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QUASI-STATIONARY MEASURES FOR CONSERVATIVE
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We study quasi-stationary measures for conservative particle systems
in the infinite lattice. Existence of quasi-stationary measures is established
for a fairly general class of reversible systems. For the special cases of a
system of independent random walks and the symmetric simple exclusion
process, it is shown that qualitative features of quasi-stationary measures
change drastically with dimension.

1. Introduction. In this article we establish existence and qualitative
properties of quasi-stationary measures for stochastic systems of particles
moving in the infinite lattice �d. To illustrate the notion of quasi-stationarity,
consider particles moving in a large but finite subset � of �d, that are subject
to exclusion (at most one particle can occupy a site i ∈ �d), to a sufficiently
strong attractive potential and some stochastic exchange dynamics, in such a
way that typical configurations in the stationary measure consist of a single
cluster of particles. Suppose that at time t = 0 particles are uniformly dis-
tributed in � with a very low density. The density will remain nearly homoge-
neous until the formation of a sufficiently large droplet (the critical droplet),
which in a relatively short time grows to the single cluster.

A relevant problem in this context is to describe how typical configurations
look like before the critical droplet forms, that is, in the metastable regime.

More generally, let �ηt�t≥0 be a Markov process taking values in some mea-
surable space �E�� �, and A ⊂ E be such that

τA = inf�t ≥ 0� ηt ∈ A	

is a stopping time. Also, for a given probability measure µ on E, let Pµ be the
law of ηt with initial measure µ, and Eµ the corresponding expectation.

The phenomenon described above motivates the following definition.

Definition 1. A probability measure µ on �E�� � is a quasi-stationary
measure if Pµ�τA > 0� > 0 and if for every t ≥ 0 and every f� E → �
measurable and bounded

Eµ�f�ηt��τA > t� =
∫
fdµ�(1.1)

We denote the set of quasi-stationary measures by � .
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We remark that, in the context of Markov chains with countable state space,
quasi-stationary measures are usually defined for absorbing sets A; no such
assumption on A is made here.

The aim of this paper is to establish existence and various properties of
quasi-stationary measures for a class of conservative particle systems with
configuration space � ⊂ S�d , with S = �0�1	 or S = �.

After showing that, for µ ∈ � , there exists a nonnegative λ�µ� such that

Pµ�τA > t� = e−λ�µ�t�

we prove for a fairly general class of reversible dynamics that � is nonempty,
and that λ�µ� = λA, where λA is the bottom of the spectrum of the generator
of the process “stopped” when entering A.

The identification of λ�µ� with λA is particularly relevant: we will see that
for some examples of conservative particle systems, λA = 0 is equivalent to
� = �δ0	, where δ0 is the Dirac measure on 0 the configuration with no
particles.

There are, at least, two natural approaches. Let L be the generator of the
process and ν be a reversible measure for the dynamics. Consider the eigen-
value problem

Lf+ λf = 0

in the Hilbert spaceHA = �f ∈ L2�ν�� f�η� = 0 for ν-almost every η ∈ A	. It is
not hard to show that if we can find an eigenvalue λ with a nonnegative eigen-
vector then the probability measure dµ = fdν/

∫
fdν is quasi-stationary. This

approach is certainly suitable in the context of finite Markov chains (see, e.g.,
[7]), where one can rely on the Perron–Frobenius theorem. In more general
cases, however, it seems hard to obtain existence of quasi-stationary measures
from purely functional analytic considerations.

Another approach is based on the remark that any µ ∈ � is a fixed point
for the maps Tt, t > 0, acting on probability measures on E, defined by∫

fd�Ttµ� = Eµ�f�ηt��τA > t��

For a given probability ν, define νt = Ttν. If the limit µ = limt→+∞ νt exists,
then it is called the Yaglom limit. Since Tt has the semigroup property, µ is a
natural candidate for being in � . In general, the existence of the Yaglom limit
is a nontrivial matter. Our approach in this paper consists in showing that
any limit point of the Cesaro’s means of the νt belongs to � , provided ν0 = ν
is a reversible measure for the system. For a class of nonreversible systems
with countable state space and discrete time, the existence of quasi-stationary
measures has been established in [6].

The paper is organized as follows. In Section 2, we introduce the class of
conservative dynamics which we consider. Section 3 contains existence results
and characterization of the parameter of the exponential time τA, when initial
configurations are drawn from µ ∈ � ; these results are very general. Indeed, it
is only in the second part of Theorem 2 that the actual form of the generator
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appears, and it is clear that even that part can be modified to cover many
other dynamics, including Glauber dynamics and various classes of infinite
dimensional diffusions. However, for simplicity, we restrict ourselves to a class
of conservative particle dynamics in the infinite lattice.

Systems of independent random walks are studied in Section 4. We show
that, for a suitable class of sets A, there is a trichotomy. In dimensions 1
and 2, we show that starting from ν, a reversible measure for the dynamics,
the Yaglom limit exists and is equal to the trivial measure δ0. In dimensions
d ≥ 3, for every ν extremal and reversible, we obtain different nontrivial limit
points of the Cesaro means. For d ≥ 5, we show that the Yaglom limit exists
and that it is absolutely continuous with respect to the initial measure ν. In
dimensions 3 and 4, we give an example in which the Yaglom limit exists but
is singular with respect to ν. Some open problems are listed in Section 6.

2. Models and notations. Let S = �0�1	 or S = �. We denote by �
the configuration space; for S = �0�1	, we choose � = S�d provided with the
product topology, while, for S = �, we choose

� =
{
η ∈ S�d � �η� ≡ ∑

i∈�d
η�i�e−�i� < +∞

}

with the topology induced by the norm �·�. For η ∈ � and � ⊂ �d, we denote
by η��� the element of S� obtained by restricting η to the components in �.
For every finite subset � of �d (we write � � �d), let ��� S� → � be bounded
maps satisfying ��+i = �� ◦ θi for all � � �d, i ∈ �d, where θi is the shift
map on S�d � �θiη��j� = η�i+ j�. We assume∑

��0
�������∞ < +∞�(2.1)

After letting, for X � �d, η ∈ � ,

HX�η� = ∑
�∩X �=�

���η��

we denote by �ρ��� the set of probability measures (Gibbs measures) µ on �

whose conditional measures µ�η�X��η�Xc��, X � �d, are given by

µ�η�X��η�Xc�� = e−HX�η�

ZX�η�Xc��
∏
i∈X

νρ�η�i���

where νρ is the Bernoulli measure of density ρ ∈ �0�1� in the case S = �0�1	,
and the Poisson measure of density ρ ∈ �0�+∞� in the case S = �, and ZX is
the normalization factor.

For i� j ∈ �d, we write i ∼ j if �i − j� = 1. When S = �0�1	, we define
Ti�jη�j� = η�i�, Ti�jη�i� = η�j� and for k �= i� j Ti�jη�k� = η�k�. Also, when
S = �, we define Ti�jη�j� = η�j� + 1, Ti�jη�i� = η�i� − 1 and for k �= i� j
Ti�jη�k� = η�k�. For every pair i ∼ j, we introduce the rates of jump

ci� j�η� = exp
[−�Hi�j�Ti�jη� −Hi�j�η��/2]�(2.2)



1736 A. ASSELAH AND P. DAI PRA

For each i ∼ j, ci� j� � →�0�+∞� is a bounded continuous function which
satisfies ci� j = cj� i = c0� j−i ◦ θi, and the detailed balance property

ci� j�η�e−H�i� j	�η� = ci� j�Ti�jη�e−H�i� j	�Ti�jη��

Finally, let L be the operator acting on functions from � to � formally defined
by

Lf�η� = ∑
i∈�d

∑
j∼i

η�i�ci� j�η�[f�Ti�j�η�� − f�η�]�(2.3)

For the case S = �0�1	, it is an easy computation, which we omit, to check
that the rates satisfy Liggett’s condition [formula (3.8) of [10], page 26] (with
the notation ηk�i� = η�i� for i �= k and ηk�k� = 1 − η�k�),

sup
i

∑
k∈�d

∑
j∼i

sup
η

�ci� j�ηk� − ci� j�η�� < ∞�(2.4)

Condition (2.4) guarantees that the restriction ofL to local functions (functions
depending on a finite number of components) has a graph closure in the space
of continuous functions on � which is the infinitesimal generator of a Feller
process on the Skorokhod space of right continuous functions with left limits
(Theorem 3.9 of [10]).

For the case S = �, the process can be constructed following step by step
Liggett’s construction in [9]. For a large class of such processes, the zero range
processes, the associated semigroups map local functions into continuous ones
in the norm topology on � (see proof of Lemma 2.2 of [1]).

Both for S = �0�1	 and S = �, given µ ∈ �ρ���, the restriction of L to
bounded local functions has a graph closure in L2�µ� that is a self-adjoint
operator (see [11], Chapter 1). It follows that Pµ ≡ ∫

Pηµ�dη� is the law of a
stationary reversible process.

We finally remark that the special case �� ≡ 0, ci� j ≡ 1 corresponds to the
symmetric simple exclusion process (SSEP) when S = �0�1	 and to a system
of independent random walks (IRW) when S = �.

3. General results. Let ν be a fixed element of�ρ���. For a given � � �d,
let �� be the σ-algebra generated by �η�i�� i ∈ �	. The elements of ∪� � �d��

are called local. In what follows, we fix A ∈ �� and we write τ for τA. We
recall ∫

fdνt = Eν�f�ηt��τ > t�

and define

ν̄t = 1
t

∫ t

0
νs ds�

We remark that the conditional expectation Eν�f�ηt��τ > t� makes sense since
Pν�τ > t� > 0 for every t > 0. Indeed, by locality of A and the fact that, for
S = �0�1	, we assume ρ < 1, it is easy to see that Pν�τ > s� > 0 for s small
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enough. Moreover, by reversibility, Pν�τ > 2s� = ∫
ν�dη�P2

η�τ > s� > 0, and by
iteration, we get Pν�τ > t� > 0 for all t > 0.

A relevant object is the stopped process ηt∧τ. By S̃tf�η� = Eη�f�ηt∧τ�� we
define a sub-Markovian semigroup on the Hilbert spaceHA = �f ∈ L2�ν�� f ≡
0 on A	, with the scalar product induced by L2�ν�. Let 	 be the domain
obtained by closing, on L2�ν� × L2�ν�, the graph of L restricted to bounded
local functions; we still denote by L the extended self-adjoint operator in 	 .
Let 	A = 	 ∩ HA. The following rather elementary fact will be repeatedly
used in the paper.

Lemma 1. The operator L̃ defined on 	A by

L̃f�η� = 1Ac�η�Lf�η�
is self-adjoint on HA, and S̃t = etL̃.

Proof. Self-adjointness of L̃ on 	A is elementary. In order to show that
S̃t = etL̃, it is enough to show that, for every local bounded function f, such
that f ≡ 0 on A, we have

Eη�f�ηt∧τ�� − f�η� = Eη

∫ t

0
L̃f�ηs∧τ�ds�(3.1)

whereEη denotes expectation with respect to Pη. To see (3.1), observe that the
process f�ηt� − f�η� − ∫ t

0 Lf�ηs�ds is a Pη-martingale. Thus, by the optional
sampling theorem, the process f�ηt∧τ� − f�η� − ∫ t∧τ

0 Lf�ηs�ds is also a Pη-
martingale. This, and the fact that ητ ∈ A Pη-a.s. (since t �→ ηt is a right con-
tinuous path), yields

Eη�f�ηt∧τ�� − f�η� = Eη

∫ t∧τ

0
Lf�ηs�ds = Eη

∫ t

0
1Ac�ηs∧τ�Lf�ηs∧τ�ds

= Eη

∫ t

0
L̃f�ηs∧τ�ds� ✷

In Theorem 1 below, the Feller property of the stopped semigroup S̃t is
crucial. For S = �0�1	, the arguments of [10], Theorem 3.9, yield that L̃ is a
sub-Markovian generator on the Banach space of continuous functions so that
S̃t is Feller.

For S = �, this property is more delicate. We will in general assume that
for each bounded local function f, S̃tf is continuous with respect to the norm
topology. In Section 4, we show that it holds for independent random walks.

3.1. Existence. Henceforth, A will be a local event. Also, when S = �, we
assume here that for each bounded local function f, S̃tf is continuous with
respect to the norm topology.

As in the case of stationary measures (see, e.g., [10], Proposition I.1.8), limit
points of the Cesaro’s mean are more convenient than limit points of νt.
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Theorem 1. Suppose that the Cesaro’s means �ν̄t�t≥0 have a limit point µ
in the weak topology. Then µ is a quasi-stationary measure.

For S = �0�1	, Theorem 1 implies that the weak limit points of ν̄ρ� t belong
to � . For S = �, tightness of Cesaro’s means has to be shown.

The key step consists in determining the long-time behavior of the proba-
bility of the conditioning event �τ > t	.

Lemma 2. There exists λ ∈ �0�+∞� such that for every s > 0,

lim
t→+∞

Pν�τ > t+ s�
Pν�τ > t� = e−λs�

Proof. First note that

Pν�τ > t+ s�
Pν�τ > t� = E

ν
�e�t+s�L̃1Ac�
E

ν
�etL̃1Ac�

=
∫ +∞
0 e−�t+s�xP�dx�∫ +∞
0 e−txP�dx�

�

where P is the spectral measure associated to −L̃ and to the function f =
1Ac

�ν�Ac��1/2 . Since P is a probability measure, we may consider a positive random
variable X with law P. We have

Pν�τ > t+ s�
Pν�τ > t� = E�e−sXe−tX�

E�e−tX� �(3.2)

Convexity of the logarithmic moment generating function logEe−tX immedi-
ately implies that the expressions in (3.2) are nondecreasing in t, and there-
fore they have a limit in �0�1� that we denote by a�s�. It is easily seen that
a�t+ s� = a�t�a�s� for all s� t > 0, and this completes the proof. ✷

Proof of Theorem 1. Suppose

µ = lim
n

1
tn

∫ tn

0
νs ds�

We first note that νt�Ac� = 1, and, as 1Ac is a bounded continuous function,
µ�Ac� = 1. This, together with locality of A, implies Pµ�τ > 0� > 0.

We first show that, for f bounded and local,

Eµ�f�ηt�1τ>t� = e−λt
∫
fdµ�(3.3)

where λ is the constant introduced in Lemma 2.
Indeed, using Lemma 2 and the assumed Feller property of S̃T

Eµ�f�ηt�1τ>t� = lim
n

1
tn

∫ tn

0

Eν�f�ηs+t�1τ>s+t�
Pν�τ > s� ds

= lim
n

1
tn

∫ tn

0

Eν�f�ηs+t�1τ>s+t�
Pν�τ > s+ t�

Pν�τ > s+ t�
Pν�τ > s� ds
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= e−λt lim
n

1
tn

∫ t+tn

t

Eν�f�ηs�1τ>s�
Pν�τ > s� ds

= e−λt lim
n

1
tn

∫ tn

0

Eν�f�ηs�1τ>s�
Pν�τ > s� ds = e−λt

∫
fdµ�

where we have used the fact that∣∣∣∣ ∫ t+tn

t

Eν�f�ηs�1τ>s�
Pν�τ > s� ds−

∫ tn

0

Eν�f�ηs�1τ>s�
Pν�τ > s� ds

∣∣∣∣ ≤ 2t�f�∞�

In particular, if we set f ≡ 1 in (3.3) we obtain

Pµ�τ > t� = e−λt(3.4)

(which actually implies λ < +∞ since, as shown above, Pµ�τ > 0� > 0) so that

Eµ�f�ηt��τ > t� =
∫
fdµ�

The extension of the last equality to all bounded measurable function follows
from Dynkin class theorem (see, e.g., [4], Theorem 3, page 16). ✷

Remark 1. Property (3.4) is shared also by all limit points of �νt�. Indeed,
if µ = limn νtn , then

Pµ�τ > t� = lim
n

Pν�τ > t+ tn�
Pν�τ > tn�

= e−λt

by Lemma 2.

3.2. Characterization of λ� In this section we characterize the constant
λ ∈ �0�+∞� as the bottom of the spectrum of −L̃ in HA, given by

λ̃�ν�A� = inf
f∈	A�f �=0

�f�−L̃f�ν
�f�f�ν

= inf
f∈	A�f �=0

�f�−Lf�ν
�f�f�ν

�(3.5)

where �·� ·�ν is the scalar product in �HA� ν�.
We first note that Lemma 2 yields

lim
t→+∞

�logPν�τ > t+ 1� − logPν�τ > t�� = −λ

and therefore

−λ = lim
t→∞

1
t
logPν�τ > t��

Theorem 2.

λ = λ̃�ν�A��
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Proof. Upper bound. Let f = 1Ac/�ν�Ac��. We have

Pν�τ > t� = Eν�etL̃f�ν�Ac� =
∫ +∞

λ̃�ν�A�
e−txP�dx�ν�Ac� ≤ e−tλ̃�ν�A��

where P is the spectral measure associated to −L̃ and f.
Lower bound. Let g� � → �0�+∞� be a local function such that g�η� = +∞

for η ∈ A, and g is bounded on Ac. In other words, e−g is any bounded local
function with value 0 on A and strictly positive on Ac. Consider the generator

Lgf�η� = ∑
i∈�d

∑
i∼j

η�i�ci� j�η�eg�η�−g�Ti�jη��f�Ti�jη� − f�η���

Since g is local, the Markov family Pg
η associated to Lg may be obtained by

the Girsanov transformation

dP
g
η

dPη

∣∣∣∣
�t

= exp
[
g�ηt� − g�η0� − ∑

i

∑
j∼i

∫ t

0
ηs�i�ci� j�ηs��eg�ηs�−g�Ti�jηs� − 1�ds

]
�

where �t = σ�ηs� s ≤ t	. Lg has been built to satisfy detailed balance for the
probability measure νg, supported on Ac, given by

dνg

dν
�η� = e−2g�η�∫

e−2g�η�ν�dη� �

In particular, Pg = ∫
P
g
ξ νg�dξ� is the law of a stationary, reversible Markov

process.
Now, since the event �τ > t	 is �t-measurable, using Jensen’s inequality,

logPν�τ > t� = log
∫
1τ>t

(
dPg

dPν

∣∣∣∣
�t

)−1

dPg

≥
∫
log

(
dνg

dν

)
dνg + t

∑
i

∑
j∼i

∫
η�i�ci� j�η��eg�η�−g�Ti�jη� − 1�νg�dη�(3.6)

=
∫
log

(
dνg

dν

)
dνg − t

�e−g�−Le−g�ν
�e−g� e−g�ν

�

It follows that

lim
t→∞

1
t
logPν�τ > t� ≥ −�f�−Lf�ν

�f�f�ν
(3.7)

for every function f vanishing onA and strictly positive onAc. Inequality (3.7)
is easily extended to all nonnegative bounded local functions f vanishing on
A and with �f�f�ν > 0, by applying (3.7) to fε = f + ε1Ac , and observing
that �fε�−Lfε�ν → �f�−Lf�ν and �fε� fε�ν → �f�f�ν as ε ↓ 0. Moreover, one
checks directly that if f is a bounded and local function, then

�f�−Lf�ν ≥ ��f��−L�f��ν�(3.8)
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By (3.7) and (3.8), we have that

lim
t→∞

1
t
logPν�τ > t� ≥ −�f�−Lf�ν

�f�f�ν
for every bounded local f vanishing on A. Since bounded local functions
are a core for the Dirichlet form �f�−Lf�, the conclusion follows from [11],
Lemma I.2.12. ✷

4. Results for independent random walks. In the language of
Section 2, we are considering the system with S = �, �� ≡ 0 and ci� j ≡ 1. In
this case �ρ��� has a unique element νρ, that is the infinite product of Poisson
measures of density ρ. For simplicity, we write νρ� t (resp. ν̄ρ� t) instead of �νρ�t
[resp. �νρ�t].

In what follows the natural partial order on � will be useful. For η� ξ ∈ � ,
we say that η ≤ ξ if η�i� ≤ ξ�i� for all i ∈ �d. Monotonicity of functions from
� to � will be meant with this partial order; in particular, we will say that
A ⊂ � is increasing if its indicator function is increasing. Finally, for given
probability measures ν� µ on � , we say that ν ≤ µ if

∫
fdν ≤ ∫

fdµ for every
increasing function f.

Theorem 3. Suppose that A �= � is a local, increasing subset of � . Then,
for each ρ > 0 we have:

(a) When f is bounded and local, S̃tf is continuous. Moreover, the Cesaro
means �ν̄ρ� t�t≥0 as well as the measures �νρ� t�t≥0 form tight families of proba-
bility measures.

(b) For d = 1 and d = 2 the Yaglom limit exists and equals δ0, the Dirac
measure concentrated on the configuration with no particles.

(c) For d ≥ 5 the Yaglom limit µρ exists. Moreover, µρ " νρ and
dµρ
dνρ

∈
Lp�νρ� for all 1 ≤ p < ∞.

(d) For d ≥ 3, limit points of the Cesaro means corresponding to distinct
values of ρ ≥ 0 are distinct.

Remark 2. We conjecture that the Yaglom limit exists also for d = 3�4.

4.1. Proof of Theorem 3(a). Let C be the support of f, �A the support of
1A and �ηt� ξt� t ≥ 0	 two systems of independent random walks coupled as in
[3]. In this coupling, η and ξ-particles at given site occupy different levels: one
ladder for the η particles and one for the ξ-particles. When an η-particle and
a ξ-particle happen to be at the same level of the same site, they are matched
and evolve from that point on as one random walk independent of all other η
and ξ particles. Unmatched particles evolve as random walks independent of
all other η and ξ particles. If Pη�ξ denotes the law of these coupled systems
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with initial configurations η and ξ, then we have

�Eη�f�ηt�1τ>t� −Eξ�f�ξt�1τ>t��
≤ 2�f�∞Pη�ξ�∃i ∈ C ∪ �A� ∃s ≤ t� ηs�i� �= ξs�i���

It is easy to see that if there is i ∈ C ∪ �A and s ≤ t such that ηs�i� �= ξs�i�,
then one unmatched particle has entered C ∪ �A within time t. On the other
hand, unmatched particles at time 0 are located on V �= �i ∈ �d� η�i� �= ξ�i�	.
Since the probability that a simple random walk travels a distance d within
time t is bounded above by td/d! ([5], page. 12), we have if d�i� = dist�i�C ∪
�A�,

Pη�ξ�∃i ∈ C ∪ �A� ∃s ≤ t� ηs�i� �= ξs�i�� ≤ ∑
i∈V

�η�i� ∨ ξ�i�� t
d�i�

d�i�!

≤ ��η� ∨ �ξ�� ∑
i∈V

e�i� t
d�i�

d�i�! �

Now, as �A and C are fixed, the right-hand side converges to 0 when
�η− ξ� → 0. The continuity of Eη�f�ηt�1τ>t� follows.

We show now that �νρ� t� t > 0	 is a tight family (the proof for �ν̄ρ� t� t > 0	
follows then easily). Note that, for a bounded measurable g,∫

gdνρ� t = Eνρ
�g�ηt�1τ>t�/Pνρ

�τ > t��

By reversibility,

Eνρ
�g�ηt�1τ>t� = Eνρ

�g�η0�1τ>t� =
∫
g�η�Pη�τ > t�νρ�dη��

Thus,

ft�η� ≡ dνρ� t

dνρ
�η� = Pη�τ > t�

Pνρ
�τ > t� �(4.1)

Using increasingness of A, it easily seen from (4.1) that ft is a decreasing
function of η. By using FKG inequalities for the product measure νρ, we have
that for every increasing function g∫

gdνρ� t =
∫
gft dνρ ≤

∫
gdνρ

and, therefore, νρ� t ≤ νρ. In particular, for every i ∈ �d, νρ�t�η�i� > ki� ≤
νρ�η�i� > ki�. Now, we choose ki = L��i� + 1�. Given ε > 0, we can find L > 0
such that

sup
t>0

νρ� t

( ⋃
i∈Zd

�ηi ≥ ki	
)

≤ νρ

( ⋃
i∈Zd

�ηi ≥ ki	
)

≤ ∑
i∈�d

ρL��i�+1�

�L��i� + 1��! ≤ ε�

The set K = ⋂
i∈Zd�ηi ≤ ki	 is compact in the norm topology. Indeed, let �ηn	

be a sequence in K. As K is obviously compact in the product topology, let
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�ηnk	 be a further subsequence converging to η ∈ K in the product topology.
For any ε > 0, there is n such that∑

�i�≥n
�η�i� − ηnk�i��e−�i� ≤ ∑

�i�≥n
2kie

−�i� ≤ ε�

On the other hand, for k large enough, η and ηnk coincide on �i� �i� ≤ n	.
Thus, for k large enough ��ηnk−η�� ≤ ε. Tightness follows then from Prohorov’s
theorem. ✷

4.2. Proof of Theorem 3(b). Let � be a finite subset of �d such that 1A
depends only on �η�i�� i ∈ �	. Since A �= � and A is increasing, it follows
that

A ⊂ B =
{
η� ∑

i∈�
η�i� > 0

}

and, therefore, τB ≤ τ. Define νBt by∫
fdνBt = Eνρ

�f�ηt��τB > t��

Consider now a finite set U ⊂ �d\� and, for i ∈ U, let fi� N → � be bounded.
We have∫ ∏

i∈U
fi�η�i��νBt �dη� =

Eνρ
�∏i∈U fi�η0�i��1τB>t�

Pνρ
�τB > t�

= ∏
i∈U

∑∞
k=0 fi�k��P�X�i� s� �∈ � ∀ s ∈ �0� t���ke−ρ ρk

k!∑∞
k=0�P�X�i� s� �∈ � ∀ s ∈ �0� t���ke−ρ ρk

k!

�

where X�i� ·� is a simple random walk starting at i. It follows that

νBt �dη� =
[⊗
i∈�

δ0�dη�i��
]⊗[⊗

i∈�c

να�i� t��dη�i��
]
�

where να�i� t� is the Poisson measure of density

α�i� t� ≡ P�X�i� s� �∈ � ∀ s ∈ �0� t���
and the operator “⊗” denotes product of probability measures. For d = 1 and
d = 2, recurrence of the simple random walk implies that limt→∞ α�i� t� = 0
for every i ∈ �c, so we get the Yaglom limit

lim
t→∞

νBt = δ0�

By the results in Section 3, this implies that

lim
t→∞

1
t
logPνρ

�τB > t� = 0�

Since τ ≥ τB, we have

lim
t→∞

1
t
logPνρ

�τ > t� = 0�(4.2)
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Thus, using Remark 1, if µ is a limit point of �νρ� t�, (4.2) implies

Pµ�τ > t� = 1�(4.3)

Define now l ∈ � to be the minimum number of particles of an element of A.
The dynamics of independent random walks induce a natural dynamics on the
family of unordered sequences of length l with elements in �d: if the sequence
X0 denotes the positions of l particles in �d, then Xt denotes the positions
at time t of the l particles that have evolved as independent simple random
walks. The resulting Markov process of the positions of the given l particles is
irreducible, so that every state is reachable within a given time t with positive
probability.

Let now η ∈ � be a configuration with at least l particles and t > 0 be
fixed. We label l particles of η and disregard the others. By the argument
above, there is a positive probability that, within time t, the configuration
consisting of those l particles, evolving as independent random walks, belongs
to A. Since A is increasing, the same holds if we consider the evolution of the
whole configuration η. In other words,

Pη�τ > t� < 1

for every η such that
∑

i η�i� ≥ l. Comparing this fact with (4.3), we deduce
that µ is concentrated on configurations with less than l particles. Note, also,
that (4.3) and the fact that µ ∈ � imply that µ is actually a stationary measure
for IRW. Now, if U is a finite subset of �d and η is a configuration with finitely
many particles, then letX1�i1� ·�� � � � �Xk�ik� ·� be independent simple random
walks starting from ij, j = 1� � � � � k, and such that η�i� = ��j� ij = i	� for every
i ∈ �d. Thus

Pη

(∑
i∈U

ηt�i� > 0
)

= Pη�∃ j = 1� � � � � k� Xj�ij� t� ∈ U�

≤
k∑

j=1

P�Xj�ij� t� ∈ U��

which, by standard Gaussian estimates for random walks, yield

lim
t→∞

Pη

(∑
i∈U

ηt�i� > 0
)

=
k∑

j=1

lim
t→∞

P�Xj�ij� t� ∈ U� = 0�(4.4)

It follows that

µ

(∑
i∈U

η�i� > 0
)

= lim
t→∞

∫
Pη

(∑
i∈U

ηt�i� > 0
)
dµ = 0�

Thus, µ = δ0. ✷
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4.3. Proof of Theorem 3(c). Let, as above,

ft = dνρ� t

dνρ
= Pη�τ > t�
Pνρ

�τ > t� �

We begin by showing that

sup
t≥0

∫
f
p
t dνρ < +∞(4.5)

for every 1 ≤ p < +∞. First, define

αi = ρP�X�i� s� /∈ � ∀ s ≥ 0�
and let ναi be the Poisson measure of density αi. Consider the product measure

να�·��dη� = ⊗
i∈�d

ναi�dη�i���

Let �n be the σ-field in � generated by the projection η → η�i� for �i� ≤ n,
and denote by

dνα�·�
dνρ

��n
the Radon–Nykodim derivative between the restrictions

of να�·� and νρ to �n. A simple explicit computation shows that, for each p ∈
�1�+∞� there is a C > 0 such that

max
[∫ (dνα�·�

dνρ

∣∣∣
�n

)p

dνρ�
∫ ( dνρ

dνα�·�

∣∣∣
�n

)p

dνα�·�

]
≤ exp

[
C

∑
i∈�n

(
1 − αi

ρ

)2]
�(4.6)

Standard estimates on random walks show that [8](
1 − αi

ρ

)
≤ B

�i�d−2
�(4.7)

Thus, the series

∑
i∈�d

(
1 − αi

ρ

)2

converges for d ≥ 5. By (4.6), for d ≥ 5,(
dνα�·�
dνρ

∣∣∣
�n

)p

�

(
dνρ

dνα�·�

∣∣∣
�n

)p

are uniformly integrable submartingales under νρ and να�·�, respectively. Then,
by the martingale convergence theorem, for d ≥ 5, να�·� and νρ are equivalent

measures, and
dνα�·�
dνρ

∈ Lp�νρ� for every p ∈ �1�+∞�.
Now, for η ∈ � , let Biη be defined by Biη�j� = η�j�+δij, and, for f� � → �,

let Bif�η� ≡ f�Biη�. Increasingness of A and a simple coupling argument
yield

0 ≤ Pη�τ > t� −PBiη
�τ > t� ≤ Pη�τ > t�P�∀ t� X�i� t� ∩ � �= ���
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so that

Bift�η� ≥ αi
ρ
ft�η��(4.8)

Direct inspection shows thatBi
dνα�·�
dνρ

= αi
ρ

dνα�·�
dνρ

(in particular
dνα�·�
dνρ

is decreasing).

Thus, (4.8) implies that Bi
dνρ� t
dνα�·�

≥ dνρ� t
dνα�·�

or, equivalently, that dνρ� t
dνα�·�

is increasing.
Since να�·� as any product measure, satisfies FKG inequalities, we deduce that
νρ� t ≥ να�·�. In particular, for i ≥ 1 and j ≥ 0 (recalling that ft and dνα�·�/dνρ
are decreasing),

∫
fit

(
dνα�·�
dνρ

)j

dνρ =
∫
fi−1
t

(
dνα�·�
dνρ

)j

dνt ≤
∫
fi−1
t

(
dνα�·�
dνρ

)j

dνα�·�

=
∫
fi−1
t

(
dνα�·�
dνρ

)j+1

dνρ�

So, by induction, for each n ≥ 1,

∫
fnt dνρ ≤

∫ (dνα�·�
dνρ

)n

dνρ�(4.9)

Since the r.h.s. of (4.9) is bounded for d ≥ 5, (4.5) follows.
The uniform bound (4.5) implies that any limit point of the family �νρ� t�t≥0,

as well as �ν̄ρ� t�t≥0, has a density with respect to νρ that belongs to Lp�νρ� for
all p ∈ �1�+∞�. It remains to show that there is a unique limit point.

Let µ be a limit point of �ν̄ρ� t�t≥0. As shown in Section 3, µ ∈ � , and

Pµ�τ > s� = lim
t→∞

Pνρ� t
�τ > t+ s�

Pνρ
�τ > t� �

Suppose that ν̄ρ� tn → µ weakly as n → +∞. Note that

dν̄ρ� tn
dνρ

= 1
tn

∫ tn

0
fs ds�

Since
∫ (dν̄ρ� tn

dνρ

)2
dνρ is uniformly bounded, it is not restrictive to assume that

dν̄ρ� tn
dνρ

→ dµ
dνρ

weakly in L2�νρ�. In particular,

∫ ( dµ

dνρ

)2

dνρ = lim
n→+∞

1
tn

∫ tn

0
fs

dµ

dνρ
dνρ ds = lim

n→+∞
1
tn

∫ tn

0

Pµ�τ > s�
Pνρ

�τ > s� ds�

Since

Pµ�τ > s�
Pνρ

�τ > s� = lim
t→+∞

Pνρ
�τ > t+ s�

Pνρ
�τ > s�Pνρ

�τ > t�
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and, as seen in Lemma 2,
Pνρ

�τ>t+s�
Pνρ

�τ>s� is increasing in s, it follows that Pµ�τ>s�
Pνρ

�τ>s�
is increasing in s. Thus∫ (

dµ

dνρ

)2

dνρ = lim
s→+∞

Pµ�τ > s�
Pνρ

�τ > s� ≡ a�(4.10)

Let now µ̃ be a limit point of �νρ�t�t≥0. As before, we find a sequence tn such
that ftn → dµ̃

dνρ
weakly in L2�νρ�. Thus∫ dµ

dνρ

dµ̃

dνρ
dνρ = lim

n→+∞

∫ dµ

dνρ
ftn dνρ = a�(4.11)

Finally, ∫ ( dµ̃

dνρ

)2

dνρ = lim
m→+∞ lim

n→+∞

∫
ftnftm dνρ

= lim
m→+∞ lim

n→+∞

∫ Pη�τ > tn�Pη�τ > tm�
Pνρ

�τ > tn�Pνρ
�τ > tm� dνρ(4.12)

= lim
m→+∞ lim

n→+∞
Pνρ

�τ > tn + tm�
Pνρ

�τ > tn�Pνρ
�τ > tm� = a�

where in the one but last equality we used reversibility. By (4.10), (4.11) and
(4.12), we obtain ∫ ( dµ

dνρ
− dµ̃

dνρ

)2

dνρ = 0

and so µ = µ̃. ✷

Remark 3. The last part of the previous proof does not use the fact that we
are considering a system of IRW’s. Thus, with the assumptions of Section 2, if

sup
t>0

∫ (dνρ�t
dν

)2

dν < +∞�

then the Yaglom limit exists and belongs to � .

4.4. Proof of Theorem 3(d). Let µ be a weak limit point of the Cesaro
means. We have seen that

Pµ�τ > t� = e−λ�ρ�t�(4.13)

We prove that for ρ1� ρ2 ≥ 0 and ρ = ρ1 + ρ2,

λ�ρ� ≥ λ�ρ1� + λ�ρ2��(4.14)

Inequality (4.14) implies that λ�·� is strictly increasing, and therefore proves
Theorem 3(d), once we recall that for d ≥ 3, λ�ρ� > 0 (see [3] where the proof
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was given for a special choice of A, but only increasingness and locality were
used).

The initial condition η drawn from νρ can be decomposed as η = η1 + η2

where η1 and η2 are independently drawn from νρ1 and νρ2 , respectively. If we
denote by ηit, i = 1�2, the configuration at time t of a system of IRW starting
from ηi, we define

τi = inf�t ≥ 0� ηit ∈ A	�
Noting that, by increasingness of A,

�ηt �∈ A	 ⊂ �η1
t �∈ A	 ∩ �η2

t �∈ A	�
we have

Pνρ
�τ > t� ≤ Pνρ

��τ1 > t	 ∩ �τ2 > t	� = Pνρ1
�τ > t�Pνρ2

�τ > t��(4.15)

which, together with (4.13), implies (4.14). ✷

4.5. An example for d = 3 and d = 4. In Theorem 3 no statement about
regularity in d = 3 and d = 4 is made. We show here a case in which we can
compute explicitly the Yaglom limit, and show that it is singular with respect
to νρ.

As we noticed in Section 4.3, the measure νρ�t can be explicitly computed in
the case

A =
{
η� ∑

i∈�
η�i� > 0

}
�

For simplicity we take here � = �0	. Recall that
νρ�t�dη� = ⊗

i∈�d
ναi�t��dη�i���

where α0�t� ≡ 0� αi�t� = ρP�X�i� s� �= 0 ∀ s ∈ �0� t��. It follows that the Yaglom
limit is

µ�dη� = ⊗
i∈�d

ναi�dη�i���

where α0 = 0� αi = ρP�X�i� s� �= 0 ∀ s ≥ 0�.
Denote by

εi ≡ P�X�i� s� = 0 for some s ≥ 0��
Using the notations of Section 4.3, we get

dµ

dνρ

∣∣∣∣
�n

= exp
( ∑
i∈�n

Yi

)
with Yi = ρεi + η�i� log�1 − εi��

where �n = �i ∈ �d � �i� ≤ n	. Our aim is to show that µ-a.s.,∑
i∈�n

Yi −→ +∞(4.16)



QUASI-STATIONARY MEASURES 1749

as n → +∞. We first recall classical asymptotics estimates for d ≥ 2 (see,
e.g., [8]),

lim
�i�→∞

εi �i�d−2 = cd > 0�(4.17)

Also, we define Xi = Yi −Eµ�Yi� and
Zn = ∑

�i�=n
Xi�

Note that due to our cubic lattice, there is γd > 0 such that

lim
n→∞

��i� �i� = n	�
nd−1

= γd�

Therefore

Eµ�Z2
n� ∼ ρ2cdγd

nd−1

n2d−4
= ρ2cdγd

nd−3
�(4.18)

If d = 3 we have that Eµ�Z2
n� ∼ ρ2c3γ3, whereas if d = 4, Eµ�Z2

n� ∼ ρ2c4γ4/n.
We will recall now two classical results: Kolmogorov’s theorem and

Kronecker’s lemma (see [4], Theorem 1 and Lemma 2, pages 110 and 111).
Kolmogorov: if Xn are independent, E�Xn� = 0 and

∑
E�X2

n� < ∞, then
X1 + · · · + Xn converges almost surely; Kronecker: if an� bn > 0 are real
numbers, bn increases to infinity and

n∑
i=1

ai
bi

converges� then
1
bn

n∑
i=1

ai −→ 0�

Case d = 3. We choose bn = n; then there is a constant C such that
n∑
i=1

Eµ

[(
Zi

bi

)2]
≤

n∑
i=1

C

i2
< C′�(4.19)

Thus, by Kolmogorov’s theorem and Kronecker’s lemma,

1
n

n∑
i=1

Zi −→ 0� µ-a�s�

Recalling that

1
n

n∑
i=1

Zi = 1
n

( ∑
i∈�n

Yi − ∑
i∈�n

Eµ�Yi�
)

and after noticing that

Eµ�Yi� ≥ Cε2i ≥ C′

�i�2
for some C�C′ > 0, we obtain

lim inf
n→∞

1
n

∑
i∈�n

Eµ�Yi� ≥ lim
n→∞

1
n

∑
i∈�n

C′

�i�2 > 0�
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We conclude that

lim
n→+∞

∑
i∈�n

Yi = ∞� µ-a�s�(4.20)

Case d = 4. We choose bn = log�n�. There is a constant C such that
n∑
i=1

Eµ

[(
Zi

bi

)2]
∼

n∑
i=1

C

i�log�i��2 < C′�

Thus,

1
log n

n∑
i=1

Zi −→ 0� µ-a�s�

On the other hand,

lim inf
n→∞

∑
i∈�n

Eµ�Yi�
log�n� ≥ C > 0

implies that

lim
n→∞

∑
i∈�n

Yi = ∞� µ-a�s�

Finally, in both cases we have

lim
n→∞

dµ

dνρ

∣∣∣∣
�n

= +∞� µ-a.s.�

which implies that µ is singular with respect to νρ. ✷

5. Results for the symmetric simple exclusion process. In this sec-
tion, S = �0�1	, and νρ is the product of Bernoulli measures of density
ρ ∈ �0�1�.

Theorem 4. Let A ⊂ � be local and increasing, and A �= � . Then:

(a) For d = 1 and d = 2 the Yaglom limit exists, and equals δ0.
(b) For d ≥ 3 limit points of the Cesaro means are different from δ0, and

they are distinct for distinct values of ρ ∈ �0�1�.

As before, let

λ�ρ� = − lim
t→+∞

1
t
logPνρ

�τ > t��(5.1)

We show that:

1. For d = 1 and d = 2 we have λ�ρ� = 0.
2. For d ≥ 3, λ�ρ� > 0 for ρ > 0 and, for ρ1� ρ2 > 0,

λ�ρ1 + ρ2� ≥ λ�ρ1� + λ�ρ2��(5.2)
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The derivation from these results of (a) and (b) is identical to the IRW case,
observing that (4.4) can be proved for SSEP by replacing independent random
walks by the stirring process [10] and noting that independence of particles
was not used in deriving (4.4).

We begin with d = 1 and d = 2. As for IRW we assume 1A�η� depends on
�η�i�� i ∈ �	 only, and let

B =
{
η� ∑

i∈�
η�i� ≥ 1

}
�

By increasingness of A we have A ⊂ B, and thus

λ�ρ� ≤ − lim
t→+∞

1
t
logPνρ

�τB > t��(5.3)

Following Arratia [2], we decompose our SSEP �η�t�� t ≥ 0	 as a Stirring
process �ξ�x� t�� t ≥ 0� x ∈ �d	 and an initial condition η drawn from νρ. We
define Ht to be the set of sites whose “marks” end up touching �,

Ht = �x ∈ �d� ξ�x� s� ∈ � for some s ≤ t	�
Thus, by reversibility,

E�Ht� = ∑
x∈�d

P�ξ�x� s� ∈ � for some s ≤ t�

= ∑
x∈�d

P�ξ�i� s� = x for some i ∈ � for some s ≤ t�

= ERt�

where Rt is the range of the Stirring particles which started on �,

Rt = ∑
y

1�ξ�i� s� = y for some i ∈ � for some s ≤ t��

Now, ∫
Pη�τB > t�dνρ =

∫
P�η�i� = 0 for all i ∈ Ht�dνρ = E��1 − ρ��Ht��

≥ �1 − ρ�E�Ht� = �1 − ρ�ERt�

Now,

E�Rt� ≤ ∑
i∈�

∑
y

P�ξ�i� s� = y for some s ≤ t� = ∑
i∈�

E�Ri
t��

where Ri
t is the range of the Stirring particle which started on i. We use now

the classical estimates for large t, for d = 1,

E�Ri
t� ∼ 4

√
t

2π
�(5.4)
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whereas in d = 2,

E�Ri
t� ∼ πt

log�t�(5.5)

to conclude that in both cases

lim
t→∞

1
t
log�Pη�τB > t�� = 0�(5.6)

which, by (5.3), concludes the case d = 1�2.
We now consider d ≥ 3. The fact that λ�ρ� > 0 follows from the same

argument as in [3], using the original inequality of Varadhan ([12]).
The proof of (5.2) given for IRW does not apply here. Instead we rely on the

variational representation for λ�ρ�,

2λ�ρ� = inf
{∑
i∈�d

∑
j∼i

∫
η�i�

(√
Tijϕ�η� −

√
ϕ�η�

)2
dνρ�η��

ϕ local, ϕ ≥ 0� ϕ = 0 in A�
∫
ϕdνρ = 1

}
�

(5.7)

Identity (5.7) follows from (3.5) with
√
ϕ in place of f, after having observed

that (i) due to (3.8) the infimum in (3.5) may be taken over positive functions;
(ii) local functions in 	A form a core of 	A.

Now, we think of dνρ as the law of η = ζ + ξ, where the joint distribution
of ζ and ξ is a product measure ν̃ = ⊗i∈�dνi, and

νi�ζ�i� = 1� ξ�i� = 0� = ρ1� νi�ζ�i� = 0� ξ�i� = 0� = 1 − ρ�

νi�ζ�i� = 0� ξ�i� = 1� = ρ2�
(5.8)

with ρ1 + ρ2 = ρ. So that ν̃ has marginals νρ1 and νρ2 . We rewrite now (5.7),
with the notation η = ζ + ξ as

2λ�ρ� = inf
{∑
i∈�d

∑
j∼i

∫
�ζ�i� + ξ�i��

(√
Tijψ�ζ� ξ� −

√
ψ�ζ� ξ�

)2
dν̃�ζ� ξ��

ψ ≥ 0� ψ�ζ� ξ� = 0 if ζ + ξ ∈ A�
∫
ψdν̃ = 1

}
�

(5.9)

When acting on a function ψ�ζ� ξ� the operator Tij acts on both variables ζ
and ξ. We will use now three simple facts. 1. The convexity of the Dirichlet
form, which we write for any nonnegative measurable functions f�g and
σ-algebra ;,

E
[(√

f− √
g
)2

�;
]

≥
(√

E�f�;� −
√
E�g�;�

)2
�(5.10)

2. The identity E�Tijψ�σ�ζ�� = TijE�ψ�σ�ζ��, which is shown by direct
inspection.
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3. As ν̃ is a homogeneous product measure,

dTijν̃

dν̃
≡ 1�(5.11)

Now, for a function ψ�ζ� ξ�, combining (1), (2) and (3) we have

∑
i∈�d

∑
j∼i

∫
�ζ�i� + ξ�i��

(√
Tijψ�ζ� ξ� −

√
ψ�ζ� ξ�

)2
dν̃�ζ� ξ�

≥ ∑
i∈�d

∑
j∼i

∫
ζ�i�

(√
TijE�ψ�ζ� −

√
E�ψ�ζ�

)2
dνρ1�ζ�(5.12)

+ ∑
i∈�d

∑
j∼i

∫
ξ�i�

(√
TijE�ψ�ξ� −

√
E�ψ�ξ�

)2
dνρ2�ξ��

We recall the key constraint on ψ: ψ�ζ� ξ� = 0 if ζ+ξ ∈ A. AsA is an increasing
event, ζ ∈ A implies that ζ + ξ ∈ A, for any ξ. Thus,

E�ψ�ζ��ζ� = 0 if ζ ∈ A�(5.13)

To conclude the proof, it is enough to take the infimum in inequality (5.12)
over the function ψ satisfying the constraints of (5.9). ✷

6. Open problems. There are basically three directions where problems
look interesting.

1. For SSEP can one establish regularity of some elements of � , say µ, in
high dimension (d ≥ 5)? A first step would be to estimate the density of
particles far away from the origin under µ.

2. What if we draw initial configurations from a nonstationary measure ν?
For instance, if dν/dνρ ∈ L2�νρ�, do the Cesaro means obtained starting
from ν have the same limit points as the ones starting from νρ?

3. When we know that λ = 0, what are the correct asymptotics for Pνρ
×

�τ > t�? This problem goes back to Arratia [2], which establishes that
there exist constants 0 < c1 < c2 such that for all t > 0:

for d = 1�
1√
t
Pνρ

�τ > t� ∈ �c1� c2��

for d = 2�
1√
t log t

Pνρ
�τ > t� ∈ �c1� c2��

The problem is to show existence of the limit as t → +∞ of the expressions
above and estimate it.
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