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A FUNCTIONAL LIL FOR SYMMETRIC STABLE PROCESSES

By Xia Chen, James Kuelbs1 and Wenbo Li1

Northwestern University, University of Wisconsin and University of Delaware

A functional law of the iterated logarithm is obtained for symmet-
ric stable processes with stationary independent increments. This extends
the classical liminf results of Chung for Brownian motion, and of Taylor
for such remaining processes. It also extends an earlier result of Wichura
on Brownian motion. Proofs depend on small ball probability estimates
and yield the small ball probabilities of the weighted sup-norm for these
processes.

1. Introduction and main results. Throughout the paper we assume
�X�t�: t ≥ 0� is a symmetric stable process of index α ∈ �0�2� with station-
ary independent increments. Furthermore, we always assume the process is
taken to have sample paths in D�0�∞�, and X�0� = 0 with probability 1. For
t ≥ 0� n ≥ 1, define M�t� = sup0≤s≤t �X�s� � and

ηn�t� =M�nt�/�cαn/LLn�1/α�
where the constant 0 < cα <∞ is given by

cα = − lim
ε→0+

εα logP

(
sup
0≤s≤1

�X�s� �≤ ε

)
(1.1)

and LLn = max�1� log�log n��. The existence of the limit defining cα in (1.1)
can be found in Mogul’skii (1974). In an earlier paper, Taylor (1967) obtained
strictly positive, finite bounds for the liminf and limsup of the right-hand side
of (1.1), and there is also a variational representation of cα to be found in
Donsker and Varadhan (1977). When α = 2 the process is Brownian motion,
and it is well known that c2 = π2/8 provided �X�t�: t ≥ 0� is normalized to
have E�X2�1�� = 1. If α ∈ �0�2�, the constant cα is also clearly X-dependent,
but due to the scaling property of �X�t�: t ≥ 0� it only affects cα in multiplica-
tive fashion. The paper by Samorodnitsky (1998) studies self-similar stable
processes with stationary increments, and when they are also independent it
recovers the Taylor (1967) result mentioned above. Without this independence,
the upper and lower bounds in Samorodnitsky differ by a power of log�1/ε�,
as ε decreases to zero.

If α = 2, then it was shown by Chung (1948) that

lim inf
n

ηn�1� = 1 a.s.�(1.2)
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and for general α ∈ �0�2�, Taylor (1967) showed that

lim inf
n

M�n�/�n/LLn�1/α = βα a.s.(1.3)

where 0 < βα <∞. Of course, once one knows (1.1) holds with cα ∈ �0�∞� then
βα = c

1/α
α . This follows from (1.6) below. The equality in (1.3) is also derived in

Donsker and Varadhan (1977) as an application of their functional law, and
βα is defined in terms of the rate function for large deviations of the Markov
process �X�t�: t ≥ 0�. Of course, if α = 2, and in the definition of ηn�t��M�·�
is replaced by X�·�, then the rates of convergence in the functional LIL of
Strassen initiated by Csáki (1980) and de Acosta (1983) generalize (1.2) con-
siderably, and involve the entire function ηn�t��0 ≤ t ≤ 1 [see Kuelbs, Li and
Talagrand (1994) for further details and references]. Another possible exten-
sion of (1.2) or (1.3) is to examine the functional cluster set C��ηn�·��� in a
weak topology. This was done when α = 2 by Wichura (1973) in an unpublished
paper. The proof in Wichura (1973) obtains a related cluster set for the first
passage time process via properties of Bessel diffusions. Then the cluster set
for the maximal process �M�t�: t ≥ 0� is obtained from the fact that the first
passage time process is the inverse of �M�t�: t ≥ 0� and various continuity
considerations.

Our main result studies the cluster set C��ηn�� for all α ∈ �0�2�, and recov-
ers the related fact in Wichura (1973) when α = 2. Our proof is quite different,
and we study the maximal process �M�t�: t ≥ 0� directly. Of course, our re-
sults then apply to the first passage time process by reversing the steps in
Wichura (1973). See the remark following (1.6).

To describe these results, denote by � the space of functions f: �0�∞� →
�0�∞� such that f�0� = 0� f is right continuous on �0�∞�, nondecreasing and
limt→+∞ f�t� = ∞.
Let

Kα =
{
f ∈ � :

∫ ∞

0
f−α�t�dt ≤ 1

}

and endow � with the topology of weak convergence, that is, pointwise con-
vergence at all continuity points of the limit function.

The topology of weak convergence on � is metrizable and separable. This
can be seen as follows. Let � denote the functions g: �−∞�∞� → �0�1� with
g�t� = 0 for t ≤ 0, right continuous on �0�∞�, nondecreasing, and such that
limt→∞ g�t� = 1. Let λ�s� = s/�1+ s� for s ∈ �0�∞�, with ∞/∞ understood to
be one, and for f ∈ � define

��f��t� = f∗�t� =
{
0� for t ≤ 0,
λ�f�t��� for t > 0.

Then the map �:f→ f∗ is one-to-one from � onto � , and we define a metric
d on � by setting d�f�g� = L�f∗� g∗�, where L is Lévy’s metric on � , that
is,

L�f∗� g∗� = inf�ε > 0:f∗�t− ε� − ε ≤ g∗�t� ≤ f∗�t+ ε� + ε for −∞ < t <∞��



260 X. CHEN, J. KUELBS AND W. LI

Now limn d�fn� f� = 0 for fn� f ∈ � iff limn L�f∗
n� f

∗� = 0, and this holds iff,

lim
n
f∗
n�t� = f∗�t�(1.4)

for all t in the continuity set of f∗. Taking the usual topology on �0�∞�, and
the definition of the map �:f → f∗, we see that (1.4) holds for all t in the
continuity set of f∗ if and only if limn fn�t� = f�t� for all t in the continuity set
of f. Since Lévy’s metric makes� a complete separable metric space, we have
�� � d� a complete separable metric space, with d-convergence equivalent to
weak convergence on � .

If �fn� is a sequence of points in � , then C��fn�� denotes the cluster set
of �fn�, that is, all possible subsequential limits of �fn� in the weak topology.
If A ⊆ � , we write �fn��A if �fn� is relatively compact and C��fn�� = A
in the weak topology. Then the following hold.

Theorem 1.1. Let �X�t�: t ≥ 0� be a stationary independent increment
symmetric stable process of index α ∈ �0�2� with sample paths in D�0�∞�
and such that X�0� = 0. Then

P��ηn��Kα� = 1�(1.5)

Corollary 1.1. Let �ηn� be as in Theorem 1.1. Then

P
(
lim inf

n
ηn�1� = 1

)
= 1�(1.6)

Remark. Let D+
0 �0�∞� denote the nondecreasing functions which vanish

at zero, are right continuous on �0�∞� and have left limits on �0�∞�. If f ∈
D+

0 �0�∞�, we define

� f�y� =
{
0� if y = 0,
inf�t:f�t� > y�� if y > 0,

where inf φ = ∞. Then � maps D+
0 �0�∞� into D+

0 �0�∞� and � f is a right
continuous inverse of f in the sense that � �� f� = f. Furthermore, looking
at the Lévy metric, and considering compact subintervals of �0�∞�, we see
�fn� converging weakly to f in � implies �� fn� converges weakly to � f
in D+

0 �0�∞�. Of course, the weak topology on D+
0 �0�∞� can be described as

for � with � expanded to include functions g with limt→∞ g�t� ≤ 1. We also
have

� �Kα� = �� f:f ∈Kα� =
{
g ∈ D+

0 �0�∞�:
∫ ∞

0
u−α dg�u� ≤ 1

}
�
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where dg�u� denotes integration with respect to the measure on �0�∞�
given by the nondecreasing function g. Hence (1.5) implies P��� �ηn���
� �Kα�� = 1. Now

�� ηn��s� = inf�t:ηn�t� > s�
= inf

{
t:M�nt� > s�cαn/LLn�1/α

}
= 1
n
� M

(
s�cαn/LLn�1/α

)
�

Letting m = mn = �cαn/LLn�1/α we get n ∼ c−1α mαLLm, and hence as
n → ∞� � ηn�·� ∼ � M�m�·��/�c−1α mαLLm�. Since � M is increasing with
the values of �mn:n ≥ 1� within distance 1 of any large integer, we may
replace m = mn by the greatest integer less than or equal to mn when we
investigate the asymptotic behavior of �� M�m�·��/c−1α mαLLm��. Thus the
following corollary holds.

Corollary 1.2. Let N�0� = 0 and N�s� = inf�t:M�t� > s� for s > 0
denote the first passage time process for �X�t�: t ≥ 0�. Then �N�s�: s ≥ 0� =
�� M�s�: s ≥ 0�, and with probability 1,

{
N�m�·��/(c−1α mαLLm

)}∞
m=1�

{
g ∈ D+

0 �0�∞�:
∫ ∞

0
u−α dg�u� ≤ 1

}

in the weak topology.

There are various applications of the functional LIL given in Theorem 1.1,
very much in the same spirit as for Strassen’s LIL. For example, we know
from Corollary 1.1 that with probability one lim supn ηn�1� = 1, but how fast
does ηn�·� get away from the zero function, say over the interval [0, 1], or how
many samples ηn�1�� n ≤ t fall in the interval �0� c�� c ≥ 1? One measure of
these quantities is the weighted occupation measure

�c�t� = t−1
∫ t
0
I�0�c��ηs�1�θ�s/t��ds�(1.7)

where c ≥ 1� θ�·� maps (0,1] into �0�∞� with θ�1� = 1� ηs�u� = M�su�/
�cαs/LLs�1/α for s > 0� u ≥ 0, and η0�u� = 0 for all u ≥ 0. As the contin-
uous parameter s converges to infinity, the family of functions �ηs�·�� satisfies
(3.1), (3.2) and (3.3). The analogue of (3.3) follows immediately from the case
n → ∞ through the integers, as there can only be more cluster points when
s converges to infinity continuously. Furthermore, both (3.1) and (3.2) follow
in the continuous parameter case from the proofs in Propositions 3.2 and 3.1,
respectively.

Beyond the properties already mentioned for θ, we will also assume θ
satisfies

s �→ s1/α/θ�s� is increasing on �0�1��(1.8)
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∫ 1

0
θα�s�/sds = ∞�(1.9)

and the function

h�s� = θα�s� +
∫ 1

s
θα�u�/udu(1.10)

maps �0�1� onto �1�∞� in continuous and one-to-one fashion. For example,
suppose (1.8) and (1.9) hold, and θ is continuous and decreasing on �0�1� with
θ�1� = 1. Then h�s� is strictly decreasing and continuous on �0�1� with range
�1�∞�. The functions θ�s� = 1� θ�s� = �log�e/s��1/α, and θ�s� = 1/�log�e/s��1/α
all satisfy the conditions formulated in (1.8), (1.9) and (1.10). With this nota-
tion we now can state the following theorem. Its proof is in Section 4.

Theorem 1.2. Let θ: �0�1� → �0�∞� satisfy θ�1� = 1, (1.8), (1.9) and that
h�s� as defined in (1.10) is continuous and one-to-one on �0�1� into �1�∞�.
Then, with probability 1,

lim sup
t→∞

�c�t� = 1− sc�(1.11)

where s = sc is the (unique) solution to h�s� = cα� c ≥ 1.

Examples. If θ�s� = 1 on �0�1�, then h�s� = 1 − log s and h�s� = cα has
solution sc = exp�−�cα − 1�� for c ≥ 1. Thus (1.11) implies that with probabil-
ity 1,

lim sup
t→∞

t−1
∫ t
0
I�0� c��ηs�1��ds = 1− exp �−�cα − 1��

for each c ≥ 1.

If θ�s� = �log�e/s��1/α on �0�1�, then for 0 < s ≤ 1� h�s� = 1 − 2 log s +
�log s�2/2. Solving h�s� = cα�0 < s ≤ 1 and c ≥ 1, we get sc = exp�2 −
2
√
1+ �cα − 1�/2��, and hence with probability 1,

lim sup
t→∞

t−1
∫ t
0
I�0� c��ηs�1��log�et/s��1/α�ds = 1− exp�2− 2

√
1+ �cα − 1�/2�

for c ≥ 1.
If θ�s� = log�e/s��−1/α on �0�1�, then for 0 < s ≤ 1� h�s� = �1 − log s�−1 +

log�1 − log s�, and h�s� is continuous and strictly decreasing on �0�1� with
h�1� = 1. Thus h�s� has a unique continuous solution sc and Theorem 1.2
applies. However, an explicit formula for the value of sc is not immediate in
this case.

Another gauge of the rate of escape is the quantity t−1
∫ t
0 I�0� t��ηt�s/t��ds,

which is similar to �c�t� (as t→ ∞), provides θ�s� = s1/α. With this choice of
θ, (1.8) applies, but (1.9) fails and h�s� = 1 for all s ∈ �0�1�. Thus Theorem 1.2
is not applicable, but the techniques for its proof imply

lim sup
t→∞

t−1
∫ t
0
I�0� c��ηt�s/t��ds =

{
1� if c ≥ 1,
cα� if 0 ≤ c < 1.

(1.12)
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The rate of escape with respect to the Lp norms is given by the following
theorem, whose proof is in Section 4.

Theorem 1.3. Let �X�t�: t ≥ 0� be as above and suppose 0 < p <∞. Then,
with probability 1,

lim inf
t→∞

∫ 1

0
�ηt�u��p du = inf

f∈Kα

∫ 1

0
�f�u��p du = 1�(1.13)

Remark. Since ηt�·� is increasing, the analogue of (1.13) for the sup-norm
on [0,1] follows immediately from (1.6).

2. Probability estimates. The proof of Theorem 1.1 depends on the prob-
ability estimates obtained in this section. The first result is an Anderson-type
inequality for symmetric α-stable measures. It is a known fact, but we give a
proof for completeness.

Lemma 2.1. Let �X�t�: t ∈ T� be a symmetric stable process of index α ∈
�0�2� such that T is a countable set and P�supt∈T�X�t�� < ∞� = 1. Then for
all λ > 0, and all real numbers x,

P

(
sup
t∈T

�X�t� + x� ≤ λ

)
≤ P

(
sup
t∈T

�X�t�� ≤ λ

)
�(2.1)

Proof. The proof of (2.1) follows from Anderson’s inequality if α = 2. If α ∈
�0�2�, then by Lemma 1.6 of Marcus and Pisier (1984), we can find probabil-
ity spaces �*�� �P� and �*̃� �̃ � P̃� and a real-valued stochastic process �Y�t�:
t ∈ T� on �* × *̃�� × �̃ �P × P̃� such that the processes �Y�t�:
t ∈ T� and �X�t�: t ∈ T� have the same distribution and for each fixed w ∈ *,
the stochastic process �Y�t�w� ·�: t ∈ T� is a symmetric Gaussian process.
Hence for λ > 0 and all x real, the α = 2 case implies

P̃

(
sup
t∈T

�Y�t�w� ·� + x� < λ

)
≤ P̃

(
sup �Y�t�w� ·�� < λ

)
�(2.2)

Since (2.2) holds for all w ∈ *, Fubini’s theorem and (2.2) combine to give
(2.1). ✷

Proposition 2.2. Fix sequences �ti�mi=0� �ai�mi=0 and �bi�mi=0 such that 0 =
t0 < t1 < · · · < tm and a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm. Then

lim sup
ε→0+

εα logP�aiε ≤M�ti� ≤ biε�1 ≤ i ≤m� ≤ −cα
m∑
i=1

�ti − ti−1�/bαi �
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Proof. Let Ai = �supti−1≤s<ti �X�s�� ≤ biε� for i = 1� � � � �m. Then it is
easy to see

P�aiε ≤M�ti� ≤ biε�1 ≤ i ≤m� ≤ P

(
m⋂
i=1

Ai

)
�(2.3)

Furthermore, we have

P

(
m⋂
i=1

Ai

)
=
∫
�
P

(
m−1⋂
i=1

Ai� sup
tm−1≤s<tm

�X�s� −X�tm−1� + x �

≤ bmε �X�tm−1� = x

)
dPX�tm−1��x�

=
∫
�
P

(
sup

tm−1≤s<tm
�X�s� −X�tm−1� + x �≤ bmε

)

×P
(m−1⋂

i=1
Ai �X�tm−1� = x

)
dPX�tm−1��x��

since suptm−1≤s<tm �X�s�−X�tm−1�+x� is independent ofX�tm−1� and
⋂m−1
i=1 Ai

by the independent increments property of X�t�.
Now Lemma 2.1, and that the sample paths are in D�0�∞�, together imply

P

(
sup

tm−1≤s<tm
�X�s� −X�tm−1� + x� ≤ bmε

)

≤ P

(
sup

tm−1≤s<tm
�X�s� −X�tm−1�� ≤ bmε

)

= P

(
sup
0≤s≤1

�X�s�� ≤ bmε/�tm − tm−1�1/α
)
�

where the equality follows from the scaling property of �X�t�: t ≥ 0� and the
homogeneity of the increments. Thus

P

(
m⋂
i=1

Ai

)
≤ P

(
m−1⋂
i=1

Ai

)
P

(
sup
o≤s≤1

�X�s�� ≤ bmε/�tm − tm−1�1/α
)
�

and iterating the above estimate, along with (2.3), implies

lim sup
ε→0+

εα logP�aiε ≤M�ti� ≤ biε�1 ≤ i ≤m�

≤
m∑
i=1

lim sup
ε→0+

εα logP
(

sup
0≤s≤1

�X�s�� ≤ biε

�ti − ti−1�1/α
)

= −cα
m∑
i=1

�ti − ti−1�/bαi �

where the equality follows from (1.1).
Thus Proposition 2.2 is proved. ✷
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To obtain a reverse estimate, we need the following lemma.

Lemma 2.3. Given δ > 0,

lim
ε→0+

εα logP�M�1� ≤ ε� �X�1�� ≤ εδ� = −cα�(2.4)

Remark. From (2.4) one can see that for given positive numbers a < b and
δ > 0,

lim
ε→0+

εα logP�aε ≤M�1� ≤ bε� �X�1�� ≤ εδ� = −cα/bα�

Proof of Lemma 2.3. If δ ≥ 1, then (2.4) follows immediately from (1.1).
Hence assume δ ∈ �0�1�, and suppose T = �tj� is a countable dense subset of
�0�1�. Let �Y�t�: t ∈ T� be a stochastic process on �* × *̃�� × �̃ �P × P̃� as
in the proof of Lemma 2.1. Then

P�M�1� ≤ ε� �X�1�� ≤ εδ�

= lim
n
P

(
sup
1≤j≤n

�X�tj�� ≤ ε� �X�1�� ≤ εδ

)

= lim
n
Eω

(
Pω′

(
sup
1≤j≤n

�Y�tj�ω�ω′�� ≤ ε� �Y�1�ω�ω′�� ≤ εδ

))

≥ lim
n
Eω

(
Pω′

(
sup
1≤j≤n

�Y�tj�ω�ω′�� ≤ ε� �Y�1�ω�ω′� + θ� ≤ εδ

))

for all θ ∈ �, where the inequality is due to Anderson’s inequality applied
conditionally to the Gaussian probability in �n+1; that is, we are translating
only the �n + 1�st coordinate. Continuing with the above we have for θ ∈ �
that

P�M�1� ≤ ε� �X�1�� ≤ εδ�

≥ �P×P′�
(
sup
T

�Y�t�ω�ω′�� ≤ ε� �Y�1�ω�ω′� + θ� ≤ εδ

)

= P

(
sup
T

�X�t�� ≤ ε� �X�1� + θ� ≤ εδ

)

= P

(
M�1� ≤ ε� �X�1� + θ� ≤ εδ

)
�

Thus

P�M�1� ≤ ε� ≤
�1/δ�∑

j=−�1/δ�
P�M�1� ≤ ε� �X�1� + jεδ� ≤ εδ�

≤ �2�1/δ� + 1�P�M�1� < ε� �X�1�� ≤ εδ��
Hence the above estimate implies (2.4).
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Proposition 2.4. Fix sequences �ti�mi=0� �ai�mi=0� �bi�mi=0 such that 0 = t0 <
t1 < · · · < tm and a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm. Then, for every γ > 0,

lim inf
ε→0

εα logP�aiε ≤M�ti� ≤ biε�1 ≤ i ≤m� �X�tm�� ≤ bmγε�

≥ −cα
m∑
i=1

ti − ti−1
bαi

�(2.5)

Proof. Take a small δ > 0 such that δ < γ and ai�1 + δ� < bi�1 − δ� for
all 1 ≤ i ≤m. Define

Bi =
{
aiε ≤ sup

ti−1≤s≤ti
�X�s�� ≤ biε� �X�ti�� ≤ biδε

}

for i = 1� � � � �m. Then

{
aiε ≤M�ti� ≤ biε�1 ≤ i ≤m� �X�tm�� ≤ bmγε

} ⊇ m⋂
i=1

Bi�

On the other hand, if for i = 1� � � � �m,

Ai =
{
ai�1+ δ�ε ≤ sup

ti−1≤s≤ti
�X�s� −X�ti−1�� ≤ bi�1− δ�ε�

�X�ti� −X�ti−1�� ≤ �bi − bi−1�δε
}
�

then

P�Ai� = P

(
ai�1+ δ�ε

�ti − ti−1�1/α
≤M�1� ≤ bi�1− δ�ε

�ti − ti−1�1/α
� �X�1�� ≤ �bi − bi−1�δε

�ti − ti−1�1/α
)

and

P

(
m⋂
i=1

Bi

)
≥ P

(
m−1⋂
i=1

Bi ∩Am

)
= P

(
m−1⋂
i=1

Bi

)
P�Am� ≥

m∏
i=1

P�Ai��(2.6)

By the remark after Lemma 2.3 (2.5) follows from (2.6), and the proposition
is proved. ✷

As a direct consequence of our Proposition 2.2 and Proposition 2.4, we have
the following small ball estimates for X�t� under weighted norms. The case
α = 2 was given in Mogul’skii (1982) and its connection with Gaussian Markov
processes was studied in Li (1998).

Proposition 2.5. Let �X�t�: t ≥ 0� be a symmetric stable process with ho-
mogeneous independent increments, sample paths in D�0�∞�, and parameter
α ∈ �0�2�. Let ρ: �0�1� → �0�∞� be a bounded function such that ρ�t�α is
Riemann integrable on �0�1�. Then

lim
ε→0

εα logP
(

sup
0≤t≤1

�ρ�t�X�t�� ≤ ε

)
= −cα

∫ 1

0
ρ�t�α dt�
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The proof of Propositions 2.2 and 2.4 using Gaussian symmetrization is a
direct and easy path, and was our first approach. Subsequent study revealed
that the 1974 paper of Mogul’skii contains results which are related to these
propositions. However, we chose to retain our line of proof here as the constant
cα is not identified precisely there, and certain steps of the proof are not clear
to us.

3. Proof of Theorem 1.1 and Corollary 1.1. The proof of Theorem 1.1
follows immediately from the following three facts:

P�C��ηn�� ⊂Kα� = 1�(3.1)

P��ηn� is relatively compact in � � = 1(3.2)

and

P�Kα ⊂ C��ηn��� = 1�(3.3)

Of course, the topology on � is that of weak convergence, which is separable
and metric.

In order to prove (3.2) we first observe that a subset F of � is relatively
compact if for every 8 > 0 there exists t0 = t0�8� such that t ≥ t0 implies
inff∈F f�t� ≥ 8. This characterization of relative compactness in � is imme-
diate from the homeomorphism of � and � .

Proposition 3.1. P��ηn� is relatively compact in � � = 1.

Proof. Let nk = 2k and observe that for nk−1 ≤ n ≤ nk, and all k suffi-
ciently large,

ηn�t� = ηnk�nt/nk��nkLLn/�nLLnk��1/α ≥ ηnk�t/2��(3.4)

Hence for 8 > 0, (3.4) implies

P�ηn�t� > 8 eventually in n� ≥ P�ηnk�t/2� > 8 eventually in k��(3.5)

Rescaling, and applying (1.1), we have for all k sufficiently large that

P
(
ηnk�t/2� ≤ 8

) = P
(
M�1� ≤ 8�2cα/�tLLnk��1/α

) ≤ exp
{− �tLLnk�/�48α�

}
�

Hence if t ≥ 88α, we have ∑
k≥1

P�ηnk�t/2� ≤ 8� <∞�

and the Borel–Cantelli lemma implies P�ηnk�t/2� ≤ 8 i.o.� = 0. Thus (3.5)
implies P�ηnk�t� > 8 eventually in n� = 1 for t ≥ 88α. Letting 8↗ ∞ through
a countable set implies (3.2), and the proposition is proved. ✷

Proposition 3.2. P�C��ηn�� ⊂Kα� = 1.
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Proof. Fix f ∈ � ∩Kc
α, and hence∫ ∞

0
�f�t��−α dt > 1�(3.6)

Let t∗f = sup�t:f�t� <∞�. Then t∗f = 0 negates (3.6), so t∗f = ∞ or 0 < t∗f <∞.
Suppose (3.6) holds. Since f�t� = ∞ for t ≥ t∗f we have

∫ t∗f
0

�f�t��−α dt =
∫ ∞

0
�f�t��−α dt > 1�(3.7)

Furthermore, since f is increasing and nonnegative, the integrals in (3.7) exist
as improper Riemann integrals. Hence there exist points 0 = t0 < t1 < · · · <
tr < t∗f and δ > 0 such that 0 < f�t1� < · · · < f�tr� and

r∑
j=1

�f�tj� + δ�−α�tj − tj−1� > 1�(3.8)

Furthermore, we may assume the tj’s are continuity points of f. That is, if tj
is not a continuity point, then we choose a point t∗j such that tj < t∗j� t

∗
j is a

continuity point of f and for t∗j sufficiently close to tj we have

�f�t∗j� + δ�−α�t∗j − tj−1� + �f�tj+1� + δ�−α�tj+1 − t∗j�
> �f�tj� + δ�−α�tj − tj−1� + �f�tj+1� + δ�−α�tj+1 − tj� − β/�2r��(3.9)

where, by (3.8),

β = −1+
r∑

j=1
�f�tj� + δ�−α�tj − tj−1� > 0�

The inequality in (3.9) holds since f is right continuous on �0�∞� and con-
tinuous everywhere except possibly a countable set. Modifying each tj in this
way (starting with t1, then t2, etc. whenever necessary), we see the tj’s can be
taken to be continuity points of f and (3.8) holds.

With δ > 0 as in (3.8) we define

Nf = �g ∈ � :f�tj� − δ < g�tj� < f�tj� + δ�1 ≤ j ≤ r��
Then for g ∈Nf,

r∑
j=1

�g�tj��−α�tj − tj−1� ≥
r∑

j=1
�f�tj� + δ�−α�tj − tj−1� > 1�(3.10)

and since
∫∞
0 �f�t��−α dt exists as an improper Riemenn integral, with refine-

ments of a partition leading to an increase of the partial sums in (3.10) (they
are lower sums), we have Nf ∩Kα = �. Rescaling, applying Proposition 2.2,
and taking γ > 0 such that

cα

r∑
j=1

�f�tj� + δ�−α�tj − tj−1� − γ > �1+ γ�cα�
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we have for n sufficiently large that

P�ηn ∈Nf� = P

(
r⋂

j=1
�M�ntj�/n1/α ∈ �cα/LLn�1/α�f�tj� − δ� f�tj� + δ��

)

≤ exp
{
− �LLn/cα�

(
cα

r∑
j=1

tj − tj−1
�f�tj� + δ�α − γ

)}
(3.11)

≤ exp�−�1+ γ�LLn��
Thus if nk = exp�k/Lk�, (3.11) and the Borel–Cantelli lemma implies

P�ηnk ∈Nf i.o.� = 0�(3.12)

The above argument shows Kc
α is open, and since � is separable there are

�fj� dense in Kc
α such that Kc

α ⊂ ⋃∞
j=1Nfj

. Hence

{
C��ηnk�� ∩Kc

α �= �
} ⊂ ∞⋃

j=1

{
C��ηnk�� ∩Nfj

�= �
}
�

and (3.12) implies

P�C��ηnk� ⊂Kα� = 1�(3.13)

If nk−1 ≤ n ≤ nk it is useful to write ηn�t� = ηnk�nt/nk��nkLLn/
�nLLnk��1/α. Then f ∈ C��ηn�� implies f ∈ C��ηnk�� since limnk/nk−1 = 1.
Thus (3.13) implies (3.1) and the proposition is proved. ✷

Proposition 3.3. P�Kα ⊂ C��ηn��� = 1.

Proof. Let ;�f� = ∫∞
0 �f�t��−α dt. Suppose ;�f� ≤ 1 andN is an arbitrary

weak neighborhood of f. Since � is metrizable in the weak topology, there
is a countable neighborhood base at each point of � , and hence f ∈ C��ηn��
with probability 1 provided

P�ηn ∈Nf i.o.� = 1�(3.14)

SinceKα has a countable dense set, we then have every point ofKα in C��ηn��
with probability 1 provided (3.14) holds for f ∈Kα.

To establish (3.14) for each f ∈Kα, our first step is to show we may actually
assume ;�f� is strictly less than 1. To do this we define t∗f = sup�t:f�t� <∞�
as before, and consider the two possibilities t∗f = ∞ and 0 < t∗f <∞.

If t∗f = ∞, then a typical neighborhood of f is of the form N = ⋂r
j=1 8j

where 0 < t1 < · · · < tr,

8j = �g:f�tj� − γ < g�tj� < f�tj� + γ��(3.15)

and γ > 0. Hence if we define

f̃�t� =
{
0� t = 0,
f�t� + γ/4� 0 < t <∞ ,
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then f̃ ≥ f� f̃ ∈N, and ;�f̃� < 1. Defining Ñf = ⋂n
j=1 8̃j, where

8̃j = {
g: f̃

(
tj
)− γ/2 < g

(
tj
)
< f̃

(
tj
)+ γ/2

}
�

we see Ñ ⊂Nf, and (3.14) will hold provided P�ηn ∈ Ñ i.o.� = 1�
The other case is 0 < t∗f < ∞. Then a typical neighborhood of f is of the

form

Nf =
(

r⋂
j=1

8j

)
∩
(

s⋂
k=1

Rr+k

)
�

where 0 = t0 < t1 < · · · < tr < t∗f ≤ tr+1 < · · · < tr+s� 8j is defined as in (3.15)
and Rr+k = �g:g�tr+k� > mk�. Now we can define

f̃�t� =



0� t = 0,
f�t� + γ/4� 0 < t < �tr + t∗f�/2,
l+ 1/2� �tr + t∗f�/2 ≤ t < tr+s + 1,
∞� t ≥ tr+s + 1,

and set

Ñ =
(

r⋂
j=1

8̃j

)
∩
(

s⋂
k=1

R̃r+k

)
�

where

8̃j = {
g: f̃�tj� − γ/2 < g�tj� < f̃�tj� + γ/2

}
�

R̃r+k = {
g: l < g�tr+k� < l+ 1

}
and l > f��tr + t∗f�/2� + γ/4 is sufficiently large so that

;�f̃� ≤
∫ �tr+t∗f�/2

0
�f�t� + γ/4�−α dt+ �tr+s + 1− �tr + t∗f�/2�/lα < 1�

Then f̃ ∈ Ñ ⊂ Nf�;�f̃� < 1. Hence in both cases it suffices to verify (3.14)
with f ∈Nf and ;�f� < 1.

Assuming ;�f� < 1, we consider only the case t∗t = ∞ (the other case is
much the same). Then Nf = ∩rj=18j, where 8j is given in (3.15). To verify
(3.14) we take nk = exp�k1+δ� with δ > 0 to be specified later as a function of
β = 1− ;�f� > 0. Now we observe

P�ηnk ∈Nf i.o.� ≥ P�Ak ∩Bk i.o.��(3.16)

where

Ak = {
f�tj� − γ/2 < η̃nk�tj� < f�tj� + γ/2�1 ≤ j ≤ r

}
�

Bk =
{

sup
0≤s≤nk−1tr/nk

�X�nks�� ≤ �γ/4��cαnk/LLnk�1/α
}
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and

η̃nk�t� = sup
nk−1tr/nk≤s≤t

�X�nks� −X�nk−1tr��/�cαnk/LLnk�1/α�

Lévy’s inequality and rescaling implies

P�Bc
k� ≤ 2P��X�nk−1tr�� > �γ/4��cαnk/LLnk�1/α�

≤ 2E��X�nk−1tr��α−θ��4/γ�α−θ�LLnk/�cαnk��1−θ/α

= 2�4/γ�α−θE��X�tr��α−θ��nk−1LLnk/�cαnk��1−θ/α�
provided 0 < θ < α. Since nk = exp�k1+δ�, we see∑k≥1P�Bc

k� <∞, and hence
P�Bc

k i.o.� = 0. Thus P�Bk eventually� = 1 and (3.14) will follow from (3.16)
provided P�Ak i.o.� = 1.

The time homogeneous, independent increments of �X�t�: t ≥ 0� imply the
Ak’s are independent provided nk−1tr/nk < t1, that is, for all k sufficiently
large, and, furthermore, that

P�Ak� = P

(
r⋂

j=1
�M�nk�tj − nk−1tr/nk��/�cαnk/LLnk�1/α ∈ 8j�

)
�

From Proposition 2.4, and rescaling, we thus have for all ρ > 0 that for k
sufficiently large,

P�Ak� = P

( r⋂
j=1

�M�tj − nk−1tr/nk� ∈ �cα/LLnk�1/α8j�
)

≥ exp
{
− �LLnk��1+ ρ�

(
t1 − nk−1tr/nk
�f�t1� + γ/2�α +

r∑
j=2

�tj − tj−1�
�f�tj� + γ/2�α

)}

≥ k−�1+δ��1+ρ�2�1−β��

where β = 1 − ;�f� > 0. In particular, taking ρ = δ and �1 + δ�3 < �1 − β�−1
we have

∑
k≥1P�Ak� = ∞. Independence and the Borel–Cantelli lemma now

imply P�Ak i.o.� = 1. Thus (3.16) implies (3.14). Hence we have shown (3.1)–
(3.3), and Theorem 1.1 follows immediately. ✷

Proof of Corollary 1.1. Applying the zero–one law we may assume with
probability 1 that lim infn ηn�1� = d. If d < 1, then for every f ∈ Kα with
t = 1 a continuity point of f, there is a subsequence (random) such that

lim
nk

ηnk�1� = f�1� = d < 1 a.s.

Thus
∫∞
0 f−α�t�dt ≥ ∫ 1

0 d
−α dt > 1, which contradicts f ∈Kα. Hence d ≥ 1.

If d > 1 we define

f0�t� =
{0� t = 0,
d� 0 < t < 1+ δ,
+∞� t ≥ 1+ δ.
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Then f0 ∈ � and for δ > 0 sufficiently small, f0 ∈ Kα. Furthermore, since 1
is a continuity point of f0,

P
(
lim inf

n
ηn�1� ≤ f0�1� = d

) = 1�

Since d > 1 is arbitrary, this proves Corollary 1.1, and (1.3) holds with βα =
c
1/α
α .

4. Proof of Theorems 1.2 and 1.3. We first establish several lemmas
which allow us to identify the left-hand terms in (1.11), (1.12) and (1.13).

Lemma 4.1. Let Fc�f� =
∫ 1
0 I�0� c��f�u�r�u��du, and

Gc�t� =
∫ 1

0
I�0� c�

(
ηt�u�r�u�

(
LLtu

LLt

)1/α)
du�

where r: �0�1� → �0�∞� is measurable. Then for each c > 0, with probability 1,

lim sup
t→∞

Gc�t� ≤ sup
f∈Kα

Fc�f��(4.1)

Furthermore, we have equality in (4.1) whenever supf∈Kα
Fc�f� is left contin-

uous at c.

Proof. First we prove lim supt→∞Gc�t� ≤ supf∈Kα
Fc�f�. Suppose the con-

trary, so there is a set E ⊆ * (our probability space for �X�t�: t ≥ 0�� with
P�E� > 0, and for w ∈ E,

lim sup
t→∞

Gc�t� > sup
f∈Kα

Fc�f��

Let *0 ⊆ * with P�*0� = 1 and for w ∈ *0,

�i� C��ηt�� t→ ∞� =Kα�

�ii� �ηt� is relatively compact in � as t→ ∞�
(4.2)

Then for w ∈ E ∩ *0, there exists a possibly random subsequence �tj�w�� =
�tj� such that tj → ∞� limj→∞Gc�tj� > supf∈Kα

Fc�f�, and ηtj�·� → f0 ∈
Kα weakly. Hence limj→∞ ηtj�u� = f0�u� except possibly for countably many
values of u, and therefore,

lim sup
j

I�0� c�

(
ηtj�u�r�u�

(
LLtju

LLtj

)1/α)
≤ I�0� c��f0�u�r�u��

for almost all u ∈ �0�1� (Lebesgue measure), since the characteristic function
of a closed set is upper semicontinuous. Thus the reverse Fatou lemma implies

lim sup
j

Gc�tj� ≤
∫ 1

0
lim sup

j

I�0� c�

(
ηtj�u�r�u�

(
LLtju

LLtj

)1/α)
du

≤
∫ 1

0
I�0� c��f0�u�r�u��du

= Fc�f0� ≤ sup
f∈Kα

Fc�f��
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which contradicts that E exists with P�E� > 0. Thus lim supt Gc�t� ≤
supf∈Kα

Fc�f�.
To prove the reverse inequality take f0 ∈ Kα. Then for all w ∈ *0 there

exists a possibly random subsequence �tj�w�� = �tj�, such that

ηtj�·� → f0 ∈Kα weakly�

Then for δ > 0� c− δ > 0,

lim sup
t→∞

Gc�t� ≥ lim sup
t→∞

Fc�ηt� ≥ lim sup
tj→∞

Fc�ηtj� ≥ lim inf
tj→∞

Fc�ηtj��

Now by Fatou’s lemma,

lim inf
tj→∞

Fc�ηtj� ≥
∫ 1

0
lim inf
tj→∞

I�0� c��ηtj�u�r�u��du

≥
∫ 1

0
I�0� c−�δ/2��

(
lim inf
tj→∞

ηtj�u�r�u�
)
du

=
∫ 1

0
�0� c− �δ/2���f0�u�r�u��du�

where the last inequality holds because �0� c − �δ/2�� is open in �0�∞� and
therefore I�0� c−�δ/2�� is lower semicontinuous here. Thus lim supt→∞Gc�t� ≥
Fc−δ�f0�, and since f0 ∈ Kα is arbitrary we have lim supt→∞ Gc�t� ≥
supf∈Kα

Fc−δ�f�. The left-continuity of supf∈Kα
Fβ�f� at c thus implies equal-

ity in (4.1) and the lemma is proved. ✷

Lemma 4.2. If 0 < α ≤ 2 and 0 < p ≤ ∞, then inff∈Kα
��f��p = 1, where

��f��p = �∫ 10 �f�u��p du�1/p�0 < p <∞, and ��f��∞ is the essential supremum of
f on �0�1� with respect to Lebesgue measure.

Proof. If p = ∞, then f ↗ implies inff∈Kα
��f��∞ ≤ inff∈Kα

f�1� ≤ 1.
On the other hand, if ��f��∞ < 1, then

∫ 1
0 f

−α�t�dt > 1 and f �∈ Kα. Thus
inff∈Kα

��f��α = 1.

If 0 < p <∞, take r ∈ �1�∞� such that α/�r−1� = p. Then
∫ 1
0 �f�u��p du <

∞ and f ∈Kα imply both f and f−1 are finite and nonnegative a.s. on �0�1�.
Hence with Lebesgue measure 1 = fα/r�u�f−α/r�u�, and therefore by Holder’s
inequality with r > 1 and q−1 = 1− r−1 = �r− 1�/r, we have

1 =
∫ 1

0
�f�u��α/r�f�u��−α/r du

≤
( ∫ 1

0
�f�u��α/�r−1� du

)�r−1�/r( ∫ 1

0
�f�u��−α du

)1/r

≤
( ∫ 1

0
�f�u��p du

)1/p

1

since f ∈ Kα. Thus limf∈Kα
��f��p ≥ 1, and it is trivially less than or equal to

1 by the p = ∞ case.
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Proof of (1.13). Fix 0 < α ≤ 2 and 0 < p < ∞. Then Lemma 4.2 implies
that inff∈Kα

∫ 1
0 �f�u��p du = 1, so it remains to verify the first equality. Hence

assume lim inf t→∞
∫ 1
0 �ηt�u��p du < 1 on a set E ⊆ * with P�E� > 0 and

assume *0 ⊆ * is as in Lemma 4.1. In particular, w ∈ *0 implies (4.2) holds,
and for w ∈ E ∩ *0, there exists a possibly random sequence �tj�w�� = �tj�
such that limj→∞

∫ 1
0 �ηtj�u��p du < 1 and ηtj → f0 weakly, for some f0 ∈ Kα.

Then limj ηtj�u� = f0�u� except for possibly countably many u and hence
Fatou’s lemma implies

lim inf
j

∫ 1

0
�ηtj�u��p ≥

∫ 1

0
�f0�u��p du ≥ inf

f∈Kα

∫ 1

0
�f�u��p du = 1�

This contradicts the assumption P�E� > 0, so we have with probability 1 that
lim inf t→∞

∫ 1
0 �ηt�u��p du ≥ 1. On the other hand, lim inf t→∞

∫ 1
0 �ηt�u��p du ≤

limt→∞ �ηt�1��p = 1 by Corollary 1.1 and that ηt�·� is increasing on �0�1�.
Hence (1.13) holds and Theorem 1.3 is proved. ✷

Proof of (1.12). Fix 0 < α ≤ 2 and set u = s/t in (1.12). Then

lim sup
t→∞

t−1
∫ t
0
I�0� c��ηt�s/t��ds = lim sup

t→∞

∫ 1

0
I�0� c��ηt�u��du(4.3)

with probability 1. Let r�u� = 1 and define Fc�f� as in Lemma 4.1. Then, for
0 < c <∞, consider

sup
f∈Kα

Fc�f� = sup
f∈Kα

∫ 1

0
I�0� c��f�u��du�

If c ≥ 1, then setting

fc�u� =
{0� if u = 0,
c� if 0 < u < 1,
+∞� if u ≥ 1,

we see
∫ 1
0 I�0� c��fc�u��du = 1 and since c ≥ 1 we also have fc ∈ Kα. Since

supf∈Kα

∫ 1
0 I�0� c��f�u��du ≤ 1, we have

sup
f∈Kα

Fc�f� = 1

for c ≥ 1. If 0 < c < 1, define

fc�u� =
{0� if u = 0,
c� if 0 < u < cα,
+∞� if u ≥ cα.

Then fc ∈ Kα, and since f ∈ Kα is increasing with f�0� = 0, it is easy to see
that

sup
f∈Kα

∫ 1

0
I�0� c��f�u��du =

∫ 1

0
I�0� c��fc�u��du = cα�
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Thus supf∈Kα
Fc�f� is continuous for 0 ≤ c < ∞ and hence the method of

proof of Lemma 4.1 implies with probability 1,

lim sup
t→∞

∫ 1

0
I�0� c��ηt�u��du = sup

f∈Kα

Fc�f� =
{
1� if c ≥ 1,
cα� if 0 ≤ c < 1.

(4.4)

Combining (4.3) and (4.4) yields (1.12). ✷

Proof of (1.11). Since ηs�1� = ηt�s/t��tLLs/sLLt�1/α for s� t > 0, letting
u = s/t implies �c�t� as given in (1.7) satisfies

�c�t� =
∫ 1

0
I�0� c�

(
ηt�u�u−1/αθ�u�

(
LLtu

LLt

)1/α
)
du�

Now Lemma 4.1 with r�u� = u−1/αθ�u� implies lim supt→∞�c�t� =
supf∈Kα

Fc�f� with probability 1, provided supf∈Kα
Fc�f� is left continuous

at c.
When c ≥ 1,

sup
f∈Kα

Fc�f� = sup
f∈Kα

∫ 1

0
I�0� c��f�u�u−1/αθ�u��du(4.5)

is taken on by the function fc�u� where

fc�u� =



0� if u = 0,
cu

1/α
0 /θ�u0�� if 0 < u < u0,

cu1/α/θ�u�� if u0 ≤ u < 1,
+∞� if u ≥ 1.

That is, if f�u� > cu1/α/θ�u� for u ∈ E ⊆ �0�1�, then since both cu1/α/θ�u�
and f�u� are increasing on �0�1� with (1.9) holding, we minimize the quantity∫ 1
0 f

−α�u�du by having the set E be an interval starting at zero. Thus the
choice of fc is optimal provided we choose u0 such that h�u0� = cα where h�·�
is as in (1.10). Then u0 = sc� fc ∈Kα, and for all c ≥ 1,

sup
f∈Kα

∫ 1

0
I�0� c�

(
f�u�u−1/αθ�u�)du = 1− sc�(4.6)

Now h�·� one-to-one and continuous from �0�1� onto �1�∞�with h�1� = 1 im-
plies sc is continuous for all c > 1 and s1 = 1. Thus Lemma 4.1, (4.5) and (4.6)
imply (1.11) for c > 1. If c = 1, then s1 = 1 and the upper bound in (4.1) imply
with probability 1 that lim supt→∞�c�t� ≤ 0. However, lim supt→∞�c�t� ≥ 0
is trivial, so (1.11) holds even when c = 1. Hence Theorem 1.2 is proved. ✷
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