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INTEGRATION BY PARTS FORMULA AND LOGARITHMIC
SOBOLEV INEQUALITY ON THE PATH SPACE

OVER LOOP GROUPS

By Shizan Fang

Université de Bourgogne

The geometric stochastic analysis on the Riemannian path space de-
veloped recently gives rise to the concept of tangent processes. Roughly
speaking, it is the infinitesimal version of the Girsanov theorem. Using
this concept, we shall establish a formula of integration by parts on the
path space over a loop group. Following the martingale method developed
in Capitaine, Hsu and Ledoux, we shall prove that the logarithmic Sobolev
inequality holds on the full paths. As a particular case of our result, we
obtain the Driver–Lohrenz’s heat kernel logarithmic Sobolev inequalities
over loop groups. The stochastic parallel transport introduced by Driver
will play a crucial role.

Introduction. Let G be a connected compact Lie group. We shall be con-
cerned with the following based loop group:

�e�G� =
{
l� �0�1� → G continuous; l�0� = l�1� = e}�

where e is the unit element of G. Let � be the Lie algebra of G. Take an
Ad-invariant metric � � 	� on � , which defines a biinvariant Laplacian oper-
ator on G. The associated Brownian motion gx�t� on G induces a probability
measureQ on the path space over G. The conditioning ofQ by gx�1� = e gives
rise to the Wiener measure ν on �e�G�, which has been extensively studied
(see [23], [24], [1], [16], [17], [18], [29], [13]). The study by means of Brownian
motion on loop groups was proposed by Malliavin in [26]. The law of Brownian
motion at a fixed time gives rise to a heat kernel measure. In this spirit, a
log.sob inequality, without an additional potential term comparing to the case
in [17], with respect to heat kernel measures on �e�G�, has been obtained by
Driver and Lohrentz [9]. Their method was based on the concept of 
2 of Bakry,
Emery and Ledoux. On the other hand, Brownian motion on �e�G� defines the
Wiener measure µ on the path space over �e�G�. Using the induction argu-
ment, an integration by parts formula with respect to µ for constant vector
fields has been established recently by Driver in [7]. Our work, which bene-
fits very much from [7], will develop the concept of tangent processes in our
infinite-dimensional setting. We shall prove that Driver’s integration by parts
formula holds for all adapted vector fields. This is a necessary step in order
to obtain the Clark–Ocone martingale representation formula. Now following
the approach of [3], we shall obtain the Logarithmic Sobolev inequality on the
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path space over �e�G�. As a particular case, by taking one-point cylindrical
functions, we obtain Driver and Lohrentz’s heat kernel logarithmic Sobolev
inequalities over �e�G�.

1. Concept of tangent processes. The recent development of stochastic
analysis on Riemannian path space gives rise to the concept of tangent pro-
cesses, which allow transfering the differential calculus on the path space to
that on the flat Wiener space (see [4], [5], [10], [11], [14], [19], [23]). In this
section, we shall develop this concept in our infinite-dimensional setting.

Let P
0
0�Rd� be the Wiener space of a d-dimensional Brownian bridge,

P
0
0�Rd� =

{
w � �0�1� → R

d continuous; w�0� = w�1� = 0
}
�

Let us recall briefly the construction of Brownian motion on P
0
0�Rd�. Consider

the Cameron–Martin subspace,

H0�Rd� =
{
h ∈ P

0
0�Rd�� �h�2H0

=
∫ 1

0
�ḣ�θ��2 dθ < +∞

}
�

Denote by P
0
0�Rd�′ the dual space of P

0
0�Rd�. An element l ∈ P

0
0�Rd�′ will be

identified with l̃ ∈H0�Rd� by relation �l� h	 = �l̃� h	H0
for all h ∈H0�Rd�. Let

cn�θ� =
√

2 ��sinπnθ�/nπ� for n ≥ 1 and �ε1� � � � � εd� be the canonical basis of
R
d. Define hn�i�θ� = cn�θ� εi. Then �hn� i� is an orthonormal basis of H0�Rd�.
Let ����t�� �P� be a filtered probability space satisfying the usual hy-

pothesis. Consider a sequence of independent real Brownian motion xn� i�ω� t�
defined on ����t�� �P�. It is well known that the following random series:

�1�1� xω�t� θ� =
∑
n� i

xn� i�ω� t�hn� i�θ�

converges uniformly in �t� θ� ∈ �0�1�×�0�1� almost surely. A Brownian motion
xω on P

0
0�Rd� with the covariance operator � � 	H0

is a continuous adapted
process on P

0
0�Rd� such that

E��l1� x�s�	 �l2� x�t�	� = s ∧ t �l1� l2	H0

for all l1� l2 ∈ P
0
0�Rd�′. This is equivalent to saying that

�1�2� E
(
exp i�l� x�t� − x�s�	 � �s

) = exp
{
−�t− s�

2
�l�2H0

}
for all l ∈ P

0
0�Rd�′�

The process xω�t� defined in (1.1) is a P
0
0�Rd�-valued Brownian motion with

covariance operator � � 	H0
.

In what follows, for simplicity we shall write x�t� =∑
n xn�ω� t�hn. LetK be

a separable Hilbert space. Consider an H0�Rd� ⊗K-valued adapted process
fω�t� satisfying E�∫ 1

0 �fω�t��2HS dt� < +∞ where � · �HS denotes the Hilbert–
Schmidt norm. It is known that the stochastic integral

∫ T
0 �ft� dxω�t�	 is well

defined. We have the following properties.
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Proposition 1.1. (i) T→MT =
∫ T

0 �ft� dx�t�	 is a K-valued martingale.

(ii) E� ∫ T0 �ft� dx�t�	�2K = E
∫ T

0 �fω�t��2HS dt.
(iii) The quadratic variation dMTdMT of MT is given by dMTdMT =∫ T

0 �fω�t��2HS dt.

For the proof, see [22].
Now take K = R, for any H0�Rd�-valued adapted process fω�t� such that

E

(∫ 1

0
�fω�t��2H0

dt

)
< +∞�

the stochastic integralMt =
∫ t

0�fs� dx�s�	 is a real valued continuous martin-
gale.

Let ��H0� be the Banach space of bounded linear operators on H0�Rd�
with the endomorphism norm.

Definition 1.2. A ��H0�-valued process qt�ω� is said to be �t-adapted if
for all h ∈H0�Rd�, qt�ω�h is an H0�Rd�-valued adapted process.

Now denote by � �H0� the group of unitary operator on H0�Rd�. Let U�t�
be an adapted process in � �H0�. Denote by U∗�t� the adjoint operator of U�t�.
We are going to define the stochastic integral y�T� = ∫ T

0 U�t�dx�t�� Let hn ∈
P

0
0�Rd�′ be an orthonormal basis of H0�Rd� and consider the series

�1�3� ∑
n

(∫ T
0
�U∗�t�hn�dx�t�	

)
hn�

Theorem 1.3. The series (1.3) converges uniformly with respect toT ∈ �0�1�
in P

0
0�Rd� almost surely and defines a Brownian motion y�T� on P

0
0�Rd� with

covariance operator � � 	H0
.

Proof. Denote yn�T� =
∫ T

0 �U∗�t�hn�dx�t�	. It is sufficient to see that
�yn�T�� n ≥ 1� are mutually independent real Brownian motions. By Propo-
sition 1.1(iii), the quadratic variations between yn and ym are given by

dyn�T�dym�T� =
∫ T

0
�U∗�t�hn�U∗�t�hm	H0

dt

=
∫ T

0
�hn� hm	H0

dt = Tδnm�
Now by the Lévy characterization theorem, yn are independent Brownian
motions. ✷

Consider now a ��H0�-valued adapted process qt such that for all h�k ∈
H0�Rd�,

�qt h� k	H0
= −�h�qt k	H0

and E

(∫ 1

0
�qt h�2H0

dt

)
< +∞�
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It is clear that for all n ≥ 1, qnt are ��H0�-valued adapted processes. Define

exp�qt� =
∑
n≥0

qnt
n!
�

Then eqt is an adapted process in � �H0�. Now, according to [4] and to [6], we
shall introduce the concept of tangent process.

Definition 1.4. A ��H0� ×H0�Rd�-valued process �qt�ω�� zω�t�� is called
a tangent process if:

(i) t→ �qt�ω�� zω�t�� is adapted;
(ii) for h�k ∈H0�Rd�, �qt�ω�h�k	H0

= −�h�qt�ω�k	H0
;

(iii)
∫ 1

0 �zω�t��2H0
dt ≤ C < +∞ a.s.

Now for qt�ω� as above, we denote: yq�t� =
∫ t

0 e
qs dx�s�.

Theorem 1.5 (Girsanov). Let �qt�ω�� zω�t�� be a tangent process, denote

Kq�z = exp
{
−
∫ 1

0
�exp�−qs� zs� dx�s�	 − 1

2

∫ 1

0
�zs�2H0

ds

}
�

then under the probability law dQ =Kq�z dP, the process yq�t� +
∫ t

0 zs ds is a
Brownian motion, with � � 	H0

as the covariance operator.

Proof. Denote by EQ the expectation with respect to the probability mea-
sure Q and ỹ�t� = yq�t� +

∫ t
0 zs ds. By characterization (1.2), it is sufficient to

prove

EQ

(
exp

{
i�l� ỹ�t� − ỹ�s�	} � �s) = exp

{−�t− s��l�2H0
/2

}
for all l ∈ P

0
0�Rd�′�

The verification is the same as that in the finite-dimensional case (see [28]). ✷

In what follows, we shall denote by

X = {
x� �0�1� → P

0
0�Rd� continuous; x�0� = 0

}
�

Endow X with the probability law P induced by the Brownian motion on
P

0
0�Rd�. Denote �t = σ��l� x�s�	� s ≤ t� l ∈ P

0
0�Rd�′�. According to the above

theorem, we shall define the derivative along a tangent process.

Definition 1.6. Letting �qt�ω�� zω�t�� be a tangent process and F�X→ R

be a measurable function, we say that F is differentiable along �q� z� if

�Dq�zF��x� = lim
ε→0

F�yεq + ε
∫ •

0 zs ds� −F�x�
ε

exists in L2�X��

Theorem 1.7. We have

E�Dq�zF� = E

(
F

∫ 1

0
�zs� dx�s�	

)
�
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Proof. Denote

Kε = exp
{
−ε

∫ 1

0
�exp�−εqs�zs� dx�s�	 −

ε2

2

∫ 1

0
�zs�2 ds

}
�

Then {
dKε
dε

}
ε=0

= −
∫ 1

0
�zs� dx�s�	 in L2�X��

Now by the Girsanov Theorem 1.5, E�F�yεq + ε
∫ •

0 zs ds�Kε� = E�F�. Taking
the derivative with respect to ε, at ε = 0, we obtain

E�Dq�zF−F
∫ 1

0
�zs� dx�s�	 = 0�

which gives the result. ✷

2. Stochastic parallel transport. Let G be a compact Lie group and �
its Lie algebra. Take on � an AdG-invariant metric � � 	� . Consider

H0�� � =
{
h� �0�1� → � � h�0� = h�1� = 0 and

∫ 1

0
�ḣ�θ��2� dθ < +∞

}
�

For h�k ∈ H0�� �, define the Lie bracket between h and k by �h�k��θ� =
�h�θ�� k�θ��. Then H0�� � is a Lie algebra. To h ∈H0�� �, we shall associate a
left-invariant vector field h̃ on �e�G� defined by

(
h̃F

)�l� = {
d

dε
F�l eεh�

}
ε=0

for all cylindrical functions F� �e�G� → R written in the form

F�l� = f�l�τ1�� � � � � l�τk�� where f ∈ �∞�Gk��
Denote by � C∞��e�G�� the class of cylindrical functions on �e�G�. Then we
have the relation ˜�h�k� = �h̃� k̃� on � C∞��e�G��. Therefore, the computation
on the Lie group can be reduced to its Lie algebra. The Levi–Civita connection
on H0�� � defined by

�∇hk� z	H0
= 1

2

{��h�k�� z	H0
− ��h� z�� k	H0

− ��k� z�� h	H0

}
has the explicit expression (see [15] or [9]),

�2�1�
•︷︸︸︷

∇hk�θ� = �h�θ�� k̇�θ�� −
∫ 1

0
�h�θ�� k̇�θ��dθ�

It follows that for k ∈H0�� � given, the operator h→ ∇hk is Hilbert–Schmidt.
Following [15], the curvature tensor is not of trace class but its two steps trace
exists. More precisely, let e1� � � � � ed be an orthonormal basis of � and cn be
an orthonormal basis of H0�R�. Let hn� i = cn ei. Then (see [15] and [9]),

�2�2� Rich =∑
n

∑
i

(�∇h�∇hn� i� − ∇�h�hn� i�)hn� i converges in H0�� ��
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Moreover, the Ricci is given by

�2�3� �Rich�h	H0
=

∫ 1

0
� �h̄�θ�� h̄�θ��dθ�

where � �a� b� = trace �ad�a� ◦ ad�b�� is the killing form on � and h̄�θ� =
h�θ� − ∫ 1

0 h�τ�dτ.
The following result, giving another approach to the Ricci tensor, will be

used in the next section.

Theorem 2.1. Let � be an orthonormal basis of H0�� �. Then for h ∈
H0�� �,
�2�4� ∑

k� k̃∈�
�∇kh� k̃	H0

�∇k̃h� k	H0
= −�Rich�h	H0

�

For the proof, see [13], page 395.
In order to introduce the stochastic parallel transport, we shall need the

following basic estimates. In the sequel, we shall fix an orthonormal basis
�hn� n ≥ 1� of H0�� �.

Proposition 2.2. Let C = 1
2 sup�a�=1 �� �a� a��1/2, then:

(i) ��∇z��H0⊗H0
≤ C �z�H0

, z ∈H0�� ��
(ii) 11z =∑

n ∇hn∇hnz converges in H0�� �;
(iii) �11z�H0

≤ C2 �z�H0
�

Proof. See [9], pages 403 and 424. For (i), see also [13], page 395. In what
follows, we shall give another proof of (ii) and (iii) using (i). Letting k ∈H0�� �,
for p, q ≥ 1, we have∣∣∣∣

〈 q∑
p

∇hn∇hnz� k
〉∣∣∣∣
H0

=
∣∣∣∣
q∑
p

�∇hnz�∇hnk	
∣∣∣∣

≤
( q∑
p

�∇hnz�2
)1/2( q∑

p

�∇hnk�2
)1/2

≤
( q∑
p

�∇hnz�2
)1/2

�∇k�H0⊗H0
�

According to (i), we obtain, as p, q→+∞,∣∣∣∣
q∑
p

∇hn∇hnz
∣∣∣∣ ≤ C

( q∑
p

�∇hnz�2
)1/2

→ 0�

Letting p = 1, q→+∞, we have

�11z�H0
≤ C�∇z�H0⊗H0

≤ C2 �z�H0
� ✷
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Now let P
0
0�� � be the Wiener space of the Brownian bridges over � , start-

ing from the origin. Let x�t� θ� = ∑
n xn�t�hn�θ� be a Brownian motion on

P
0
0�� �. We shall introduce the stochastic parallel transport in H0�� � along

the Brownian motion x, following [7].

Theorem 2.3 (Driver). There exists a unique continuous H0�� �-valued
process zt satisfying the following family of s.d.e. on H0�� �:
�2�5� dt z�t� θ� = −

∑
n

�∇hnzt��θ� ◦ dxn�t� z0 is given�

where dt denotes the stochastic differential with respect to t. Moreover,

�zt� zt	H0
= �z0� z0	H0

for all t ∈ �0�1��

According to Proposition 2.2, the Picard iterated method does work. See [7],
Section 4.

Letting h ∈H0�� �, define

�2�6� U�t�h =∑
n

�h�hn	H0
zt�hn��

where zt�hn� is the solution of s.d.e. (2.5) such that z0 = hn. It is obvious
that the series (2.6) converges uniformly in t. Therefore almost surely, for all
h ∈ H0�� �, t → U�t�h is continuous and for all t, U�t� is isometric. The
following result was claimed in [7], but not proved. We give a proof here.
Another proof may be found in [8].

Theorem 2.4. Almost surely, for all t, U�t� is unitary.

Proof. Let N > 0 and consider the finite-dimensional vector space VN =
span�h1� � � � � hN�. Define ANn � H0 →H0 by ANn = PN∇hnPN where PN is the
orthogonal projection onto VN. It is clear that ANn are skew-symmetric onH0.

Consider the following s.d.e.:

dzNt = −
N∑
n=1

ANn z
N
t ◦ dxn�t�� zN0 = z0�

Define UNt�xz0 = zNt . We see that UNt�xz0 = z0 if z0 ∈ V⊥N and VN is stable

under UNt�x. Denote by ŨNt� x� VN → VN. Then ŨNt� x is a unitary operator on
VN. It follows that UNt�x is a unitary operator on H0.

Let T > 0, consider x̂Tn �t� = xn�T − t� − xn�T� and x̂T�t� = ∑
n x̂
T
n �t�hn.

Then x̂T�t� is a Brownian motion with respect to the filtration

� Tt = σ{�l� x�T− s� − x�T��	� s ≤ t� l ∈ P0
0�� �′

}
�

Consider the following s.d.e.:

dkNt = −
N∑
n=1

ANn k
N
t ◦ dx̂Tn �t�� kN0 = k0�
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Denote UNt� x̂Tk0 = kNt . Then we have (see [21], page 250 or [25])

UNT−t� x̂T = UNt�x ◦UNT� x̂T on VN�

It follows that �UNT�x�∗ = UNT� x̂T on H0� Now by straightforword calculation,

lim
N→+∞

E
(

sup
0≤t≤1

∥∥UNt�xh−Ut�xh∥∥2
)
= 0�

In the same way, limN→+∞E�sup0≤t≤T "UNt� x̂Th−Ut� x̂Th"2� = 0� Therefore, for
all h ∈H0, up to a subsequence, a.s.,

UT�xh = lim
N→+∞

UNT�xh and UT� x̂Th = lim
N→+∞

UNT� x̂Th�

As H0 is separable, it follows that almost surely,

�2�7� UT� x̂T = U∗T�x�

In order to obtain our result from (2.7), we need the continuity of T →
UT� x̂T . To this end, it is more convenient to use the Itô backward stochastic
integrals.

Let h ∈ H0�� �, denote HT�t� = UT−t� x̂Th for t ≤ T. As Ut� x̂Th is � Tt -
measurable, then the Itô backward stochastic integral

∫ T
t ∇←

dx�τ�HT�τ� can be

defined as follows:∫ T
t
∇←
dx�τ�HT�τ�=

∑
n

∫ T
t
∇hnHT�τ�

←
dxn �τ�= −

∑
n

∫ T−t
0

∇hnHT�T− τ�dx̂Tn �τ��

Therefore HT�t� satisfies the following backward s.d.e.:

h−HT�t� +
∫ T
t
∇←
dx�τ�HT�τ� +

1
2

∫ T
t
11HT�τ�dτ = 0�

Let T1 < T2 in �0�1�. We have, for all t ≤ T1,

�2�8�

HT1
�t� −HT2

�t�

=
∫ T1

t
∇←
dx�τ�HT1

�τ� −
∫ T2

t
∇←
dx�τ�HT2

�τ�

+ 1
2

[∫ T1

t
11HT1

�τ�dτ −
∫ T2

t
11HT2

�τ�dτ
]

=
∫ T1

t
∇←
dx�τ�HT1

�τ� −
∫ T1

t
∇←
dx�τ�HT2

�τ� −
∫ T2

T1

∇←
dx�τ�HT2

�τ�

+ 1
2

[∫ T1

t
11�HT1

�τ� −HT2
�τ��dτ +

∫ T2

T1

11HT2
�τ�dτ

]
�
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We have �
T1
t ⊂ �

T2
T2−T1+t and x̂T1

t2
− x̂T1
t1
= x̂T2

T2−T1+t2 − x̂
T2
T2−T1+t1 � It follows that

x̂
T1
t is a �

T2
T2−T1+t Brownian motion. Therefore,

∫ T1

t
∇←
dx�τ�HT1

�τ�=−
∫ T1−t

0
∇dx̂T1 �τ�HT1

�T1 − τ�=−
∫ T2−t

T2−T1

∇dx̂T2 �τ�HT1
�T2− τ��

It follows that∫ T1

t
∇←
dx�τ�HT1

�τ� −
∫ T2

t
∇←
dx�τ�HT2

�τ�

= −
∫ T2−t

T2−T1

[∇dx̂T2 �τ��HT1
�T2 − τ� −HT2

�T2 − τ��
]
�

By the Burkhölder inequality, for p > 1, we have

E

∣∣∣∣∫ T2−t

T2−T1

[∇dx̂T2 �τ��HT1
�T2 − τ� −HT2

�T2 − τ��
]∣∣∣∣

2p

≤ CpE
(∫ T1

t
�∇�HT1

�τ� −HT2
�τ���2H0⊗H0

dτ

)p
�

Now according to Proposition 2.2, using (2.8) and by the Gronwall inequality,
we obtain for t ≤ T1,

E
(�HT1

�t� −HT2
�t��2p) ≤ Cp�T1 −T2�p�

In particular, E��HT1
�0� − HT2

�0��2p� ≤ Cp�T1 − T2�p� By the Kolmogoroff
modification theorem, almost surely,T→HT�0� is continuous. In other words,
t→ Ut� x̂th is continuous. Using the expression Ut� x̂th =

∑
n�h�hn	Ut� x̂thn, we

see that almost surely, for all h ∈H0�� �, t→ Ut� x̂th is continuous. Now using
(2.7), almost surely, for all rational t ∈ �0�1� and for all h�k ∈H0�� �, we have

�Ut�xh� k	 = �h�Ut� x̂tk	�
By continuity, we obtain that U∗t� x = Ut� x̂t for all t ∈ �0�1�. ✷

3. Malliavin calculus on the Brownian motion over �e�G�. Let x�t�
be the Brownian motion on P

0
0�� �. Let �e1� � � � � ed� be an orthonormal basis

of � . Denote xi�t� θ� = �x�t� θ�� ei	� . For θ ∈ �0�1�, consider the following
Stratanovich s.d.e. with parameter θ:

�3�1� dt gx�t� θ� =
d∑
i=1

gx�t� θ�ei ◦ dt xi�t� θ�� gx�0� θ� = e�

Theorem 3.1 (Malliavin). There exists a unique �e�G�-valued continuous
adapted process gx�t� such that for all θ ∈ �0�1�, gx�t� θ� = gx�t��θ� satisfies
the s.d.e. (3.1). Moreover, �t� θ� → gx�t� θ� is continuous.

For the proof, see [26], pages 19–22 and [7].
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Convention of notations. In what follows, we shall use the prime to denote
the derivative with respect to t, the parameter for paths and the dot, the
derivative with respect to θ, the parameter for loops.

Now consider anH0�� �-valued adapted process z�t�. We suppose that there
exists a process z′�t� satisfying

�3�2� sup
t∈�0�1�

�z′�t��H0
≤ C < +∞ almost surely

such that z�t� = ∫ t
0 z

′�s�ds. Let ε ≥ 0 and consider

gx�ε�t� θ� = gx�t� θ� exp�ε�Utz�t���θ���
Denote kt = Utz�t�. By the Itô formula, we have

dt gx� ε�t� θ� = dt gx�t� θ� ◦ exp�εkt�θ��
+ gx�t� θ� ◦

(
ε exp′�εkt�θ�� ◦ dtkt�θ�

)
=
d∑
i=1

(
gx�t� θ�ei exp�εkt�θ��

) ◦ dt xi�t� θ�
+ ε(gx�t� θ� exp′�εkt�θ��

) ◦ dtkt�θ�
= gx�ε�t� θ� ◦

[
Ad�exp�−εkt�θ���ei ◦ dt xi�t� θ�
+ ε exp�−εkt�θ�� exp′�εkt�θ��dtkt�θ�

]
�

Let Mx�t� θ� = ��d/dε�gx�ε�t� θ��ε=0. Then Mx�t� θ� satisfies the following
family of s.d.e.:

�3�3�
dtMx�t� θ� =Mx�t� θ� ◦ dt x�t� θ�

+ gx�t� θ� ◦
[−ad�kt�θ�� ◦ dt x�t� θ� + dtkt�θ�]

with the initial conditionsMx�0� θ� = 0. By Theorem 4.4 in [6], we have

�3�4�
dt kt�θ� = −

∑
n≥1

�∇hnkt��θ�dxn�t� + �Utz′�t���θ�dt

+ 1
2

∑
n≥1

�∇hn∇hn kt��θ�dt�

Lemma 3.2. We have

�3�5�
−ad�kt�θ�� ◦ dt x�t� θ� = −

∑
n≥1

�kt� hn��θ�dxn�t�

+ 1
2

∑
n≥1

��∇hnkt�� hn��θ�dt�

Proof. Let l ∈ P
0
0�� �′. Let ft be a real adapted process such that∫ 1

0 �ft�2 dt < +∞. It is easy to see that

�3�6�
∫ T

0
ft d �l� xt	 =

∫ T
0
�ft l� dxt	�
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Now for θ ∈ �0�1� and i = 1� � � � � d, we define liθ ∈ P
0
0�� �′ by �liθ� x	 = xi�θ� for

x ∈ P
0
0�� �. By (3.4), (3.6) and Proposition 1.1(iii), for all ξ ∈ � , we have

�3�7� dt �kt�θ�� ξ�dt x�t� θ� = −
∑
n

���∇hnkt��θ�� ξ�� hn�θ�	dt�

On the other hand,

�3�8�

�ξ�−ad�kt�θ��dt x�t� θ�	 = ��kt�θ��� ξ�� dt x�t� θ�	
= 〈�kt�θ�� ξ�� �lθ� dxt	〉
=
d∑
i=1

〈��kt�θ�� ξ�� ei	� liθ� dx�t�〉

=∑
n

d∑
i=1

〈��kt�θ�� ξ�� ei	� liθ� hn〉dxn�t�
=∑
n

��kt�θ�� ξ�� hn�θ�	� dxn�t��

Then (3.5) follows from (3.7) and (3.8). ✷

Definition 3.3. Letting z be a process satisfying condition (3.2), we define
the operators qz�t�� H0�� � →H0�� � by

�3�9� qz�t�h = −�kt� h� − ∇hkt� h ∈H0�� ��

As the torsion is free, we have ∇hkt − ∇kth = �h�kt�. It follows that qt h =
−∇kth. Now by the antisymmetry of ∇kt , we obtain

�3�10� �qz�t�h1� h2	H0
= −�h1� qz�t�h2	H0

�

Lemma 3.4. We have, for all T ∈ �0�1�,

�3�11�
∫ T

0
�qt lθ� dxt	 =

∑
n

∫ T
0

(�kt� hn��θ� + �∇hnkt��θ�)dxn�t��
Proof. Remark first that E

∫ 1
0 �qt lθ�2H⊗� dt < +∞. The stochastic integral∫ T

0 �qt lθ� dxt	 is well defined. Now it is sufficient to verify that

�qt lθ� hn	 = �kt�θ�� hn�θ�� + �∇hnkt��θ��
which follows from Definitions (3.9) and (3.10). ✷

Lemma 3.5. We have

�3�12� ∑
n

∇hn∇hnkt +
∑
n

�∇hnkt� hn� = Rickt�
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Proof. By torsion free, we have

∇hn∇hnkt + �∇hnkt� hn� = ∇∇hnkthn =
∑
m

∇hmhn �∇hnkt� hm	H0
�

Therefore, for all h ∈H0�� �,〈
h�

∑
n

(∇hn∇hnkt + �∇hnkt� hn�)
〉
H0

= ∑
n�m

�∇hmhn� h	H0
�∇hnkt� hm	H0

= − ∑
n�m

�∇hmh� hn	H0
�∇hnkt� hm	H0

= �Rickt� h	H0
�

the convergence of the above series being guaranted by the fact that z→ ∇zh
is a Hilbert–Schmdit operator and the last equality follows from (2.4). ✷

Theorem 3.6. HereMx�t� θ� satisfies the following family of s.d.e.:

�3�13�
dtMx�t� θ�

=Mx�t� θ� ◦ dt x�t� θ�
+ gx�t� θ� ◦

[−�qt lθ� dxt	 + (�Utz′t��θ� + 1
2�RicUt zt��θ�

)
dt

]
Proof. According to (3.4), (3.5), (3.11) and (3.12), the s.d.e. (3.3) can be

written in the form (3.13). ✷

Now consider the operator exp�εqz�t���H0�� � →H0�� �. By (4.10), qz�t� is
antisymmetric, so that exp�εqz�t�� is an unitary operator on H0�� �. Denote

yε�t� =
∫ t

0
eεqs dx�s��

Consider g̃x� ε�t� θ� the solution of the following s.d.e.:

dt g̃x� ε�t� θ�= g̃x� ε�t� θ� ◦dt yε�t� θ�+ ε g̃x� ε�t� θ� ẑ�t� θ�dt� g̃x� ε�0� θ�= e�
where ẑ�t� = Ut z′t + 1

2 RicUtzt. For any θ ∈ �0�1�, almost surely g̃x�0�t� θ� =
gx�t� θ� for all t ∈ �0�1�. We have dt yε�t� θ� = �exp�−εqt�lθ� dxt	. As in [2],
Chapter II-c, or in [14],

M̃x�t� θ� =
{
d

dε
g̃x� ε�t� θ�

}
ε=0

exists in L2�

and M̃x�t� θ� satisfies the s.d.e.,

dt M̃x�t� θ� = M̃x�t� θ� ◦ dt x�t� θ� + gx�t� θ� ◦
[−�qt lθ� dxt	 + ẑ�t� θ�dt]�

This means that for all θ ∈ �0�1�, M̃x�t� θ� satisfies the s.d.e. (3.13). By unicity,
for any θ ∈ �0�1�,
�3�14� Mx�t� θ� = M̃x�t� θ� for all t ∈ �0�1� almost surely.
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Now we are going to establish the formula of integration by parts on the
path space over �e�G�. Let e be the constant identity loop on �e�G�� e�t� = e.
Denote

Pe��e�G�� =
{
γ� �0�1� → �e�G� continuous; γ�0� = e

}
�

The Brownian motion gx�t� over �e�G� induces a probability measure µ on
Pe��e�G��. A function F� Pe��e�G�� → R is said to be cylindrical if it is in the
form

�3�15� F�γ� = f(γ�τ1� θ1�� � � � � γ�τk� θk�
)
� f ∈ �∞�Gk��

Given an H0�� �-valued adapted process z�t� satisfying the condition (3.2),
we shall define the derivative of a cylindrical function along z according to [7].

Definition 3.7. Letting F be a cylindrical function on Pe��e�G��, we
define

�DzF��gx� =
{
d

dε
F�gx eεUz�

}
ε=0

in L2�

For a cylindrical function in the form (3.15), we have

�3�16� �DzF��gx� =
k∑
j=1

�∂jf�gx�τj� θj� �Uτjzτj��θj�	Tgx�τj� θj�G�

where ∂j denotes the partial gradient with respect to the j-component.
Now, using Definitions 1.6 and 3.7, by (3.14) we obtain the following result.

Theorem 3.8. Let F� Pe��e�G�� → R be a cylindrical function and denote

F̃�x� = F�gx�. Then we have

�DzF��gx� = �Dqz� ẑF̃��x�
for all adapted process z verifying the condition (3.2).

In what follows, we shall compute the gradient of F. By (3.16), denoting
gτj�θ� = gx�τj� θ�, we have

�DzF��gx� =
∑
j

〈
g−1
τj
�θj��∂jf��

[
Uτj

∫ τj
0
z′�t�dt

]
�θj�

〉
�

=∑
j

∫ 1

0

〈
g−1
τj
�θj��∂jf�1�t<τj�� �Uτjz′�t���θj�

〉
�

dt

=∑
j

∫ 1

0

〈
g−1
τj
�θj��∂jf�1�t<τj��

∫ 1

0

d

dθ
�Uτjz′�t��G�θj� θ�dθ�

〉
�

dt

=∑
j

∫ 1

0
dt

∫ 1

0

〈
g−1
τj
�θj��∂jf�G�θj� θ�1�t<τj��

d

dθ
�Uτjz′�t��

〉
dθ�
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where G�θj� θ� = θj ∧ θ− θθj is the Green function such that∫ 1

0
G�θj� θ�ḣ�θ�dθ = h�θj� for all h ∈H0�� ��

For �g1� � � � � gj−1� gj+1� � � � � gk� ∈ Gk−1 given, define

fj�g1�����gj−1� gj+1�����gk
�g� = f�g1� � � � � gj−1� g�gj+1� � � � � gk��

For l ∈ �e�G�, let

Fj�g1�����gj−1� gj+1�����gk
�l� = fj�g1�����gj−1� gj+1�����gk

�l�θj���
which is a cylindrical function on �e�G�. Now for a cylindrical function φ on
�e�G�, written in the form φ�l� = φ̃�l�θ1�� � � � � l�θm��, where φ̃ is a smooth
function on Gm, we define the gradient operator ∇�e�G� on �e�G� by

�∇�e�G�φ��l��θ� =
m∑
j=1

l�θj�−1∂jφ̃G�θj� θ��

We have (∇�e�G�Fj�g1�����gj−1� gj+1�����gk

)�l��θ�
= l−1�θj� ∇Gfj�g1�����gj−1� gj+1�����gk

�l�θj��G�θj� θ��

where ∇G denotes the gradient operator on the Lie group G.

Definition 3.9. We define

�∇�e�G�
j F��γ� = ∇�e�G�Fj�γτ1 �θ1������γτk �θk��γτj�θj���

where γτj�θj� = γ�τj� θj�.

Then DzF can be written in the form

�DzF��gx� =
∑
j

∫ 1

0

〈�∇�e�G�
j F��gx�1�t<τj�� Uτjz

′�t�〉
H0
dt

=∑
j

∫ 1

0

〈
U∗τj�∇

�e�G�
j F��gx�1�t<τj�� z

′�t�〉
H0
dt�

Definition 3.10. Define the gradient operator over Pe��e�G�� by

�3�17� DP

t F�gx� =
∑
j

U∗τj�∇
�e�G�
j F��gx�1�t<τj��

Using (3.17), we have

�3�18� �DzF��gx� =
∫ 1

0

〈�DP

t F��gx�� z′�t�
〉
H0
dt�
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Theorem 3.11. Let z�t� = ∫ t
0 z

′�s�ds be an adapted H0�� �-valued process
such that

E

∫ 1

0
�z′�t��2H0

dt < +∞�
Then the following formula of integration by parts holds:

�3�19� E�DzF� = E

(
F

∫ 1

0

〈
Utz

′
t + 1

2 RicUtzt� dxt
〉)

for all cylindrical function F.

The proof follows from Proposition 1.7 and Theorem 3.8.

4. Clark–Ocône representation formula. In this section, we shall es-
tablish the Clark–Ocône formula on the path space Pe��e�G�� over �e�G�. For
flat case, see [30].

Lemma 4.1. Let F ∈ L2�X�P�; then there exists a unique H0�� �-valued
predictable process at such that:

(i) E�∫ 1
0 �at�2H0

dt� < +∞;

(ii) F = E�F� + ∫ 1
0 �at� dxt	.

Proof. Unicity follows easily from the Itô energy identity. For existence,
we shall follow the proof of Itô’s classical martingale representation theorem
(see [28]). Consider the space � generated by those functions F ∈ L2�X�P�
for which there exists an H0�� �-valued predictable process at such that (i)
and (ii) hold. Consider the following simple predictable process:

at =
∑
j�finite

lj 1�tj−1�tj�� lj ∈ P
0
0�� �′�

Then
∫ 1

0 �at� dxt	 =
∑
j�lj� x�tj� − x�tj−1	. Denote

	s�a� = exp
{∫ s

0
�at� dxt	 − 1

2

∫ s
0
�at�2H0

dt

}
�

Then by the Itô formula,

	1�a� = 1+
∫ 1

0
�	t�a�at� dxt	�

Therefore 	1�a� ∈ � . To complete the proof, we have to verify (i) that the
functions 	1�a� are dense in L2�X�P� and (ii) that the space � is closed in
L2�X�P�. The same argument in [28], pages 186 and 187, gives the results. ✷

Theorem 4.2. Let F be a cylindrical function on Pe��e�G�� and define

F̃�x� = F�gx�. Then the following Clark–Ocône formula holds:

�4�1� F̃ = E�F� +
∫ 1

0
�at�F��gx�� dx�t�	�

where at�F� will be defined in (4.6).
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Proof. Consider the following Hilbert space:

L2
a�χ� =

{
zt� H0�� �-valued adapted process such that

"z"2 = E

(∫ 1

0
�zt�2H0

dt

)
< +∞

}
�

Define the operator 
 � L2
a�χ� → L2

a�χ� by

�4�2� �
 z�t = Ut zt + 1
2 RicUt

∫ t
0
zs ds for z ∈ L2

a�χ��

By Lemma 4.1, there exists a ∈ L2
a�χ� such that

F̃�x� = E�F� +
∫ 1

0
�at� dxt	�

Therefore for any z ∈ L2
a�χ�, by Itô’s energy equality, we have

�4�3�

E

(
F̃

∫ 1

0
�
 z�dx	

)
= E

(∫ 1

0
�at� dx�t�	

∫ 1

0
�
 z�dx	

)

= E

(∫ 1

0
�at� �
 z�t	H0

dt

)

= E

(∫ 1

0
��
 ∗a�t� zt	H0

dt

)
�

where 
 ∗ is the dual operator of 
 in L2
a�χ�. On the other hand, by Theo-

rem 3.11, we have

�4�4� E

(
F̃

∫ 1

0
�
 z�dx	

)
= E

(∫ 1

0
�DP

t F� zt	H0
dt

)
�

Lemma 4.3. Let zx�s� t� = E
�s�DP

t F�, then for t fixed,

E
�t�DP

t F� = lim
s→t
zx�s� t� exists in L2�X�H0�� ���

Moreover, �E�t�DP

t F��H0
≤ E

�t��DP

t F�H0
�.

Proof. Let G be an H0�� �-valued simple measurable function G =∑
j�finite hj fj where hj ∈ H0�� � and fj are real bounded measurable func-

tions. We can choose hj to be mutually orthogonal. Then E
�t�G� is well

defined. Moreover,

E��E�t�G��2H0
� ≤ E��G�2H0

��
By density argument, we see that E

�t�G� is well defined for any G ∈
L2�X�H0�� ��. Now by Lemma 4.1, for a simple function G, there exists an
H0�� � ⊗H0�� �-valued predictable process at such that

�4�5� G = E�G� +
∫ 1

0
�at� dx�t�	�
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We have E��G�2H0
� = �E�G��2H0

+ E�∫ 1
0 �at�2HS dt�� It follows, by density, that for

any G ∈ L2�X�H0�� �� there exists an H0�� � ⊗H0�� �-valued predictable
process at�G� such that E�∫ 1

0 �at�G��2HS dt� < +∞ and the relation (4.5) holds.
Now for t fixed, taking G = DP

t F, we obtain

E
�s�DP

t F� = E�DP

t F� +
∫ s

0
�aτ�F�� dx�τ�	�

Therefore for s� s′ ∈ �0�1�,

E
(∣∣E�s�DP

t F� − E
� ′
s �DP

t F�
∣∣2) = E

(∫ s
s′
�aτ�F��2HS dτ

)
→ 0 as s� s′ → t�

By the Cauchy criterion, we obtain the result. ✷

Now by (4.3) and (4.4), we obtain

E

(∫ 1

0
��
 ∗a�t� zt	H0

dt

)
= E

(∫ 1

0
�DP

t F� zt	H0
dt

)
for all z ∈ L2

a�χ��

It follows that �
 ∗a�t = E
�t�DP

t F�. The operator 
 ∗ is invertible [we shall
give the explicit expression for �
 ∗�−1 below], so we obtain

�4�6� at�F� = �
 ∗�−1
E
�t�DP

t F�� ✷

5. Logarithmic Sobolev inequalities. In this section, we shall deduce
from (4.1) the logarithmic Sobolev inequality on the path space over �e�G�,
following the ideas in [3]. To this end, we shall need the explicit expression
of the operator �
 ∗�−1. In the case of Riemannian paths, it was computed for
the first time in [20]. Remark first,

�
 ∗�−1 = �
 −1�∗�
Now determine the operator 
 −1. Denote by ��H0�� �� the Banach space
of bounded operators on H0�� �, with the endomorphism norm. Consider the
resolvant equation in ��H0�� ��, for t > s,

�5�1� dQt� s
dt

= −1
2

Rict Qt� s� Qs� s = IdH0�� ��

where Rict = U∗t RicUt. Then Yt =
∫ t

0 Qt� s U
∗
s ks ds solves the following ordi-

nary differential equation:

dYt
dt

+ 1
2

Rict Yt = U∗tkt�

It follows that �dYt/dt� = U∗tkt − 1
2 Rict

∫ t
0 Qt� s U

∗
s ks ds. Therefore, we have

�5�2� �
 −1h�t = U∗t ht − 1
2 Rict

∫ t
0
Qt� s U

∗
shs ds�
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Now let z ∈ L2
a�χ�; then

E

(∫ 1

0
��
 −1 h�t� z�t�	H0

dt

)

= E
(�ht�Ut zt	H0

dt
)− 1

2E

(∫ 1

0

〈∫ t
0
Qt� s U

∗
s hs ds�Rict zt

〉
H0

dt

)

= E
(�ht�Ut zt	H0

dt
)− 1

2E

(∫ 1

0

〈
hs�

∫ 1

s
Us Q

∗
t� s Rict zt dt

〉
H0

ds

)
�

Then we have the following proposition.

Proposition 5.1. We have, for z ∈ L2
a�χ�,

�5�3� ��
 −1�∗ z�t = Ut zt − 1
2E

�t

(∫ 1

t
Ut Q

∗
s� t Rics zs ds

)
�

Lemma 5.2. Denote K = "Ric"End�H0�� ��; then we have

�5�4� ��
 −1�∗ z�t�H0
≤ �zt�H0

+ K
2

E
�t

(∫ 1

t
exp�K�s− t�/2� �zs�H0

ds

)
�

Proof. By the resolvant equation (5.1), we obtain

"Q∗t� s"End�H0�� �� ≤ exp�K�t− s�/2� for t > s�

Now using (5.3) and Lemma 4.3, we obtain (5.4). ✷

Now we shall follow [3] to deduce the logarithmic Sobolev inequality on the
path space over �e�G�. DenoteMt = E

�t�F̃�. By Lemma 4.1, we have

Mt = E�F� +
∫ t

0
�as�F�� dx�s�	�

It follows that

M1 = F̃� M0 = E�F�� dMtdMt = �at�2H0
dt�

Suppose F ≥ δ > 0; applying Itô’s formula to the function φ�ξ� = ξ log ξ,

E�M1 logM1� − E�M0 logM0� =
1
2

E

(∫ 1

0

�at�F��2
Mt

dt

)
�

or

�5�5� E�F logF� − E�F� log E�F� = 1
2

E

(∫ 1

0

�at�F��2
Mt

dt

)
�

Denote kt�F�=E
�t�DP

t F�. Then kt�F2�=2E
�t�FDP

t F�. Let jt = 2�F��DP

t F�H0
.

We have �kt�F2��H0
≤ E

�t�jt�.
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Now thanks to (5.4), it follows that

�at�F2�� ≤ E
�t

(
jt +

K

2

∫ 1

t
exp�K�s− t�/2�js ds

)
�

The same computation as in [3] yields the following result.

Theorem 5.3. We have

�5�6� E�F2 logF2� − E�F2� log E�F2� ≤ 2 eK E

(∫ 1

0
�DP

t F�2H0
dt

)
for all cylindrical functions F on Pe��e�G��.

Now let T > 0. Denote by νT the law of the Brownian motion gx�t� on �e�G�
at the time T and ET the expectation with respect to νT. Then we have the
following theorem.

Theorem 5.4 (Driver-Lohrenz). It holds that

�5�7� ET�f2 log f2� − ET�f2� log ET�f2� ≤ 2TeKTET��∇�e�G�f�2H0
�

for all cylindrical function f on �e�G�.

Proof. Consider the space of continuous paths from �0�T� into �e�G� and
F�γ� = f�γT�. By (5.6), we have

�5�8� ET�f2 log f2� − ET�f2� log ET�f2� ≤ 2eKTE

(∫ T
0
�DP

t F�2H0
dt

)
�

Now by (3.17),
∫ T

0 �DP

t F�2H0
dt ≤ T ��∇�e�G�f��γT��H0

. Therefore, combining
with (5.8), we obtain (5.7). ✷
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