it follows from standard
theory that f1 is in fact C2
 η and satisfies Lf1 = 0 in Dm� Similarly, it now
follows by the bootstrap method that f2 is C2
 η and satisfies Lf2 = βw−αw2

in Dm (see [7], page 21). Since m is arbitrary, and since w = f1 + f2, we
conclude that w ∈ C2
 η and Lw+ βw− αw2 = 0 in D.
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Using the strong maximum principle (Theorem 3.2.6 in [14]), it follows that
either w ≡ 0 on D or w > 0 on D.

It remains to prove the final statement in the theorem. First, note that
although the support of X�t� is not necessarily compactly embedded in D, by
the remark following Proposition 2.1 and by monotone convergence, (7.5) and
(7.6) remain valid for µ replaced by X�t�; that is, for t, T > 0


EX�t� exp
(−�gn
X�T��) = exp

(−�un�·
T�
X�t��)
 Pµ-a.s.

and

PX�t�
(�1
X�T�� = 0

) = exp
(−�u�·
T�
X�t��)
 Pµ-a.s.

Using this and the Markov property, we have for f ∈ C+
c 


Eµ
(
exp�−�f
X�t���� extinction

)
= lim
T→∞

Eµ
(
exp�−�f
X�t��)� �1
X�t+T�� = 0

)
= lim
T→∞

Eµ exp
(−�f
X�t��)PX�t�

(�1
X�T�� = 0
)

= lim
T→∞

Eµ exp
(−�f
X�t��) exp

(−�u�·
T�
X�t��)
= lim
T→∞

Eµ exp
(−�f�·� + u�·
T�
X�t��)�

We claim that

lim
T→∞

Eµ exp
(−�f�·� + u�·
T�
X�t��) = lim

T→∞
exp

(−�ûf
T�·
 t�
 µ�)

where ûf
T is the minimal nonnegative solution to (1.2) with g�·� replaced
by f�·� + u�·
T�. To see this, first assume that supD β < ∞� Let uf�·
 t� be
the minimal nonnegative solution to (1.2) with g�·� replaced by f�·�. Then
the finiteness of ûf
T follows from the fact that v�·
 t� = uf�·
 t� + u�·
T + t�
satisfies Lv+βv− αv2 ≤ vt, and is thus a supersolution [see the construction
of the minimal nonnegative solution to (1.2) given in the proof of Lemma A1].
Also, by the construction given in the proof of Lemma A1 and from (A.4),

Eµ exp
(−�f�·� + u�·
T�
X�t��) = exp

(−�ûf
T�·
 t�
 µ�)�
This equation holds then for the general case as well, since by the paragraph
before Proposition 2.1, there exist an h-transform for which the new β is con-
stant. [Note that f
u and ûf
T transform into f/h, u/h and ûf
T/h, respec-
tively, and µ and X�t� transform into hµ and hX�t�, respectively.] Therefore
by (7.7),

Eµ
(
exp

(−�f
X�t��) ∣∣ extinction� = lim
T→∞

exp
(−�ûf
T�·
 t� − u�·
T+ t�
 µ�)�

It is easy to check that v�T��x
 t� = ûf
T�x
 t� − u�x
T + t� satisfies v�T� ≥ 0
and

v
�T�
t = Lv�T� + �β− 2αûT�v�T� − α�v�T��2 on D× �0
∞�


v�T��·
0� = f�·��
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For the minimality of v�T� one can use the argument in the paragraph following
(6.5). Since �β − 2αûT� ↑ �β − 2αw�, using an argument similar to the one
appearing in [15], page 260, it follows that v ≡ limT→∞ v�T� is the minimal
nonnegative solution to

vt = Lv+ �β− 2αw�v− αv2 on D× �0
∞�

v�·
0� = f�·��

This completes the proof. ✷

Proof of Theorem 3.2. Let �Dn�∞n=1 be a sequence of domains with
smooth boundaries such that Dn �Dn+1 �D, n = 1
2
 � � � 


⋃∞
1 Dn = D. Let

wn be the minimal positive solution to

Lu+ βu− αu2 = 0 in Dn


lim
x→∂Dn

u�x� = ∞


u�x� = ∞ if x ∈ D \Dn�
Similarly as in the proof of Theorem 1 in [15], one can show that wn > 0 exists
and that

Pµ
(
X�t
D \Dn� = 0
 ∀ t > 0

) = exp
(
−
∫
D
wn�x�µ�dx�

)
�

By trivial probabilistic considerations, wn is monotone nonincreasing in D.
Let ŵ ≡ limn→∞wn in D. Then

�7�8� Pµ�C� = exp
(
−
∫
D
ŵ�x�µ�dx�

)
�

Using standard arguments, one can show that ŵ satisfies

�7�9� Lu+ βu− αu2 = 0 in D

(see the proof of Theorem 1 in [15]). Using the elliptic maximum principle, it
follows from the construction, that ŵ = wmax is the maximal solution to (7.9).

For the last statement of the theorem, let ûn�x
 t� be the function satisfying

Pδx
(�1
X�t�� = 0�X�s
D \Dn� = 0
 s ≤ t) = exp�−ûn�x
 t���

In the case of a ball, ûn�x
 t� = limm→∞ um�x
 t�
 where um is as in the proof of
Lemma 7.1; the general construction is similar. From the obvious monotonicity,
we can define

f�x� ≡ lim
n→∞ lim

t→∞
un�x
 t��

Then

Pδx
(
X�t� dies out ∩C) = exp�−f�x��




MEASURE-VALUED PROCESSES ON D ⊆ R
d 711

where C is as in the statement of the theorem. Using standard compactness
arguments again, one can show that f satisfies (7.9). Therefore f ≤ wmax; thus
from (7.8) it follows that

Pδx�X�t� dies out ∩C� = Pδx�C�� ✷

Proof of Theorem 3.3. The equivalence of (ii) and (iii) follows from (3.5),
(3.7) and (3.8). We now show that �i� → �ii�. If �1
X�t�� = 0, then by the
compact support property and the fact that X�0� ∈ �C�D�, it follows that

∞⋃
s=0

suppX�s� =
t⋃
s=0

suppX�s��D�

Therefore, Pµ�Cc � extinction� = 0
 for µ ∈ �C�D�.
Assume now that w = wmax = 0. Then by (7.8), Pµ�C� = 1 for µ ∈ �C�D�,

and thereforeX�t� obviously possesses the compact support property. The last
statement of the theorem now follows trivially. ✷

Proof of Corollary 3.1. For K sufficiently small, u ≡ K satisfies Lu +
βu − αu2 = βK − αK2 ≥ 0, thus by the elliptic maximum principle and the
construction of wmax (see the proof of Theorem 3.1) it follows that wmax ≥
K� Therefore, by (ii) of Theorem 3.3, w ≥ K
 and then by Theorem 3.1,
Pµ�survival� > 0� ✷

Proof of Theorem 3.4. Let �Dm�∞m=1 be a sequence of domains with
smooth boundaries such that Dm �Dm+1 �D, m = 1
2
 � � � 


⋃∞
1 Dm = D.

For each m, define a nondecreasing sequence of smooth functions �ψ�m�
n �∞n=1

satisfying 0 ≤ ψ�m�
n ≤ n and

ψ
�m�
n �x� =

{
0
 if x ∈ Dm

n
 if x ∈ D \D1/n

m 


where D1/n
m ≡ �x ∈ D� dist�x
Dm� < 1/n�� Also, for each m, define the event

Amt ≡ �X�s
D \Dm� = 0
 s ≤ t�� Let µ ∈ �C�D�, supp�µ� ⊂ D1. Using the
log-Laplace equation it follows that

�7�10�
Pµ�Amt � = lim

n→∞Eµ exp
(
−
∫ t

0

〈
ψ

�m�
n 
X�s�〉ds)

= lim
n→∞ exp

(
−
∫
D
un
m�x
 t�dµ�x�

)



where un
m is the minimal nonnegative solution to

ut = Lu+ βu− αu2 + ψ�m�
n on D× �0
∞�


u�·
0� ≡ 0�
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It follows from the log-Laplace equation, or alternatively from the parabolic
maximum principle, that un
m is monotone nondecreasing in n. Using stan-
dard bootstrap arguments together with an appropriate upper solution, one
can show that um�x
 t� ≡ limn→∞ un
m�x
 t� is finite and satisfies

�7�11�

ut = Lu+ βu− αu2 on D× �0
∞�

lim
t→0
u�x
 t� = 0
 x ∈ Dm


lim
x→∂Dm

u�x
 t� = ∞
 t > 0�

(An upper solution for (7.11) was constructed for β = α = 1�L = �D/2��,
D > 0 in [13], page 1380. A modification of that function works for the general
case, as well.) In fact, by the construction of um, it is easy to see that um is
the minimal nonnegative solution to (7.11). Since un
m is nonincreasing in m,
the same holds for um. Let u�x
 t� ≡ limm→∞ um�x
 t�� By standard bootstrap
arguments, 0 ≤ u�x
 t� and

�7�12�
ut = Lu+ βu− αu2 on D× �0
∞�


u�·
0� ≡ 0�

[Note that limt→0 u�x
 t� = 0 follows from the fact that um is nonincreasing
in m.] Using the parabolic maximum principle together with the above con-
struction of u, it follows that u is the maximal nonnegative solution to (7.12).
By (7.10) and monotonicity, we have

�7�13� Pµ

( ⋃
s≤t

suppX�s��D

)
= exp

(
−
∫
D
u�x
 t�µ�dx�

)
�

The theorem now follows from (7.12), (7.13) and the maximality of u. ✷

Proof of Theorem 3.5. Let u ≥ 0 be a solution to (3.9). Resolve L into
spherical coordinates as follows:

L = p�x� d
2

dr2
+ q�x� d

dr
+ terms involving differentiation not only in r,

where r = �x�� Then, by the assumptions of the theorem, p�x�/�1 + �x�2� and
q�x�/�1 + �x�� are bounded from above. Let β ≤ B and 0 < A ≤ α on R

d. Define

uR�x
 t� = �λ+ γr2��R− r�−2eKt
 �x� < R
 t ≥ 0


where r = �x� and γ
K and λ are to be fixed later. We will show that

�7�14� LuR + βuR − αu2
R − �uR�t ≤ 0 for all R > 0


if γ, K, λ are sufficiently large. Since limr→R uR�x
 t� = ∞, for x, t fixed,
and since uR�x
0� > 0, it follows from the parabolic maximum principle that
u�x
 t� ≤ uR�x
 t� for �x� < R, t > 0. Since limR→∞ uR�x
 t� = 0, we conclude
that u ≡ 0.
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It remains to prove (7.14). Note that

e−Kt
(
LuR + βuR − αu2

R − �uR�t
)

≤ e−Kt(LuR +BuR −Au2
R − �uR�t

)
= 6�R− r�−4p�λ+ γr2� + [

2p�2γr� + q�λ+ γr2�]2�R− r�−3

+ [
p�2γ� + q�2γr� + �B−K��λ+ γr2�]�R− r�−2

− [
α�λ+ γr2�2eKt

]�R− r�−4 ≡ F�
First, consider r > 1. Choose an M such that p�x� ≤ Mr2, q�x� ≤ Mr
 for
�x� = r > 1� Then, to show that F ≤ 0 for r > 1, it is enough to prove that

6Mr2�λ+ γr2� + 2
(
4γMr3 +Mr�λ+ γr2�)�R− r�

+ [
4Mr2γ −C�λ+ γr2�]�R− r�2

− α�λ+ γr2�2 ≡ I+ II+ III− IV ≤ 0


where C ≡K−B�
We consider separately the cases R ≤ 2r and R > 2r. When R ≤ 2r, an

easy computation shows that

I+ II ≤ 17Mr2�λ+ γr2��
Let 4M< C; that is, 4M+B < K. Then III < −Cλ�R− r�2 < 0
 and thus, it
is enough to have

17Mr2�λ+ γr2� ≤ α�λ+ γr2�2


which is satisfied if 17M/A ≤ γ�
Consider now the case R ≥ 2r. Then

II ≤ 8γMr2�R− r�2 + 2Mλ�R− r�2 + 2Mγr2�R− r�2

= �10Mγr2 + 2Mλ��R− r�2

≤ �10γ + 2λ�Mr2�R− r�2�

(In the last inequality we used the fact that r > 1.) Let −4M + C ≡ C0 > 0.
Then

III = �−Cλ−C0r
2γ��R− r�2


and thus

II+ III ≤ −Cλ�R− r�2 + [�10γ + 2λ�M−C0γ
]
r2�R− r�2�

Also, I− IV ≤ 0 if 6M/A ≤ γ.
In light of the above calculations, the inequality F ≤ 0 for all 0 ≤ r < R

will be satisfied if γ
K and λ are chosen as follows. First, choose γ = 17M/A�
Then choose λ so large that F ≤ 0 for r ≤ 1. This is possible because of the λ2

term in IV. Finally, let K be so large that(
10 + 2λ

γ

)
M ≤ C0 = −4M+C = −4M−B+K�
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that is, (
14 + 2λ

γ

)
M+B ≤K� ✷

Proof of Theorem 3.6. (i) Let �Dm�∞m=1 be a sequence of domains with
smooth boundaries such that Dm �Dm+1 �D,m = 1
2
 � � � 


⋃∞
1 Dm = D. Let

Y�t� be the diffusion corresponding to L on D with the probabilities �Qx�
and let

τm ≡ inf
{
t ≥ 0� Y�t� /∈ Dm

}
�

Assuming to the contrary that the compact support property holds, and us-
ing the notation and results of Theorem 3.4 and its proof, it follows that
limm→∞ um�x
 t� = 0� On the other hand, vm�x
 t� ≡ Qx�τm > t� satisfies

Lv− vt = 0 on Dm × �0
 t�

v�·
0� = 1


lim
x→∂Dm

v�x
 t� = 0
 t > 0


0 ≤ v ≤ 1�

Let v̂m =K�1 − vm�� Then for sufficently small K, v̂m satisfies

Lu+ βu− αu2 − ut = βu− αu2 ≥ 0 on Dm × �0
 t�

u�·
0� = 0


lim
x→∂Dm

u�x
 t� =K
 t > 0


0 ≤ u ≤K�
By the parabolic maximum principle, it follows 0 ≤ v̂m ≤ um and thus v̂m → 0
as m→ ∞. Therefore limm→∞ vm�x
 t� = 1 and thus limm→∞Qx�τm > t� = 1,
∀x ∈ D, t > 0� This shows that the diffusion is conservative and completes
the proof of (i).

(ii) Since the compact support property is invariant under h-transforms, the
superprocessX�t� corresponding to �L
β
α�D� has the compact support prop-
erty if and only if the same holds for Xw�t� corresponding to �Lw0 
 αw
αw�D��
The argument of (i) can now be applied to the latter process. ✷

Proof of Theorem 3.7. We will show that every bounded positive solu-
tion is minimal. Let h be a bounded positive solution to (3.10) and let 0 < ĥ
be any positive solution. Then f ≡ ĥ/h solves the h-transformed equation

Lh0f+ αhf− αhf2 = 0 in D�

To show that h is minimal, we will show that f ≥ 1. By Theorem 4.3, Lh0
corresponds to a recurrent diffusion process. We consider two cases separately.
Assume first that f < 1 on D. Then Lh0f < 0 follows on D, which contradicts
the recurrent property of the diffusion corresponding to Lh0 (see Theorem 4.3.9.
in [14]). Assume now that f�x0� < 1 for some x0 ∈ D and that ;̂ ≡ �x ∈
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D� f�x� < 1� �= D. Let ; be the connected component of ;̂ containing x0.
Clearly, Lh0f < 0 on ;. Since f�x� = 1 for x ∈ ∂;, applying Itô’s formula and
using recurrence gives

1 = Ex0
f
(
Y�σ;�

) ≤ f�x0� < 1


which is a contradiction. ✷

Proof of Theorem 4.1. The finiteness of φ on D \ D̄0 follows from (4.4)
and Lemma 7.1. The rest of the proof is identical with the proof of Theorem 1
in [15], which treated the case in which D = R

d and α, β are positive con-
stants. ✷

Proof of Theorem 4.2. First, we show that there are two possibilities,

φ > w on D \ D̄0

or

lim inf
x→∂D

φ

w
�x� = inf

x∈D\D̄0

φ

w
�x� = 0�

Making an h-transform with h = w, φ transforms into φw = φ/w, and φw

satisfies

Lw0 u+ αwu− αwu2 = 0 in D \ D̄0�

For the transformed equation, we have βw/αw = αw/αw = 1
 and thus the
same proof as in [15], proof of Theorem 2, shows that either

φw > 1 on D \ D̄0

or

lim inf
x→∂D

φw�x� = inf
x∈D\D̄0

φw�x� = 0�

Let A ≡ �X�t
D0� = 0
∀ t > 0�� Replacing w by φ in the proof of The-
orem 3.1, one can see that P�· � A� corresponds to �L
β − 2αφ
α�D \ D̄0��
Applying (3.5) to this new quadruple, we obtain

Pµ�extinction � A� = exp
(
−
∫
D\D̄0

w∗�x�µ�dx�
)



where w∗ solves the equation Lu + �β − 2αφ�u − αu2 = 0 in D \ D̄0. Since
either w∗ ≡ 0 in D \ D̄0 or w∗ is positive in D \ D̄0, there are two possibilities,

�7�15� Pµ�survival ∩A� = 0 for all µ satisfying suppµ�D \ D̄0


�7�16� Pµ�survival ∩A� > 0 for all µ satisfying suppµ�D \ D̄0�

Consider (7.15). We will show that φ > w. We have Pδx�A� = Pδx�A ∩
extinction� and thus by (4.4) it follows that

exp�−φ�x�� = Pδx�A � extinction�Pδx�extinction�
= Pδx�A � extinction� exp�−w�x���
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Letting P̃δx correspond to the quadruple �L
β− 2αw
α�D�
 it follows that

P̃δx�A� ≡ Pδx�A � extinction� = exp
(−�φ�x� −w�x��)�

By Theorem 4.1, φ−w = φ̃ > 0, where φ̃ is defined for P̃δx as φ is defined for
Pδx in Theorem 4.1.

Conversely, assume that φ > w on D \ D̄0. We will show that (7.15) holds
by showing that w∗ = 0, where w∗ is as in the paragraph before (7.15). Make
an h-transform with h = w. Then w∗
 h = w∗/h is the w-function for the
quadruple �Lw0 
 αw − 2αφ
αw�D \ D̄0�. Since, by assumption, αw − 2αφ <
−αw, it follows by the construction of w in Theorem 3.1 and the parabolic
maximum principle thatw∗
 h ≤ w̃, where w̃ is thew-function for the quadruple
�Lw0 
−αw
αw�D \ D̄0�. Also by the construction of w in Theorem 3.1 and
the parabolic maximum principle, w̃ ≤ w0, where w0 is the w-function for
the quadruple �Lw0 
−αw
αw�D�. Applying the last part of Theorem 3.1 to the
quadruple �Lw0 
 αw
αw�D�, which corresponds to Pw�·� and whose w-function
is 1, it follows that the quadruple �Lw0 
−αw
αw�D� corresponds to Pw�· �
extinction�. Thus, w0 = 0. We conclude then that w∗ = 0.

To complete the proof we have to show that the recurrence property for
the support does not depend on the choice of D0. By a simple argument, it is
enough to show the following. If D1

0 �D2
0 �D and (7.16) holds for D1

0
 then
(7.16) holds for D2

0 as well. Let Ai ≡ �X�t
Di0� = 0, ∀ t > 0�, i = 1
2� Let φi
denote the function φ defined for Di0 in D \Di0, i = 1
2� If (7.16) holds for D1

0,
then inf x∈D\D̂1

�φ1�x�/w�x�� = 0� By the minimal growth property of φ2 (see
Proposition 7.3), it follows that there exists aK > 0 such thatKφ1�x� > φ2�x�
on D \D∗, where D2

0 �D∗ �D� It follows that inf x∈D\D2
0
�φ2�x�/w�x�� = 0� ✷

Proof of Theorem 4.3. If d = 1, then the statement is a simple conse-
quence of the well-known integral test for recurrence/transience in one dimen-
sion (Theorem 5.1.1. in [14]).

For d ≥ 2 we use a minimax variational criterion for transience/recurrence
given in [14]. Let �Dn�∞n=1 be a sequence of smooth domains such that D1
is simply connected, Dn �Dn+1 and D = ⋃∞

n=1Dn� Let ;n = Dn \ D̄1� For
f ∈ C2
 η�∂D1�
 define

�7�17� µ
�f�
n �a
 b� = inf

g∈W1
2�;n�
g=ef on ∂D1
 g=0 on ∂Dn
�dist�x
∂Dn��−1g∈L∞�;n�

sup
h∈W1
2�;n
g2 dx�
h=f on ∂D1

D�g
h�


where

D�g
h� = 1
2

∫
;n

dxg2
[(∇g

g
− a−1b

)
a

(∇g
g

− a−1b

)

−(∇h− a−1b
)
a
(∇h− a−1b

)]
�
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By Theorem 6.6.1. in [14], the diffusion corresponding to L (L̂� is recurrent
on D if and only if

�7�18� lim
n→∞µ

�f�
n �a
 b� = 0

(
lim
n→∞µ

�f�
n �a
 b+ a∇Q� = 0

)

for some (or equivalently, all) f ∈ C2
 η�∂D1�� The convergence to zero is thus
independent of the particular choice of f.

Consider µ�f�
n �a
 b + a∇Q�� Make the substitution G ≡ ge−Q
H ≡ h −Q,

and note that the boundary conditions g = ef, g = 0, h = f appearing in the
minimax formula become G = ef−Q, G = 0, H = f−Q. Since Q and ∇Q are
bounded on ;n, it follows that g ∈W1
2�;n� if and only if G ∈W1
2�;n� and
that h ∈ W1
2�;n
g2 dx� if and only if H ∈ W1
2�;n
G2 dx�. Also, the last
condition on g under the infimum in (7.17) is clearly equivalent to the same
condition on G. Therefore

µ
�f�
n �a
 b+ a∇Q�

= inf
G∈W1
2�;n�

G=ef−Q on ∂D1
G=0 on ∂Dn
�dist�x
∂Dn��−1G∈L∞�;n�

sup
H∈W1
2�;n
G2 dx�
H=f−Q on ∂D1

1
2

∫
;n

dxG2e2Q

×
[(∇G

G
− a−1b

)
a

(∇G
G

− a−1b

)
− �∇H− a−1b�a�∇H− a−1b�

]
�

It follows that

�7�19�

(
inf
x∈;n

exp�2Q�x��
)
µ
�f−Q�
n �a
 b� ≤ µ�f�

n �a
 b+ a∇Q�

≤
(

sup
x∈;n

exp
(
2Q�x�))µ�f−Q�

n �a
 b��

The theorem now follows from (7.18) and (7.19).

Proof of Theorem 4.4. (a) Make an h-transform with h = w. ThenXw�t�
corresponds to �Lw0 
 αw
αw�D�. Let φ̃ and w̃ denote the φ-function of Theo-
rem 4.1 and the w-function of Theorem 3.1 for the quadruple �Lw0 
 αw
αw�D�.
Under an h-transform, the w-function transforms to w/h; thus w̃ = 1. By as-
sumption, Lw0 corresponds to a recurrent diffusion on D; thus a simple modifi-
cation of the proof of Theorem 3.7 then shows that φ̃ > 1. Therefore, φ̃/w̃ > 1
and by Theorem 4.2, the support of Xw�t� is recurrent. The same therefore
holds for X�t�.

(b) Part (b) follows from part (a) and Theorem 4.3.
(c) If β/α ≤ c, then u ≡ c0 satisfies Lu + βu − αu2 ≤ 0, for any c0 ≥ c.

Recall that φ = limn→∞φn where φn is the minimal positive solution to (4.2).
Furthermore, φn = limm→∞ v

�n�
m 
 where v�n�m satisfies

Lv+ βv− αv2 + ψn = 0 in Dm


v = 0 on ∂Dm
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and �Dm�∞m=1 and �ψn�∞n=1 are as in Theorem 4.1. This was proved in [15] in
the case D = R

d and α, β = const; the same proof goes through in general.
Thus, we have φ = limn→∞ limm→∞ v

�n�
m . From this representation for φ, along

with the elliptic maximum principle, it follows by comparison with u = c0 that
φ ≤ c0 on D \D0, for c0 sufficently large. Thus inf x∈D\D0

�φ�x�/w�x�� = 0, and
by Theorem 4.2 the support is transient. ✷

Proof of Corollary 4.1. By Theorem 4.4(c), w is bounded for the quad-
ruple �L
β
α�D�� Using the construction of w, along with the parabolic max-
imum principle, the w-function for the quadruple �L
 β̂
 α̂�D� is bounded as
well. Thus, if the latter process survives with positive probability, then by
Theorem 4.4(b) it has a recurrent support. ✷

Proof of Theorem 4.5. (a) By Proposition 3.1, w ≡ K/ε for the process
corresponding to �L
K
 ε�D�, and therefore by Theorem 4.4(b), it has a recur-
rent support. Part (a) now follows from Corollary 4.1.

(b) By Theorem 4.3.3(i) and Theorem 4.6.3(i) in [14], λc�L + β� > 0 on
D and therefore, by Theorem 4.9, there is no local extinction. Consequently,
the process survives with positive probability and the proof now follows as in
part (a). ✷

Proof of Theorem 4.6. We assume d ≥ 2 (the proof for d = 1 is simi-
lar). First, assume that (i)–(iv) hold. Consider the h-transformed process with
h = w. The corresponding quadruple is �Lw0 
 αw
αw�D�. Let φ̃ and w̃ de-
note the φ-function and the w-function for this new quadruple. As in the
proof of Theorem 4.4, we have w̃ ≡ 1. We will show that infD φ̃ = 0, which,
by Theorem 4.2, proves that the support is transient. Note that by (iii) and
Theorem 4.3, Lw0 corresponds to a transient diffusion on D. By (iv) and The-
orem 3.6(ii), Lw0 corresponds to a conservative diffusion on D. Using (ii) and
the invariance of λc
∞ under h-transforms, we have

λc
∞
(
Lw0 + αw) = λc
∞

(
Lw − Lw

w
+ αw

)

= λc
∞�Lw + β� = λc
∞��L+ β�w� < 0�

Thus, we can choose a D̂�D and an ε > 0 such that there exists a u > 0 on
D \ D̂ satisfying

�7�20� �Lw0 + αw+ ε�u = 0 in D \ D̂�

Let Y�t� denote the diffusion corresponding to Lw0 on D with probabilities
�Qx� and define

τ ≡ inf
{
t ≥ 0� Y�t� ∈ D̂}

�
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Then, using (7.20) and applying Itô’s formula gives

�7�21�
0 ≤ Exu�Y�t ∧ τ��

= u�x� − �αw+ ε�Ex
∫ t∧τ

0
u�Y�s��ds for x ∈ D \ D̂�

We will show that infD\D̂ u = 0� Assume to the contrary that infD\D̂ u > 0.
Since Y�t� is conservative and transient, it follows that

�7�22� 0 < Qx
(
Y�t� ∈ D \ D̂
 ∀ t > 0

) ∀x ∈ D \ D̂�
Letting t→ ∞ in (7.21), it follows by (7.22) that the right-hand side tends to
−∞, which is a contradiction. Thus infD\D̂ u = 0
 and using the minimality of
φ̃ on D \ D̂, it follows from the elliptic maximum principle that infD\D̂ φ̃ = 0�

Now assume (iv′) in place of (iv). Then an equation similar to (7.21) can be
obtained, where Y�t� corresponds to L and αw is replaced by β ≥ 0. The rest
of the proof is the same as before. ✷

Proof of Theorem 4.7. Assume first that the support of X�t� is recur-
rent. Then by Theorem 4.2, w < φ on D \ D̄0� By assumption, the compact
support property holds; thus by Theorem 3.3, w = wmax� Therefore, if u solves
(3.4), it follows that u ≤ wmax = w < φ on D \ D̄0� Since φ is of minimal
growth, the same is true for u.

Assume now that the support of X�t� is transient. Then by Theorem 4.2,
there is no c > 0 such that cφ > w on D \ D̄0; therefore w is not of minimal
growth. ✷

Proof of Theorem 4.8. Let A ≡ �X�t
;� = 0
 ∀ t > 0�, let C = �the
range of X�t� is compactly embedded� and let E = �X�t� becomes extinct�.
By Theorem 4.1,

�7�23� Pδx�A� = exp�−φ�x�� for x ∈ D \ ;̄

where φ is the minimal positive solution to (4.6). Using arguments similar to
the ones appearing in the proofs of Theorem 3.2 and Theorem 4.1 and using
the uniqueness of the elliptic solution with boundary blow-up for annular
domains of the type ;̂ \ ;̄, where ;� ;̂�D (see [10]), one can show that

�7�24� Pδx�A ∩C� = e−ŵ for x ∈ D \ ;̄

where ŵ is the maximal positive solution to (4.6). From (7.23) and (7.24) it
follows that the uniqueness of the positive solution to (4.6) is equivalent to
Pδx�A ∩C� = Pδx�A� for x ∈ D \ ;̄. On the other hand, the recurrence of the
support is equivalent to Pδx�A ∩ E� = Pδx�A� for x ∈ D \ ;̄. If the compact
support property holds, then Pδx�C$E� = 0 by (3.8) and Theorem 3.3. Thus
Pδx�A ∩ C� = Pδx�A ∩E�� This proves the theorem except for the last state-
ment. Take any function u > 0 satisfying

Lu+ βu− αu2 = 0 in D \ ;̄�
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By the maximality of ŵ, u ≤ ŵ on D \ ;̄. On the other hand, since ŵ is the
unique solution to (4.6), it follows that ŵ = φ, where φ is as in Theorem 4.1. By
Proposition 7.3, φ is a solution of minimal growth at ∂D; thus ŵ is a solution
of minimal growth at ∂D, and consequently, so is u. ✷

APPENDIX A

Construction of the (L, �, �; D)-superprocess. Particle picture ap-
proximation and the martingale formulation for the superdiffusion.
Let D ⊆ R

d be a domain and let L be as in (1.1). Let α, β ∈ Cη�D�, η ∈ �0
1
,
satisfy α > 0 and supD β < ∞. Denote by Tt the semigroup corresponding to
L on D with the Dirichlet boundary condition. Denote by C+

b �D� the space
of nonnegative, bounded, continuous functions on D. We will denote bounded
pointwise convergence on C+

b �D� by gn → g.
We state and prove two lemmas.

Lemma A1. (i) Let g ∈ C+
b �D� and consider the semilinear equation

�A�1�
ut = Lu+ βu− αu2 on D× �0
∞�


u�·
0� = g�·��
There exists a minimal nonnegative solution u ∈ C2
1�D × �0
∞�� ∩ C�D ×
�0
∞�� for (A.1) and sup0≤s≤t +u�·
 s�+∞ < ∞
 for all t > 0� Finally, when α
and β are bounded, u is the unique function which solves the mild equation

�A�1∗� u�·
 t� = Ttg +
∫ t

0
dsTsφ�u�·
 t− s��


with sup0≤s≤t +u�·
 s�+∞ <∞ for all t > 0, where φ�z� = βz− αz2.
(ii) Let Vt�g� ≡ u�·
 t�� Then

�A�2� Vt+s�g� = VtVs�g�
and the map g → Vt�g� is continuous with respect to bounded pointwise
convergence on C+

b �D�.

Proof. (i) We construct the minimal solution for (A.1). Let �Dn�∞n=1,
Dn �Dn+1 be a sequence of smooth domains such that

⋃∞
n=1Dn = D. Let

0 ≤ gn ∈ C2
c�Dn�
 gn ↑ g, n = 1
2
 � � � � Denote by T�n�

t the strongly continuous
semigroup corresponding to L on Dn with the Dirichlet boundary condition.
Let �0�Dn� = �u ∈ C�Dn�; u = 0 on ∂Dn�. Since α�x� and β�x� are bounded
on Dn, φ is locally Lipschitz continuous on C+

b �Dn�. Thus by Theorem 6.1.4 in
[11] it follows that there is a tmax ≤ ∞ such that (A.1∗) has a unique solution
un on �0
 tmax� withD replaced byDn and Ts replaced by T�n�

s , for every n ∈ N.
Since the map φ� �0�Dn� → �0�Dn� is continuously differentiable and since
gn ∈ � �L
Dn�, the domain of the infinitesimal generator of the semigroup
T

�n�
t , applying Theorem 6.1.5 in [11], it follows that un ∈ C2
1�Dn × �0
 tmax��,
un�·
 t� ∈ �0�Dn�, for t ∈ �0
 tmax�, and un satisfies (A.1) on �0
 tmax� with g
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replaced by gn, Ts replaced by T�n�
s and D replaced by Dn. Also, 0 ≤ un (see

the argument in [8], page 115). Let B ≥ max�+g+
 supx∈D β�x�� and consider
the function û�t� = BeBt� Using the parabolic maximum principle, it is easy to
show that un�·
 t� ≤ û�t�, t > 0, for every n ∈ N. Therefore by Theorem 6.1.4 in
[11] again, it follows that tmax = ∞ for every n ∈ N. By the parabolic maximum
principle, un is monotone increasing in n. Define u = limn→∞ un ≤ û. Using
an argument like the one used in [15] [where it is shown that the function v
appearing in the proof of Theorem 6 of that paper satisfies equation (5.2) of
that paper], it can be shown that u is in fact a solution for (A.1). The minimal-
ity of u follows from the parabolic maximum principle. For the last statement
in (i), assume that α and β are bounded. Using bounded convergence, it is
easy to see that u satisfies (A.1∗) as well. Using Gronwall’s inequality (see
Theorem 1.4. in [16]), it can be shown that u is the unique solution to (A.1∗)
satisfying sup0≤s≤t +u�·
 s�+∞ <∞, for every t > 0.

(ii) It is easy to see that (A.2) is a consequence of the minimality. We now
prove the continuity of the map g→ Vt�g� with respect to bounded pointwise
convergence on C+

b �D�. Let 0 < t be fixed. Let u = Vt�g�, u�n� = Vt�gn�, and
assume that gn → g. Let hn = g − gn. Then f�n� ≡ u− u�n� satisfies

Lf�n� + β�n�f�n� − f�n�t = 0


f�n��·
0� = hn�·�

where β�n� = β−α�u+u�n��. Since β�n� < β ≤ B, it follows from the Feynman–
Kac formula that �f�n��x
 t�� ≤ eBtEx�hn�Y�t���� Since hn → 0, it follows by
bounded convergence that f�n� → 0. ✷

Lemma A2. Let Vt be as in Lemma A1(ii). Then:

(a) Vt�0� = 0;
(b) Vt is continuous on C+

b �D�;
(c) Vt is negative semidefinite on C+

b �D�; that is,

n∑
i
 j=1

λiλjVt�fi + fj� ≤ 0 if
n∑
i

λi = 0
 ∀n ∈ N
 fi ∈ C+
b �D��

Proof. (a) and (b) follow trivially from Lemma A1. We now show (c). Let
V

�n�
t �g� = un�·
 t� for g ∈ C+

b �D�, where un is as in the proof of Lemma A1.
Since un satisfies (A.1∗), using the argument in [4], page 1215, it follows that
V

�n�
t is negative semidefinite on C+

b �D� for every n ∈ N. Since u = limn→∞ un,
Vt is also negative semidefinite on C+

b �D�. ✷

Theorem A1. Let α > 0, β ≤ B <∞ and let Vt correspond to the operator
Lu+ βu− αu2. Let �t�·� = exp�−Vt�·�� on C+

b �D� and let

�A�3� � �t
 µ
g� ≡ exp
(
−
∫
D
Vtg�x�µ�dx�

)

 g ∈ C+

b �D�
 µ ∈ �F�D��
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Then � �t
 µ
g� is a Laplace-transition functional; that is, there exists a unique
finite measure-valued Markov process, X�t�, such that

�A�4� � �t
 µ
g� = Eµ exp
(−�X�t�
 g�) for g ∈ C+

b �D�
 µ ∈ �F�D��

Proof. By Lemma A.2, �t satisfies the following:

(a) �t�0� = 1�
(b) �t is continuous on C+

b �D� with respect to bounded convergence;
(c) �t ≥ 0�
(d) �t is positive definite; that is,

n∑
i
 j=1

λiλj�t�fi + fj� ≥ 0 for all λi ∈ R
 1 ≤ i ≤ n and n ∈ N�

(For the proof of property (d), see [2], page 74.)
Using (a)–(d), and following the proof of Corollary A.6 in [6], it follows that

for every x ∈ D and t > 0 fixed, there exists a unique probability measure
Px
 t on �F�D� satisfying

�t�g��x� =
∫
�F�D�

exp
(−�ν
 g�)Px
 t�dν� for g ∈ C+

b �D��

(Although Corollary A.6 in [6] asserts the result for nonnegative bounded
measurable functions, the proof works for C+

b �D� as well.)
In order to complete the proof, note that V0 = I by definition, and Vt+s =

VtVs by Lemma A1(ii). ✷

We call the measure-valued process constructed in Theorem A1 the �L
β

α�D�-superprocess.

Let Y�t� be the diffusion process corresponding to the generalized mar-
tingale problem for L on D (see 1.13 in [14]). The diffusion, which lives on
D∗ = D ∪ ���
 the one-point compactification of D, enters � and remains
there forever once it leaves D. For each positive integer n, consider Nn par-
ticles, each of mass 1/n, starting at points x�n�i ∈ D, i = 1
2
 � � � 
Nn, and
performing independent branching diffusion according to the motion process
Y�t�, with branching rate cn, c > 0 and branching distribution �p�n�

k �x��∞k=0,
where

�A�5�

en�x� ≡
∞∑
k=0

kp
�n�
k �x� = 1 + γ�x�

n



v2
n�x� ≡

∞∑
k=0

�k− 1�2p
�n�
k �x�

=m�x� + o�1� as n→ ∞
 uniformly in x�
m, γ ∈ Cη�D�, η ∈ �0
1
 and m�x� > 0. Let µn = �1/n�∑Nn

i=1 δx�n�i
. Let Nn�t�

denote the number of particles alive at time t and denote their positions by
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�Xn
i �t��Nn�t�

i=1 . Denote by �F�D� ��F�D∗�� the space of finite measures on D

�D∗�. Define an �F�D∗�-valued process Xn�t� by Xn�t� = �1/n�∑Nn�t�
i=1 δXn

i �t�.

Denote by P�n�
µn the probability measure on D��0
∞�
�F�D∗�� induced by

Xn�t�� The notation w-lim denotes the limit in the weak topology.

Theorem A2. Assume that m�x� and γ�x� are bounded from above. Let
w-limn→∞ µn = µ ∈ �F�D�. Then there exists a P∗

µ ∈ C��0
∞�
�F�D∗��
such that P∗

µ = w − limn→∞ P
�n�
µn . Define Pµ ∈ C��0
∞�
�F�D�� by Pµ�·� =

P∗
µ�· ∩D� and let X�t� be the process corresponding to Pµ. Then X�t� is an

�L
β
α�D�-superprocess, where L corresponds to Y�t� on D, β = cγ�x� and
α�x� = �1/2�cm�x�� Furthermore,

�A�6� Mf�t� ≡ �f
X�t�� − �f
X�0�� −
∫ t

0
��L+ β�f
X�s��ds

is a martingale for f ∈ C2
c�D�, with increasing process

�A�7� �Mt�f�� = 2
∫ t

0
�X�s�
 αf2�ds�

Assume in addition that Y�t� is conservative on D. Then D∗ and C2
c�D� in the

statement above can be replaced by D and C2
const�D� ≡ �f ∈ C2�D�� ∃;�D

such that f ≡ const on D \;�, respectively.

Before proving the theorem, we need a lemma.

Lemma A3. Let β ≤ B, let µ ∈ �F�D� be such that nµ is integer valued,
and let τ ≤ t be a stopping time. Then

�A�8� E�n�
µ �1
X�τ�� ≤ �µ
1�eBt

and

�A�9� E�n�
µ

∫ τ
0
�X�s�
 β�ds ≤ �µ
1��eBt − 1�
 n = 1
2
 � � � �

Proof. Define β��� = α��� = Lf��� = 0 and define

C2
const�D∗� ≡ {

f ∈ C2�D� ∩C�D∗�� ∃;�D such that f ≡ const on D∗ \;}�
Note that C2

const�D∗� separates points in �F�D∗� and is closed under addition.
A modification of the argument on page 60 in [16] shows that if f ∈ C2

const�D∗�,
then

�A�10� Mt�f� ≡ �f
X�t�� − �f
X�0�� −
∫ t

0
��L+ β�f
X�s��ds
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is a P�n�
µ -martingale, n = 1
2
 � � � 
 with increasing process

�Mn�f��t =
∫ t

0
�X�s�
 �cm+ δn�f2�ds→ 2

∫ t
0
�X�s�
 αf2�ds

as n→ ∞
 where supx∈D �δn�x�� → 0 as n→ ∞� From the above martingale
property and the optional sampling theorem, it follows that

E
�n�
µ �X�τ�
1� = �µ
1� +E�n�

µ

∫ τ
0
�X�s�
 β�ds

≤ �µ
1� +BE�n�
µ

∫ t
0
�X�s�
1�ds�

Let Z�n�
µ �τ� ≡ E�n�

µ �X�τ�
1�� Then Z�n�
µ �τ� ≤ Z�n�

µ �0�+B ∫ t
0 Z

�n�
µ �s�ds and (A.8)

follows by Gronwall’s inequality.
The above calculation along with (A.8) now gives

E�n�
µ

∫ τ
0
�X�s�
 β�ds = E�n�

µ �1
X�τ�� − �µ
1� ≤ �µ
1��eBt − 1��

This proves (A.9).

Proof of Theorem A2. We are going to use a modification of the argu-
ment given in [16], where the statement is proved for the case β ≡ 0, α = const
and Y�t� conservative. First, we show that �P�n�

µn �∞n=1 is tight on D��0
∞�,
�F�D∗��. Using a modification of Theorem 2.3 in [16], it will suffice to show
that the following three claims are true:

(i) lim
K→∞

sup
n
P�n�
µn

(
sup
t≤T

�X�t�
1� ≥K
)
= 0 for all T > 0�

For all n ∈ N, ε > 0, and K ∈ R
 and for all f ∈ C2
const�D∗�, there exists a

δ = δ�n
 ε
K
f� such that

(ii)
P�n�
µn

(∫ τn+δ
τn

∣∣�X�s�
 �L+ β�f�∣∣ds ≥K)
< ε

for every stopping time τn ≤ n�

For all n ∈ N, ε > 0, and K ∈ R
 and for all f ∈ C2
const�D∗�
 there exists a

δ = δ�n
 ε
K
f� such that

(iii)
P�n�
µn

(∫ τn+δ
τn

∣∣�X�s�
 αf2�∣∣ ≥K)
< ε

for every stopping time τn ≤ n�
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By the martingale inequality and Lemma A3, we have

P�n�
µn

(
sup
t≤T

[
�X�t�
1� −

∫ t
0
�β
X�s��ds

]
> K

)

≤ 1
K
E�n�
µn

∣∣∣∣�X�T�
1� −
∫ T

0
�β
X�s��ds

∣∣∣∣
≤ 1
K

(
E�n�
µn

�X�T�
1� +
∣∣∣∣E�n�
µn

∫ T
0
�β
X�s��ds

∣∣∣∣
)

≤ 1
K

[�µn
1�eBT + �µn
1��eBT − 1�]
= 1
K

�µn
1��2eBT − 1��

Since by Gronwall’s inequality, the event �∃ t ≤ T� �X�t�
1� > KeBT� is con-
tained in the event �∃ t ≤ T� �X�t�
1� − ∫ t

0�β
X�s��ds > K�, we have

P�n�
µn

(
sup
t≤T

�X�t�
1� > L
)

≤ P�n�
µn

(
sup
t≤T

[
�X�t�
1� −

∫ t
0
�β
X�s��ds

]
> Le−BT

)

≤ e
BT

L
· �µn
1��2eBT − 1�


for all T > 0, L > 0
 and n ∈ N� Since �µn
1� → �µ
1� as n→ ∞, (i) follows.
We prove now (ii). Let f ∈ C2

const�D�� Then by Lemma A3 again,

E�n�
µn

∫ τn+δ
τn

∣∣�X�s�
 �L+ β�f�∣∣ds
= E�n�

µn
EXτn

∫ δ
0

∣∣�X�s�
 �L+ β�f�∣∣ds
≤ e

Bδ − 1
B

E�n�
µn

�Xτn

1�∥∥�L+ β�f∥∥∞

≤ e
Bδ − 1
B

�µn
1�eBn
∥∥�L+ β�f∥∥∞�

Thus, by Chebyshev’s inequality,

P�n�
µn

(∫ τn+δ
τn

∣∣�X�s�
 �L+ β�f�∣∣ds ≥K)

≤ �eBδ − 1�eBn
BK

�µn
1�
∥∥�L+ β�f∥∥∞�

This proves (ii). The calculation for (iii) is essentially the same. This completes
the proof of tightness.
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Let P
�nj�
µnj

→ P∗ weakly on D��0
∞�
�F�D∗��, where �nj� is a subse-
quence. We show that P∗ is uniquely determined. Let Gf�ν� = F��f
 ν�� for
f ∈ C2

const�D∗�, F ∈ C2
b�R� and ν ∈ �F�D∗�. Also, let G′

f�ν� = F′��f
 ν�� and
G′′
f�ν� = F′′��f
 ν��. Then, similarly as in [16], one obtains that the generator

L
�n� of the particle system at the nth level satisfies

L
�n�Gf�ν� = G′

f�ν��Lf
 ν� + n−1G′′
f�ν��Lf2 − 2fLf
 ν�

+
n∑
i=1

cn2
〈
pi

(
Gf

(
ν + i− 1

n
δ

)
−Gf�ν�

)

 ν

〉

Using a Taylor expansion (cf. [16], page 62), we have

L
�n�Gf�ν� = G′

f�ν��Lf
 ν� +O�n−1�
+ cn2(G′

f�ν�n−1��en − 1�f
 ν� + 1
2G

′′
f�ν�n−2�mf2
 ν� + o�n−2�)�

Using that cn�en − 1� = β, cm = 2α, it follows that

LGf�ν� ≡ lim
n→∞ L

�n�Gf�ν� = G′
f�ν�

〈�L+ β�f
 ν� +G′′
f�ν��αf2
 ν��

Then, using Lemma A3, a similar calculation to the one in [16], pages 62
and 63, shows that

�A�11� Gf�X�t�� −Gf�X�0�� −
∫ t

0
LGf�X�s��ds

is a P∗-martingale.
Define �V̂t�f�� for f ∈ C�D∗� and t ≥ 0 as follows:

�V̂t�f���x� = �Vt�f���x�
 x ∈ D

�V̂t�f����� = f���


where Vt is the semigroup defined in Lemma A1. Then, using (A.11) and
Lemma 1.5 of [16], it follows that, for f ∈ C2

const�D∗�

Nf�t� ≡ exp

(−�X�t�
 V̂T−tf�
)

 0 ≤ t ≤ T


is a martingale under P∗, for all T > 0. Let 0 ≤ s < t = T and µ, ν ∈ �F�D∗�.
Then using the martingale property, we obtain

Eν
(
exp�−�X�t�
 f�� ∣∣X�s� = µ) = Eν(Nf�t� ∣∣X�s� = µ) = exp

(−�µ
 V̂t−sf�
)
�

Since C�D∗� separates points in D∗, it follows that P∗ is uniquely determined
on the space D��0
∞�
�F�D∗��.

That Mf�t� is a P∗-martingale for f ∈ C2
const�D∗� follows from Theorem 1.3

of [16], where the statement is proved for the case β ≡ 0, α = const and Y�t�
conservative; the proof goes through for the general case without difficulties.

Denote X�t� ≡ X∗�t��D. Then applying the log-Laplace equation for func-
tions in C+

c �D�, it follows that P�X�t� ∈ · � corresponds to the quadruple
�L
β
α�D�. Also,Mf�t� is a martingale for f ∈ C2

c�D� underP. The branching
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term β�x�z− α�x�z2 guarantees that X�t� is actually supported on C��0
∞�,
�F�D�� (cf. [16], Theorem 1). Finally, consider the case whenY�t� is conserva-
tive on D. Then in the proof above one could work just as well with D instead
of D∗. To see that the resulting process coincides with the one obtained by
working first on D∗ and then restricting the process to D, it is enough to note
that the log-Laplace functionals coincide on C+

c �D�, and therefore on C+
b �D�

as well. ✷

APPENDIX B

Summary of results in criticality theory. Let

L = 1
2∇ · a∇ + b · ∇ +V

be a strictly elliptic operator defined on a domain D ⊆ R
d with smooth coef-

ficients. Then there exists a corresponding diffusion process X�t� on D that
solves the generalized martingale problem for L−V onD (see [14], Chapter 1).
The process lives on D∗ = D ∪ � with � playing the role of a cemetery state.
We denote by Px and Ex the corresponding probabilities and expectations and
define the transition measure p�t
 x
 dy� for L by

p�t
 x
B� = Ex
(

exp
(∫ t

0
V�X�s��ds

)
�X�t� ∈ B

)



for measurable B ⊆ D.

Definition. If∫ ∞

0
p�t
 x
B�dt = Ex

∫ ∞

0
exp

(∫ t
0
V�X�s��ds

)
1B�X�t��dt <∞


for all x ∈ D and all B�D, then

G�x
dy� =
∫ ∞

0
p�t
 x
 dy�dt

is called the Green’s measure for L on D. If the above condition fails, then the
Green’s measure for L on D is said not to exist.

In the former case, G�x
dy� possesses a density, G�x
dy� = G�x
y�dy,
which is called the Green’s function for L on D.

For λ ∈ R
 define

CL−λ�D� = {
u ∈ C2�D�� �L− λ�u = 0 and u > 0 in D

}
�

The operator L− λ on D is called subcritical if the Green’s function exists
for L − λ on D; in this case CL−λ�D� �= �. If the Green’s function does not
exist for L−λ on D, but CL−λ�D� �= �, then the operator L−λ on D is called
critical. In this case, CL−λ�D� is one-dimensional. The unique function (up to
a constant multiple) in CL−λ�D� is called the ground state of L on D. Finally,
if CL−λ�D� = �, then L− λ on D is called supercritical.
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A handy alternative way of characterizing subcritical operators is as follows:
L on D is subcritical if and only if there exists a φ ∈ C2
 η�D�, η ∈ �0
1

satisfying φ > 0, Lφ ≤ 0 and Lφ �≡ 0.

If V ≡ 0, then L is not supercritical on D since the function f ≡ 1 satisfies
Lf = 0 onD. In this case L is subcritical or critical onD according to whether
the corresponding diffusion process, X�t�, is transient or recurrent on D. If
V ≤ 0 and V �≡ 0, then L is subcritical on D.

In terms of the solvability of inhomogeneous Dirichlet problems, subcriti-
cality guarantees that the equation Lu = −f inD has a positive solution u for
every 0�f ∈ Cηc �D�. If subcriticality does not hold, then there are no positive
solutions for any 0�f ∈ Cηc �D��

One of the two following possibilities holds. (1) There exists a number
λc�D� ∈ R such that L − λ on D is subcritical for λ > λc�D�
 supercritical
for λ < λc�D� and either subcritical or critical for λ = λc�D�. (2) L − λ on D
is supercritical for all λ ∈ R, in which case we define λc�D� = ∞.

Definition. The number λc�D� ∈ �−∞
∞
 is called the generalized prin-
cipal eigenvalue for L on D.

Note that λc�D� = inf�λ ∈ R� CL−λ�D� �= ��. Also, if V is bounded from
above, then (1) holds. The generalized principal eigenvalue coincides with the
classical principal eigenvalue (that is, with the supremum of the real part of
the spectrum) if D is bounded with a smooth boundary and the coefficients
of L are smooth up to ∂D. Also, if L is symmetric with respect to a refer-
ence density ρ, then λc�D� equals the supremum of the spectrum of the self-
adjoint operator on L2�D
ρdx� obtained from L via the Friedrichs’ extension
theorem.

The generalized principal eigenvalue is monotone nondecreasing as a func-
tion of the domain. It is continuous with respect to monotone increasing se-
quences of domains.

For D ⊆ R
d, d ≥ 2, let �Dn�∞n=1 be an increasing sequence of bounded do-

mains satisfying D = ⋃∞
n=1Dn and define the generalized principal eigenvalue

at ∞ by

λc
∞ = lim
n→∞λc�D \ D̄n��

Since λc is monotone nondecreasing in D, λc
∞ is independent of �Dn�∞n=1.
If L is symmetric with respect to a reference density ρ, then λc
∞ is equal
to the supremum of the essential spectrum of the self-adjoint operator on
L2�D
ρdx� obtained from L via the Friedrichs’ extension theorem.

If d = 1 and D = �a
 b�, a ∈ �−∞
∞�, b ∈ �−∞
∞
, a < b, define the
generalized principal eigenvalue at ±∞ by

λc
+∞ = lim
n→∞λc��bn
 b�� and λc
−∞ = lim

n→∞λc��a
 an��


where an ↓ a, bn ↑ b�
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Let h ∈ C2
 η�D� satisfy h > 0 in D. The operator Lh defined by

Lhf = 1
h
L�hf�

is called the h-transform of the operator L. Written out explicitly, one has

Lhf = L0 + a
∇h
h

· ∇ + Lh
h



where L0 = 1
2∇ · a∇ + b · ∇. All the properties defined above are invariant

under h-transforms.
For further elaboration and proofs see [13], Chapter 4.
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