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We describe a Vervaat-like path transformation for the reflected Brow-
nian bridge conditioned on its local time at 0: up to random shifts, this
process equals the two processes constructed from a Brownian bridge and
a Brownian excursion by adding a drift and then taking the excursions
over the current minimum. As a consequence, these three processes have
the same occupation measure, which is easily found.
The three processes arise as limits, in three different ways, of profiles

associated to hashing with linear probing, or, equivalently, to parking func-
tions.

1. Introduction. We regard the Brownian bridge b�t� and the normal-
ized (positive) Brownian excursion e�t� as defined on the circle R/Z, or, equiv-
alently, as defined on the whole real line, being periodic with period 1. We
define, for a ≥ 0, the operator �a on the set of bounded functions on the line
by

�af�t� = f�t� − at− inf
−∞<s≤t

�f�s� − as�
= sup
s≤t

�f�t� − f�s� − a�t− s�� �(1.1)

If f has period 1, then so has �af; thus we may also regard �a as acting on
functions on R/Z. Evidently, �af is nonnegative.
In this paper, we prove that, for every a ≥ 0, the three following processes

can be obtained (in law) from each other by random shifts, that we will describe
explicitly:

(i) Xa, which denotes the reflecting Brownian bridge �b� conditioned to
have local time at level 0 equal to a;
(ii) Ya = �ab;
(iii) Za = �ae.
We will find convenient to use the following formulas for Ya and Za:

Ya�t� = b�t� − at+ sup
t−1≤s≤t

�as− b�s���(1.2)

Za�t� = e�t� − at+ sup
t−1≤s≤t

�as− e�s���(1.3)
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For t ∈ �0�1�, we also have
Za�t� = e�t� − at+ sup

0≤s≤t
�as− e�s���(1.4)

consistently with the notations of [13].
Given a stochastic process X and a positive number t, we let Lt�X� denote

the local time of the process X at level 0, on the interval �0� t�, defined as in
[10], page 154, by:

Lt�X� = lim
ε↓0

1
2ε

∫ t
0
1�−ε<Xs<ε�ds�

with this convention, for example, b and �b� have the same local time at 0,
while, according to the usual convention ([28], Section I.2), the local time at
0 of �b� is twice the local time at 0 of b. When possible, we extend L�X� to
t ∈ �−∞�0�, in such a way that Lb�X�−La�X� is the local time of the process
X at level 0, on the interval �a� b�, for any choice −∞ < a < b < +∞.
The definition above of Xa is formally not precise enough, since it involves

conditioning on an event of probability 0. However, there exists on C�0�1� a
unique family of conditional distributions of �b� (or b) given L1�b� = a which
is weakly continuous in a ≥ 0 ([25], Lemma 12]), and this can be taken as
defining the distribution of Xa. The process Xa has been an object of interest
in a number of recent papers in the domain of stochastic calculus: its distri-
bution is described in [27], Section 6 by its decomposition in excursions. The
sequence of lengths of excursions is computed in [7], using [24]. The local time
process of Xa is described through an SDE in a recent paper [25] by Pitman,
who in particular proves that, up to a suitable random time change, the local
time process of Xa is a Bessel(3) bridge from a to 0 ([25], Lemma 14). (See
also [4], where a Brownian bridge conditioned on its whole local time process
is decribed.)
While Xa appears as a limit in the study of random forests [25], Za ap-

pears as a limit in the study of parking problems, or hashing (see [13]), an
old but still hot topic in combinatorics and analysis of algorithms, these last
years [1, 14, 17, 19, 26, 31, 32]. The fragmentation process of excursions of
Za appears in the study of coalescence models [8, 9, 13], an emergent topic
in probability theory and an old one in physical chemistry, astronomy and a
number of other domains ([5], Section 1.4). See [5] for background and an ex-
tensive bibliography, and also [3, 6, 16] among others. As explained later, Ya
is tightly related to Za through a path transformation, due to Vervaat [33],
connecting e and b.

Remark 1.1. For a = 0, we have X0 law= e ([25], Lemma 12) and, trivially,
Y0 = b −min b and Z0 = e, and the identity, up to shift of these reduces to
the result by Vervaat [33].

For a positive, the three processes Xa, Ya and Za do not coincide without
shifting. This can be seen by observing first that a.s. Ya�0� > 0, whileXa�0� =
Za�0� = 0, and secondly that Za a.s. has an excursion beginning at 0, that is,
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inf�t > 0 � Za�t� = 0� > 0 (see [8], where the distribution of this excursion
length is found), while this is false for Xa (as a consequence of [27], Section
6). It also follows that Za is not invariant under time reversal (while Xa and
Ya are).
We mention two further constructions of the processes above. First, let B

be a standard one-dimensional Brownian motion started at 0, and define

τt = inf�s ≥ 0 � Ls�B� = t��
Then Xa can also be seen as the reflected Brownian motion �B� conditioned
on τa = 1; see, for example, [25], the lines following (11) or [27], identity (5.a).
Secondly, define b̃�t� = b�t� − ∫ 1

0 b�s�ds. It is easily verified that b̃ is a
stationary Gaussian process (on R/Z or on R), for example, by calculating its
covariance function

Cov�b̃�s�� b̃�t�� = 1− 6�s− t��1− �s− t��
12

� �s− t� ≤ 1�

Since b and b̃ differ only by a (random) constant, Ya = �a�b̃� too. This implies
thatYa is a stationary process. (Xa andZa are not, again because they vanish
at 0.)
We may similarly define ẽ�t� = e�t�− ∫ 10 e�s�ds, and obtain Za = �a�ẽ�, but

we do not know any interesting consequences of this.
Precise statements of the relations between the three processes Xa, Ya

and Za are given in Section 2. The three processes arise as limits, under
three different conditions, of profiles associated with parking schemes (also
known as hashing with linear probing). This is described in Sections 3 and 4.
The proofs are given in the remaining sections.

2. Main results. In this section we give precise descriptions of the shifts
connecting the three processes Xa, Ya and Za, in all six possible directions.
Let a ≥ 0 be fixed.
First, assume that the Brownian bridge b is built from e using Vervaat’s

path transformation [10, 11, 33]: given a uniform random variable U, inde-
pendent of e,

b�t� = e�U+ t� − e�U��(2.1)

Then

�ab�t� = �ae�U+ t��
so that:

Theorem 2.1. For U uniform and independent of Za,

Za�U+ ·� law= Ya�

As a consequence, Ya is a stationary process on the line, or on the circle R/Z,
as was seen above in another way. A far less obvious result is:
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Theorem 2.2. For U uniform on �0�1� and independent of Xa,
Xa�U+ ·� law= Ya�

The proof will be given later. The case a = 0 of Theorem 2.2 is just Vervaat’s
path transformation, since, as remarked above, X0

law= e. In [10], one can

find a host of similar path transformations connecting the Brownian bridge,
excursion and meander.

Corollary 2.3. The occupation measures of Xa, Ya and Za coincide, and
have the distribution function

1− e−2ax−2x2 �
This is also the distribution function of Ya�t� for any fixed t.

Recall that a random variable W is Rayleigh distributed if Pr�W ≥ x� =
e−x

2/2. The occupation measure of Xa (or Ya, Za) is then the law of half the
residual life at time a of W: Pr��W − a�/2 ≥ x �W ≥ a� = e−2ax−2x2 . For
a = 0 we recover the Durrett–Iglehart result for the occupation measure of
the Brownian excursion: it is the law of W/2 [15].

Proof of Corollary 2.3. By definition, the occupation measure of Xa is
the law of Xa�U�, so, from Theorem 2.2, it is also the law of Ya�0�. The same
is true for Za by Theorem 2.1, and for Ya because it is stationary. We have

Ya�0� = sup
−1≤s≤0

�as− b�s��

law= sup
0≤t≤1

�b�t� − at�

law= sup
0≤t≤1

��1− t�B t
1−t
− at�

= sup
0≤u≤+∞

(
Bu − au
1+ u

)
�

For positive numbers λ and µ, set

Tλ�µ = inf�u ≥ 0�Bu ≥ λu+ µ��
Using the exponential martingale exp�2λBu − 2λ2u�, it is easy to derive that

Pr�Tλ�µ < +∞� = e−2λµ�
see [28], Exercise II.3.12. We have thus:

Pr�Ya�0� ≥ x� = Pr
(
∃ u ≥ 0 such that Bu − au

1+ u ≥ x
)

= Pr�Ta+x�x < +∞�
= e−2ax−2x2 � ✷
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Problem 2.4. What are the laws of Xa�t� and Za�t� (which depend
on t)?

We need an additional notation to define a random shift from Ya or Za to
Xa: let T�X� denote the inverse process of L�X�.

Theorem 2.5. Suppose a > 0. LetU be uniformly distributed on �0�1� and
independent of Za or Ya. Set

τ = TaU�Za��
τ̃ = TaU�Ya��

We have

Xa
law= Za�τ + ·�
law= Ya�τ̃ + ·��

Note that as a difference with Theorems 2.1 and 2.2, here τ (resp. τ̃) depends
on Za (resp. Ya).
Thus we obtainXa by shifting any of the processes uniformly in local time,

while we have seen above that we obtain Ya by shifting uniformly in real
time.

Theorem 2.6. Suppose a > 0.

(i) Almost surely, t �→ Lt�Xa� − at reaches its maximum at a unique point
V in �0�1� and

Xa�V+ ·� law= Za�

(ii) Almost surely, t �→ Lt�Ya� − at reaches its maximum at a unique point

Ṽ in �0�1� and

Ya�Ṽ+ ·� law= Za�

Moreover, Ṽ is uniform on �0�1� and independent of Ya�Ṽ+ ·�.

In contrast, and as an explanation, t �→ Lt�Za� − at reaches its maximum
at 0; see the proof in Section 11. It is easily verified that V is not uniformly
distributed.

Remark 2.7. For a = 0, Theorems 2.5 and 2.6 hold if we instead define τ =
0, V = 0 and τ̃ = Ṽ as the unique points where Z0, X0 and Y0, respectively,
attain their minimum value 0; see Remark 1.1.
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Finally, we observe that it is possible to invert �a and recover the Brownian
bridge b from Ya = �ab and the excursion e from Za = �ae using local times.

Theorem 2.8. For any t,

b�t� = Ya�t� −Ya�0� −Lt�Ya� + at
and

e�t� = Za�t� −Lt�Za� + at�

Combining Theorems 2.6 and 2.8, we can construct Brownian excursions
from Xa and Ya too.

Corollary 2.9. Let V and Ṽ be as in Theorem 2.6. Then

e′�t� =Xa�V+ t� + at−LV+t�Xa� +LV�Xa�
and

e′′�t� = Ya�Ṽ+ t� + at−LṼ+t�Ya� +LṼ�Ya��
respectively, define normalized Brownian excursions.
In the case of Ya, in addition, e

′′ and Ṽ are independent.

The problem of possible other shifts is addressed in the concluding remarks.

3. Parking schemes and associated spaces. A parking scheme ω de-
scribes how m cars c1� c2� � � � � cm park on n places �1�2� � � � � n�. We write

ω = �ωk�1≤k≤m�
where each ωk ∈ �1� � � � � n�. According to ω, car c1 parks on place ω1. Then car
c2 parks on place ω2 if ω2 is still empty, else it tries ω2 + 1, ω2 + 2, � � � , until
it finds an empty place, and so on. We adopt the convention that n + 1 = 1,
and more generally n+ k = k. We consider only the case 1 ≤m < n.
The interest of combinatorists in parking schemes was born from a paper by

Konheim andWeiss [21], in 1966, about hashing with linear probing, a popular
search method, that had also been studied, notably, by Don Knuth, in 1962 (see
the historical notes in his 1999 paper [19], or pages 526–539 in his book [18]).
The metaphore of parking was already used by Konheim and Weiss. The two
recent and beautiful papers by Flajolet, Poblete and Viola [17] and Knuth [19]
drew the attention of the authors to the connection between parking schemes
and Brownian motion (see also [13, 14]). For a similar connection between
trees and Brownian motion, see [2, 6, 25, 30], among others.
Let Pn�m denote the set of all parking schemes of m cars on n places, and

let CPn�m denote the subset of confined parking schemes, confined meaning
that the last place is assumed to be left empty. We have

#Pn�m = nm and #CPn�m = nm−1�n−m��
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the last can be seen as follows. For ω ∈ Pn�m, we define the shift (rotation)
rω = �−1+ωk�1≤k≤m�

moving all cars back one place (modulo n); the action of r on Pn�m draws nm−1

orbits of n elements, each of them containing n−m elements of CPn�m.
Let Yk�ω� be the number of cars whose first try is on place k, according to

ω ∈ Pn�m. For any natural integer k, set
Sk+1�ω� = Sk�ω� +Yk+1�ω��

with S0�ω� = 0. Our convention extends to Yk+n = Yk, so that Sk+n = Sk+m.
Set:

W�ω� i� = Si�ω� − i
m

n
�(3.1)

and note that W�ω�k+ n� =W�ω�k�. We have

Proposition 3.1. There exists at least an element of CPn�m, x�κ�, in each
orbit κ, such that W�x�κ�� ·� is nonnegative.
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Fig. 1. Elements of P25�m, m = 20� � � � �24.
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Proof. Let ω denote an element of Pn�m. Since S�rjω�k� = S�ω�k+j�−
S�ω�j� and thusW�rjω�k� =W�ω�k+j�−W�ω�j�,W�rjω� ·� is nonnegative
if and only if W�ω�j� = minkW�ω�k�. This proves that x�κ� = rjω exists in
Pn�m. We postpone the proof that in fact rjω ∈ CPn�m to Proposition 5.4 (see
also [13]). ✷

In general, in the same orbit κ, there are several elements z such that
W�z� ·� is nonnegative: we let x�κ� be one particular choice, and let En�m be
the set of the nm−1 elements x�κ�. (This set is thus to some extent arbitrary,
but the results below hold for any choice.)

4. Convergence results. For ω in Pn�m, let Hk�ω� denote the num-
ber of cars that try, successfully or not, to park on place k. (We regard Hk
as defined for all integers k, with Hk+n = Hk.) We rescale Hk and define
hn�k/n�ω� = Hk�ω�/

√
n; hn is then extended, by linear interpolation, to a

continuous periodic function on R:

hn�t�ω� =
�1+ �nt� − nt�H�nt��ω� + �nt− �nt��H1+�nt��ω�√

n
�

that we call the profile of ω. Let µn�. (resp. µ̃n�., µ̂n�.) denote the law of
�hn�t��0≤t≤1 when ω is drawn at random in Pn�n−. (resp. CPn�n−., En�n−.).
Central to our results are the following theorems:

Theorem 4.1. If ./
√
n→ a ≥ 0, then

µn�.
weakly−→ Ya�

Theorem 4.2. If ./
√
n→ a ≥ 0, then

µ̃n�.
weakly−→ Xa�

hn(t)
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Fig. 2. Profile.
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Theorem 4.3. If ./
√
n→ a ≥ 0, then

µ̂n�.
weakly−→ Za�

Theorem 4.3 was also proved, by similar methods, in [13], Theorem 3.1 and
Lemma 3.7.
As will be seen in detail later, Theorems 2.1 and 2.2 can be seen as con-

sequences of the preceding convergence results, combined with the evident
relation

hn�t� rjω� = hn
(
t+ j
n
�ω

)

and with the following obvious statement: the random rotation of a random
element of CPn�m or of En�m gives a random element of Pn�m. More formally:

Proposition 4.4. If ω is random uniform on Pn�m, CPn�m or on En�m, and

U is uniform on �0�1� and independent of ω, then r�nU�ω is random uniform
on Pn�m.

A different kind of random rotation gives Theorem 2.5: let ω be random
in Pn�m or in En�m and choose randomly an empty place j of ω. Then rjω
is random in CPn�m. More formally, let us define an operator R from Pn�m to
CPn�m as shifting to the next empty place:

Rω = rjω�
where j ≥ 1 is the first place left empty by ω. Thus R��n−m�U�ω (with U
random uniform) is a rotation of ω to a random empty place, that is, to a
random element of the corresponding orbit in CPn�m, and we have:

Proposition 4.5. If ω is random uniform on Pn�m, CPn�m or on En�m,

and U is uniform on �0�1� and independent of ω, then R��n−m�U�ω is random
uniform on CPn�m.

For Theorem 2.5 we use also the convergence of the number of empty places
in a given interval of �1�2� � � � � n� to the local time of Xa, Ya or Za in the
corresponding interval of �0�1�.
More precisely, let Vj�k�ω� denote the number of empty places in the set

�j+1� j+2� � � � � k�, according to the parking scheme ω, and define, in analogy
with hn above, a corresponding continuous function vn on �0�1� by rescaling
and linear interpolation so that vn�k/n� = V0�k/

√
n for integers k, that is,

vn�t�ω� =
�1+ �nt� − nt�V0��nt��ω� + �nt− �nt��V0�1+�nt��ω�√

n
� 0 ≤ t ≤ 1�

We then have the following extension of Theorems 4.1–4.3, yielding joint con-
vergence of the processes hn and vn.
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Theorem 4.6. Suppose ./
√
n→ a ≥ 0. On �0�1�, the following hold�

(i) If ω is drawn at random in Pn�n−., then

�hn�·�ω�� vn�·�ω��
weakly−→ �Ya�L�Ya���

(ii) If ω is drawn at random in CPn�n−., then

�hn�·�ω�� vn�·�ω��
weakly−→ �Xa�L�Xa���

(iii) If ω is drawn at random in En�n−., then

�hn�·�ω�� vn�·�ω��
weakly−→ �Za�L�Za���

5. Results on parking schemes. Consider a fixed ω ∈ Pn�m. As re-
marked above, we regard the functions Yk, Sk,W�ω�k� andHk as defined for
all integers k; Sk+n = Sk +m and the three others have period n.
Note that, among the cars that visit place k,only one will not visit place

k+ 1, so:

Proposition 5.1.

Hk+1 = �Hk − 1�+ +Yk+1�

This recursion does not define fully Hk, given �Yk�0≤k≤n, as the recursion
starts nowhere. In order to circumvent this difficulty, we have to find a place
left empty by ω. Let

0k = max
i≤k

�i−Si� = max
−n+k<i≤k

�i−Si��(5.1)

Proposition 5.2. For a given ω and place k, there are two cases�
(i) k is left empty, Hk = 0, k−Sk = 0k−1 + 1 and 0k = 0k−1 + 1.
(ii) k is occupied, Hk ≥ 1, k−Sk ≤ 0k−1 and 0k = 0k−1.

Proof. Clearly k is left empty if and only if Hk = 0.
Next, observe that if Sk − Sj ≥ k − j for some j < k, then at least k − j

cars have tried to park after j, and there is not room enough for all of them to
park on �j+ 1� � � � � k− 1�, so one of them will park on k. Conversely, suppose
that some car parks on k, and let j be the last empty place before k. Then
the k−j places �j+1� � � � � k� are all occupied, and the cars on them must all
have made their first try in the same set, so Sk −Sj ≥ k− j.
Consequently, k is empty if and only if Sk−Sj < k−j for all j < k, which

is equivalent to k−Sk > maxj<k�j−Sj� = 0k−1 and thus also to 0k > 0k−1.
Finally, note that always k − Sk ≤ k − Sk−1 ≤ 1 + 0k−1, and thus 0k−1 ≤

0k ≤ 0k−1 + 1. ✷

This leads to an explicit formula for Hk, given Yk.



BROWNIAN BRIDGE PATH TRANSFORMATION 1765

Proposition 5.3. For any integer k,

Hk = 1+Sk − k+ 0k−1�

Proof. First observe that by Proposition 5.2, both sides vanish if k is
empty. We then proceed by induction, beginning at any empty place (both
sides have period n). Going from k to k+1, if k is occupied, then the left hand
side increases by Proposition 5.1 by Hk+1 −Hk = Yk+1 − 1 while the right
hand side increases by Yk+1 − 1+ 0k − 0k−1, which by Proposition 5.2 equals
Yk+1− 1 too. Similarly, if k is empty, then both sides increase by Yk+1. Hence
the equality holds for every k. ✷

We can also now complete the proof of Proposition 3.1.

Proposition 5.4. If W�ω� i� = minkW�ω�k�, then place i is empty.

Proof. For every k < i,

Si −Sk =W�ω� i� −W�ω�k� + �i− k�m
n
≤ �i− k�m

n
< i− k�

thus i−Si > maxk<i�k−Sk� = 0i−1, and the result then follows by Proposition
5.2. ✷

Recall that Vj�k�ω� denote the number of empty places in the set �j +
1� j + 2� � � � � k�, according to the parking scheme ω. As another immediate
consequence of Proposition 5.2 we obtain:

Proposition 5.5. For j ≤ k,
Vj�k = 0k − 0j�

Further similar results are given in [13], Section 3.1.
We end this section with a discrete analog of Theorem 2.6, which would

lead to a proof of Theorem 2.6 through the convergence theorems of Section
4. The proof of Theorem 2.6 that we give is however more direct, and we will
not use this result in the sequel.
For ω in Pn�m, and k ≥ 0, let C�ω�k� be defined by

C�ω�k� = k�n−m�
n

−V0�k�ω��

Clearly C�ω�k + n� = C�ω�k�, and we may use this to extend the definition
to all integers k.

Proposition 5.6. For ω in Pn�m, assertions C�ω� i� = min. C�ω� .� and
W�ω� i� = min. W�ω� .� are equivalent. For ω in En�m, C�ω� ·� is nonnegative.
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Proof. According to Proposition 5.4,W�ω� i� = min. W�ω� .� insures that
place i is empty. The first assertion also insures that place i is empty, since it
implies C�ω� i− 1� ≥ C�ω� i� and thus V0�i > V0�i−1.
As a simple consequence of Propositions 5.2 and 5.5, see also [13], for an

empty place j and for k ≥ j, we have
Vj�k = max

j≤.≤k
�.−S.� − j+Sj

= max
j≤.≤k

(
W�ω�j� −W�ω� .� + �.− j�n−m

n

)
�

Thus, for k ≥ j,

C�ω�k� −C�ω�j� = �k− j��n−m�
n

−Vj�k

= min
j≤.≤k

( �k− .��n−m�
n

+W�ω� .� −W�ω�j�
)

≤ ω�ω�k� −W�ω�j��
By periodicity, the inequality persists for all integers k. This shows first that if
j is a minimum point for C, the right hand side is nonnegative for all k, and j
is a minimum point forW too. Moreover, if k is a minimum point forW, then
for any empty place j, including any minimum point for C, C�ω�k� ≤ C�ω�j�,
thus k is a minimum point for C too.
The final assertion follows because C�ω�0� = 0, and if ω ∈ En�m, then 0 is

a minimum point for W, and thus also for C. ✷

6. Convergence results: Proofs.

6.1. Proof of Theorem 4�1. Let U�m� = �U�m�
k �1≤k≤m denote a sequence of

m independent random variables, uniform on �0�1�. For m ≤ n, the sequence
U�m� generates the parking scheme ω�m� ∈ Pn�m defined by

ω
�m�
k = �nU�m�

k ��
The nm possible parking schemes generated this way are clearly equiprobable.
Consider the empirical process αm�t� associated with U�m�, defined on �0�1�

by

αm�t� =m−1/2
(
#�k � U�m�

k ≤ t� −mt
)
�(6.1)

As m → ∞, the processes αm converge in distribution, as random elements
of the space D�0�1�, to a Brownian bridge ([12], Theorem 16.4). Due to the
Skorohod representation theorem (see, e.g., [29], II.86.1), we may thus assume
that the variables U�m� are such that, almost surely, as m→∞,

αm�t� → b�t� uniformly on �0�1��(6.2)
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We have m = n−. = n−an
√
m, where an→ a. Then, by (3.1), for any integer

j (extending αm periodically),

W�ω�m�� j� = √
m αm

(
j

n

)
�(6.3)

Sj − j =
√
m

(
αm

(
j

n

)
− an

j

n

)
�(6.4)

Hence, as n→∞ and thus m→∞ too,

1√
n

(
S�nt� − �nt�)→ b�t� − at�

uniformly on �−1�1�, say. By (5.1), this implies
1√
n
0�nt� → sup

t−1≤s≤t
�as− b�s�� = sup

s≤t
�as− b�s�� �(6.5)

uniformly on �0�1�, and thus by Proposition 5.3 and (1.2) we obtain
1√
n
H�nt��ω�m�� → b�t� − at+ sup

s≤t
�as− b�s�� = Ya�t��

uniformly for all real t (by periodicity), which implies that:

Proposition 6.1. With the assumptions above, there is almost surely uni-
form convergence of hn�·�ω�m�� to Ya�·�.

6.2. Proof of Theorem 4�3. We draw a random element ω�m� in Pn�m using
U�m�, as in Section 6.1. Let p�ω�m�� = rJω�m� be its projection in En�m. Thus
J is one of the points whereW�ω�m�� ·� attains its minimum, and by (6.1) and
(6.3), it follows that αm almost attains its minimum at J/n; more precisely,

αm�J/n� = inf
k
αm�k/n� < inf

t
αm�t� +m−1/2�(6.6)

We can always assume that 1 ≤ J ≤ n.
Moreover, we may assume that b is constructed from a Brownian excursion

e by Vervaat’s relation (2.1). This entails that b has almost surely a unique
minimum in �0�1� at the point 1−U. Still assuming m = n− . = n− an

√
m,

the uniform convergence (6.2) of αm�t� to b�t� and (6.6) imply that

lim
n→∞

J

n
= 1−U�(6.7)

SinceHk�p�ω�m��� =Hk+J�ω�m�� and thus hn�t� p�ω�m��� = hn�t+J/n�ω�m��,
which by Proposition 6.1 and (6.7) converges uniformly to �ab�t + 1 −U� =
�ae�t�, we have:

Proposition 6.2. With the assumptions above, there is almost surely uni-
form convergence of hn�·� p�ω�m��� to Za�·�.

See Sections 3.1 and 3.2 of [13] for more details.
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6.3. Proof of Theorem 4�2. The sequence Sj − j may be seen as a certain
random walk (with fixed endpoint Sn−n =m−n). Considering only confined
parking sequences means conditioning the random walk Sj − j on ending at
a minimum at Sn−n. This random walk should, after rescaling, converge to a
Brownian bridge b�t�−at from 0 to −a, conditioned on its minimum being −a,
or, equivalently, a Brownian motion B�t� conditioned on B�1� = M�1� = −a,
with M�t� = mins≤t B�s�; the corresponding process hn would then, through
Proposition 5.3, converge to B −M with the same condition. By Lévy ([28],
Theorem VI.2.3), �B−M�−M� equals (in law) ��B��L�, so this is the same as
�B�t�� conditioned on B�1� = 0, L�1� = a, or, equivalently, �b�t�� conditioned
on L�1� = a.
However we have not been able to make such an argument rigorous, and

we rather proceed as in [6], Section 5: we use the fact that the sequence of
excursion lengths of Xa is the weak limit of the sequence of block lengths,
suitably normalized, in a random confined parking scheme of CPn�n−.. Then
we take advantage of the fact that the excursions of Xa appear in random
order, independently of their shape and length, as explained in [27], Section 6,
while the blocks of a random confined parking scheme have the same property.
This allows us to build on the same space a sequence of random variables
gn = �gn�t��0≤t≤1, distributed according to µ̃n�., and a random variable X =
�X�t��0≤t≤1, with the same distribution asXa, in such a way that we can prove
gn→X.

Sizes of blocks and lengths of excursions. For y ∈ Pn�m, let us defineR�y� =
�R�k��y��k≥1 as the sequence of block lengths when the blocks are sorted by in-
creasing date of birth [in increasing order of first arrival of a car: for instance,
on the next figure, for n = 25 and m = 16, R�y� = �2�5�5�1�2�1�0� � � ��].
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Fig. 3. Elements of P25�m, m = 13� � � � �19.
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Let δn denote the law of R�y�/n when y is drawn at random in Pn�n−. or
in CPn�n−.. Theorems 1.5 and 1.6 of [13] assert that, assuming ./

√
n→ a,

δn
weakly−→ J9 = �J9k�k≥1�

in which J9 is defined, for k ≥ 1, given a sequence of independent standard
Gaussian distributed random variables �Nk�k≥1, by

J91 +J92 + · · · +J9k =
N21 +N22 + · · · +N2k

a2 +N21 +N22 + · · · +N2k
�(6.8)

Assume a > 0 and let τa = Ta�B�, where B is the standard linear Brownian
motion started at 0. It is well known that �τt�t≥0 is a stable subordinator
with index 1/2, meaning that, for any k and any k-tuple of positive numbers
�ti�1≤i≤k:

�τt1+t2+���+ti�1≤i≤k
law=

(
t21
N21

+ t22
N22

+ · · · + t2i
N2i

)
1≤i≤k

�

Setting τ̃t = τat/a2, an immediate consequence is

�τ̃t�t≥0 law= �τt�t≥0�

It is also well known that �τt�t≥0 is a pure jump process, whose jump-sizes
in the interval �0� t� are precisely the lengths of excursions, of the underlying
Brownian motion, that end before time τt ([28], Section XII.2).
Let J̃1 ≥ J̃2 ≥ · · · (resp. J1 ≥ J2 ≥ · · · and Ĵ1 ≥ Ĵ2 ≥ · · ·) be the ranked

jump-sizes of τ̃ over the interval �0�1� (resp. the ranked jump-sizes of τ over
the interval �0� a� and the ranked excursion lengths of Xa over the interval
�0�1�). As we have τ̃1 = τa/a2 and J̃k = Jk/a2,(

J̃1
τ̃1
�
J̃2
τ̃1
� � � �

∣∣∣ τ̃1 = 1
a2

)
law=

(
J1
τa
�
J2
τa
� � � �

∣∣∣ τa = 1
)

law= �J1�J2� � � � � τa = 1�
law= �Ĵ1� Ĵ2� � � ���

the last identity due to the fact that, as remarked in Section 1, Xa has the
same distribution as the reflected Brownian motion conditioned on τa = 1 [27,
formula (5.a)]. In view of these identities, [7, Corollary 5] asserts that the size-
biased random permutation of �Ĵ1� Ĵ2� � � �� has the same distribution, given
by (6.8), as J9.
Incidentally, Theorem 1.5 of [13] shows that the sequences of excursion

lengths ofXa and Za have the same distribution, suggesting partly Theorems
2.5 and 2.6 of this paper. The fact that the sequence of lengths of excursions has
the same distribution for Za as for Xa was noticed simultaneously in [8, 13],
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and leads to conjecture an interesting alternative (through the fragmentation
process of excursions of �ae) for the original construction, given by Aldous and
Pitman in [6], of the additive coalescent (see [8], 2nd version, for the proof).
In [13], it is shown that the process, with time parameter a, of block lengths
of a random element ω ∈ Pn�n−�a√n�, converges to the same fragmentation
process. This parallels the behavior observed in [3] for the sizes of connected
components of the random graph during the phase transition.

Order of excursions. Let us adopt the notation of [34], Lecture 4, for the
Brownian scaling of a function f over the interval �a� b�:

f�a�b� =
(

1√
b− af�a+ t�b− a��� 0 ≤ t ≤ 1

)
�

According to the theory of excursions (see [27, Section 6] for details and ref-
erences), we can build a copy X of Xa by applying the infinite analog of a
random shuffle to the excursions of Xa.
More formally, let �ek�k≥1 be a sequence of independent random variables

distributed as the normalized Brownian excursion e, and let �Uk�k≥1 be a
sequence of independent random variables, uniform on �0�1�. Moreover J9,
�ek�k≥1 and �Uk�k≥1 are assumed to be independent. Set

G�k� = ∑
i � Ui<Uk

J9i�(6.9)

D�k� = ∑
i � Ui≤Uk

J9i�(6.10)

With probability 1, Ui = Uj �⇒ i = j and the terms of J9 add up to 1, so the
stochastic process X that is zero outside ∪

k≥1
�G�k��D�k��, and satisfies

X�G�k��D�k�� = ek�
for k ≥ 1, is well defined and continuous, and has the same distribution as
Xa [27]. Note that a.s.

LG�k��X� = LD�k��X� = aUk�
with the notations of Theorem 2.6. The definitions of G�k� and D�k� reflect
the fact that the excursions of X are ranked from left to right in increasing
order of their number Uk, generating thus a random shuffle of the excursions,
independently of their shapes ek and their lengths J

9
k.

Order of blocks. Let us give a different formulation, more convenient for
our purposes, of the well known fact that a random shuffle of the blocks of
a random confined parking scheme still produces a random confined parking
scheme: we only keep track of this shuffle on the profile of the parking scheme.
LetHk = �h�k�j �j≥1 be independent sequences of possibly dependent random

variables h�k�j , distributed according to µ̃j�1. Assuming y is drawn at random
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in CPn�n−., independently of the sequences Hk, let us add 1 to each of the .
first coordinates of R�y�: this operation produces a new sequence of random
variables jn = �jn�k��k≥1, whose terms add up to n; these can be regarded
as lengths of blocks including a final empty place (allowing empty blocks con-
sisting only of one empty place). Note that jn�k� > 0 if and only if k ≤ ., and
that Jn�k� = jn�k�/n still satisfies

Jn
weakly−→ J9�

Let, in analogy with (6.9) and (6.10),

G�k�n� = ∑
i � Ui<Uk

Jn�i��(6.11)

D�k�n� = ∑
i � Ui≤Uk

Jn�i��(6.12)

and let gn be defined by

g
�G�k�n��D�k�n��
n = h�k�jn�k�� k ≤ .�

The h�k�jn�k� are thus sorted by increasing order of the attached Uk. It is easily
seen that a random shuffle of the blocks (including a trailing empty place) in
a random confined parking scheme produces a new random confined parking
scheme with the same distribution, and that the structure of each block of
length j is distributed according to CPj�j−1. Hence, checking that our scalings
match properly, gn is distributed according to µ̃n�..

Proof of Theorem 4.2. From [14] (or as a very special case of Theorem
4.3, since CPn�n−1 = En�n−1), we know that

µ̃n�1
weakly−→ e�

so the Skorohod representation theorem provides the existence, on some prob-
ability space <̃, of a Brownian excursion e and of a sequence H = �hj�j≥1 of
possibly dependent random variables hj, distributed according to µ̃j�1, such
that, almost surely, hj converges uniformly to e. The same theorem provides
the existence, on some probability space <̂, of random variables Jn and J9,
distributed as above, and such that, almost surely, for any k ≥ 1,

lim
n
Jn�k� = J9k�(6.13)

Finally, by a denumerable product of copies of �0�1�, <̃ and <̂, we build on
some space <, simultaneously, random variables ek, Hk = �h�k�j �j≥1, Uk, Jn
and J9, where k�n = 1�2� � � �, with the distributions given above, such that
for each k ≥ 1 (6.13) holds and

h
�k�
j

uniformly−→ ek as j→∞�(6.14)
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moreover, the variables �ek�Hk�, Uk, and ��Jn�n≥1�J9� are all independent of
each other.
Define X and gn as above, and define further, for N ≥ 1, XN and gn�N in

the same way, but using only excursions (blocks) with index k ≤N. Thus, for
example, XN = X on ∪N1 �G�k��D�k��, while XN = 0 outside this set. Since
the excursion lengths D�k� −G�k� → 0, and X is (uniformly) continuous on
�0�1�, XN →X in C�0�1� (i.e., uniformly) as N→∞.
Note that as both Jn and J9 have nonnegative terms that add up to 1,

(6.13) yields .1-convergence of Jn to J9; and thus by (6.9), (6.10), (6.11), (6.12),
G�n�k� → G�k� and D�n�k� → D�k� for every k, which together with (6.14)
and jn�k� = nJn�k� → ∞ easily implies that, for fixed N, gn�N →XN a.s. in
C�0�1� as n→∞. ✷

Informally, we now letN→∞. In order to justify this, we need the following
estimate, which will be proved below.

Proposition 6.3. For every ε > 0,

lim
N→∞

lim sup
n→∞

Pr�!gn�N − gn! > ε� = 0�

where !f! = supt �f�t�� denotes the norm in C�0�1�.

Now, let ε > 0. Then

Pr�!gn −X! > 3ε� ≤ Pr�!gn − gn�N! > ε�
+Pr�!gn�N −XN! > ε� + Pr�!XN −X! > ε�

where, by Proposition 6.3 and the comments above, all three terms on the right
hand side can be made arbitrarily small by first choosing N and then n large
enough. Consequently, gn → X (uniformly) in probability, which completes
the proof of Theorem 4.2. (See also [12], Theorem 4.2, where the same type of
argument is stated for convergence in distribution.)

Proof of Proposition 6.3. The Dvoretsky-Kiefer-Wolfowitz inequality
implies

sup
j

E!hj!2 <∞

(see [14], Lemma 3.3 and Proposition 4.1). Denote this supremum by A. Then,
given Jn, by Chebyshev’s inequality,

Pr�!gn�N − gn! > ε� = Pr
(
max
k>N

√
Jn�k�!h�k�jn�k�! > ε

)

≤ ∑
k>N

Pr
(√
Jn�k�!h�k�jn�k�! > ε

)

≤ ∑
k>N

ε−2AJn�k��
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and thus, unconditionally,

Pr�!gn�N − gn! > ε� ≤ E
(
min

(
1�Aε−2

∑
k>N

Jn�k�
))
�

Hence, by dominated convergence,

lim sup
n→∞

Pr�!gn�N − gn! > ε� ≤ lim
n→∞E�min�1�Aε

−2 ∑
k>N

Jn�k���

= E
(
min

(
1�Aε−2

∑
k>N

J∗k

))
�

which tends to 0 as N→∞ by dominated convergence again. ✷

7. Proof of Theorem 2.2. Due to the Skorohod representation theorem,
and to Theorem 4.2, there exist on some probability space, a sequence fn of
random variables distributed according to µ̃n��a√n�+1, and a continuous copy
X of Xa such that, almost surely, fn�t� converges, uniformly for t ∈ �0�1�,
to X�t�. Possibly at the price of enlarging the probability space, consider a
random variable U, uniform on �0�1� and independent of �fn�n≥1 and X.
On the one hand, almost surely,

fn

(
t+ �nU�

n

)
uniformly−→ X�t+U��

On the other hand, according to Proposition 4.4, fn
(
· + �nU�

n

)
is distributed

according to µn��a√n�+1. Thus, owing to Theorem 4.1,

X�· +U� law= Ya� ✷

8. Proof of Theorem 2.8. Theorem 2.8 follows from (1.1)–(1.4) and the
following formulas for the local times of Ya and Za.

Proposition 8.1. With Ya = �ab, for any t,
Lt�Ya� = sup

−∞≤s≤t
�as− b�s�� − sup

−∞≤s≤0
�as− b�s���(8.1)

With Za = �ae, for any t,
Lt�Za� = sup

−∞≤s≤t
�as− e�s��(8.2)

and for t ∈ �0�1�,
Lt�Za� = sup

0≤s≤t
�as− e�s���(8.3)
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Proof. By a well known theorem of Paul Lévy ([28], Theorem VI.2.3) a.s.,
on �0�+∞�,

Lt

(
Bt − inf

0≤s≤t
Bs

)
= − inf

0≤s≤t
Bs�

or, with the notation >0�X�t = − inf 0≤s≤t Xs,
Lt�B+>0�B�� = >0�B�t�

On any interval �0�1−δ�, the Brownian bridge b has an absolutely continuous
distribution w.r.t. the distribution of B, and so has b�t�−at. Consequently, for
0 ≤ t < 1, writing b�a� = b�t� − at,

Lt�b�a� +>0�b�a��� = >0�b�a��t�(8.4)

This extends by continuity to t = 1. Now, define
>�X�t = − inf

−∞≤s≤t
Xs�

and observe that

>0�b�a��t ≤ >�b�a��t
with equality if and only if t is larger or equal than the first nonnegative zero
t0 of the process Ya = b�a� +>�b�a��. On �t0�1�, we have thus

Ya�t� = b�a��t� +>0�b�a��t�
As a consequence, on �t0�1�, (8.4) yields

Lt�Ya� = Lt�Ya� −Lt0�Ya�
= >0�b�a��t −>0�b�a��t0
= >�b�a��t −>�b�a��t0
= >�b�a��t −>�b�a��0�

(8.5)

This proves (8.1) for t ∈ �t0�1�. The formula extends easily to �0�1�, since both
sides vanish on �0� t0�, and due to the periodicity of Ya and b, to the whole
line.
For the assertions on Za, let b�t� = e�t +U� − e�U�, where as usual U is

uniform on �0�1� and independent of e. Then, Za�t� = Ya�t − U� and thus,
using (8.1) or (8.5) and >�b�a�� = Ya − b�a�,

Lt�Za� = Lt−U�Ya� −L−U�Ya�
= >�b�a��t−U −>�b�a��−U
= Ya�t−U� − b�t−U� + a�t−U� −Ya�−U� + b�−U� − aU
= Za�t� − e�t� + at�

which yields (8.2) and (8.3). ✷
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9. Proof of Theorem 4.6(i, iii). We assume that a random parking
scheme ω�m� in Pn�m is constructed as in Section 6.1, so that the processes
αm defined there converge a.s. uniformly to a Brownian bridge b�t�. Then, by
Proposition 6.1, hn�·�ω�m�� converges a.s. uniformly to Ya = �ab.
Moreover, by Proposition 5.5 and (6.5),

V0��nt�√
n

= 0�nt� − 00√
n

→ sup
s≤t

�as− b�s�� − sup
s≤0

�as− b�s�� �

uniformly on �0�1�, and thus vn�t�ω�m�� has the same uniform limit. By Propo-
sition 8.1, the right hand side equals the local timeLt�Ya�, and we have proved
the following complement to Proposition 6.1:

Proposition 9.1. With the assumptions above, there is almost surely uni-
form convergence of vn�·�ω�m�� to L�Ya� on �0�1�.

Propositions 6.1 and 9.1 together yield Theorem 4.6(i).
For part (iii), we use the additional assumptions of Section 6.2, and obtain

then easily from Proposition 9.1, using vn�t� p�ω�m��� = vn�t + J/n�ω�m�� −
vn�J/n�ω�m��, the following analogue for Za:

Proposition 9.2. With the assumptions above, there is almost surely uni-
form convergence of vn�·� p�ω�m��� to L�Za� on �0�1�.

10. Proofs of Theorem 2.5 and 4.6(ii). In view of Theorem 4.2, the proof
of Theorem 2.5 reduces to the proof of

Theorem 10.1. If a > 0, and τ and τ̃ are defined as in Theorem 2.5, then

µ̃n��a√n�
weakly−→ Za�τ + ·�
law= Ya�τ̃ + ·��

Proof. Set m = n− �a√n� and defineMn and M̃n ∈ �0�1� by
R��n−m�U�p�ω� = rnMnp�ω��
R��n−m�U�ω = rnM̃nω�

By the definitions of R and r on Pn�m, we have

vn�M̃n�ω� = vn�Mn�p�ω�� =
��n−m�U�√

n
�(10.1)

Due to Proposition 8.1, s −→ .�s� = Ls�Za�, s ∈ �0�1�, is continuous and
nondecreasing from 0 to a, with the consequences that the set A = �x ∈
�0� a� � #.−1�x� > 1� is denumerable, and that, furthermore, for x /∈ A, .−1
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is uniquely defined and continuous: if yn ∈ �0�1� with .�yn� → x /∈ A, then
yn → .−1�x�. Assume again that ω = ω�m� is as in Subsections 6.1 and 6.2.
Due to (10.1),

�.�Mn� − aU� ≤
2√
n
+ !vn�·� p�ω�� − .!∞�

which a.s. converges to zero as n→∞ by Proposition 9.2, and thus, if aU /∈ A,
that is, almost surely,

lim
n→∞Mn = .−1�aU� = τ�

For the same reasons,

lim M̃n = τ̃ a.s.

As a consequence, using Propositions 6.1 and 6.2 again, almost surely,
hn�R��n−m�U�ω� ·� [resp. hn�R��n−m�U�p�ω�� ·�] converges uniformly to Ya�τ̃+·�
[resp. Za�τ + ·�]. On the other hand, according to Proposition 4.5, R��n−m�U�ω
and R��n−m�U�p�ω� are random uniform on CPn�m, with the consequence that
both hn�R��n−m�U�ω� ·� and hn�R��n−m�U�p�ω�� ·� are distributed according to
µ̃n��a√n�. ✷

Similarly, for Theorem 4.6(ii), we consider a copy X = Ya�τ̃+ ·� of Xa, and
we note that, due to Proposition 9.1, vn�R��n−m�U�ω� t� converges uniformly to
Lτ̃+t�Ya� −Lτ̃�Ya� = Lt�X�.

11. Proof of Theorem 2.6. If 0 < t < 1, Proposition 8.1 yields

Lt�Za� = sup
0≤s≤t

�as− e�s�� < at�

since s �→ as − e�s� is a continuous function and as − e�s� < at for every
s ∈ �0� t�. As a consequence, t �→ χ�t� = Lt�Za� − at, which has period 1,
reaches its maximum 0 exactly at the integers.
By Theorem 2.1, we can assume that Ya = Za�U+ ·�, and then

Lt�Ya� − at = LU+t�Za� −LU�Za� − at
= χ�U+ t� − χ�U��

Hence Lt�Ya� − at reaches its maximum exactly at �n − U � n ∈ Z�, so
Ṽ = 1−U and Ya�Ṽ+ t� = Za�t�, which proves (ii).
The proof for Xa is done the same way, using either Theorem 2.5, or the

result just proved for Ya and Theorem 2.2. ✷
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12. Concluding remarks. Concerning the problem of possible other
shifts, note that there exists only one shift fromXa orYa toZa. Actually there
is no nontrivial shift from Za to itself, while Ya is stationary, that is, invari-
ant under any nonrandom shift, and Xa is invariant under shifts Tx�Xa� for
any x. This last point follows from Theorem 2.5, but it can also be seen more
directly on the definition of Xa based on the sequences �e�J�U� of shapes,
lengths and sorting numbers of its excursions: if we replace the sorting num-
bers U = �Ui�i≥1 by U�x� = ��Ui − x��i≥1, it produces a new process which is
just Xa�Tx�Xa� + ·�. But

U
law= U�x��

This paper deals with more or less the same stochastic processes as [6, 7,
25]. Maybe less apparent, but somewhat expected, they deal with combinato-
rial notions that are tightly related: the one-to-one correspondence between
labeled trees and elements of CPn�n−1 (see [14] and the references therein)
extends easily to a one-to-one correspondence between random forests à la
Pavlov [20, 22] with n −m roots and m non-root vertices, on one hand, and
elements of CPn�m, on the other hand (see Figure 4). But random forests à la
Pavlov can be seen as the set of genealogical trees of a Galton-Watson branch-
ing process started with n−m individuals, with Poisson offspring, conditioned
to have total progeny equal to n [20]. As such, they are also considered in [6],
Lemma 18, and [25], Section 3. The correspondence between Pavlov’s forests
and confined parking schemes is described carefully in [13], Sections 5.1 and
8, where it is used to explain the relation between two different constructions
of the standard additive coalescent [7, 8], so we only sketch it here: each tree
of the Pavlov’s forest is in correspondence with a parking block of the parking
scheme, seen as an element of CPn�n−1 (see Figure 4), and the first try of car
cm is on the kth place in a given parking block if the vertex labeled m is a de-
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Fig. 4. Correspondence CP13�21 ↔ Pavlov’s forests.
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scendant of the kth node visited in a breadth-first search of the corresponding
tree of the forest.
Finally we remark that the shifts studied in this paper, together with the

construction in Section 6, imply the following improved version of Theorem
1.10 in [13].
Let ρ be a random variable uniformly distributed on �0�1� and independent

of a process X that stands indifferently for Xa, Ya or Za. Let g (resp. d)
denote the last zero of X before ρ (resp., the first zero of X after ρ), and
let R = d − g. Set, using Brownian scaling as in Section 6, q = X�g�d� and
r =X�d�g+1�.

Theorem 12.1. We have�
(i) R has the same distribution as N2

a2+N2 , in whichN is standard Gaussian.
(ii) q is a normalized Brownian excursion, independent of �g�d�.
(iii) Given �R�q�, r is distributed as Xa/√1−R.
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