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STEIN’S METHOD AND BIRTH-DEATH PROCESSES1

By Timothy C. Brown and Aihua Xia

University of Melbourne

Barbour introduced a probabilistic view of Stein’s method for estimat-
ing the error in probability approximations. However, in the case of ap-
proximations by general distributions on the integers, there have been no
purely probabilistic proofs of Stein bounds till this paper. Furthermore,
the methods introduced here apply to a very large class of approximat-
ing distributions on the non-negative integers, among which there is a
natural class for higher-order approximations by probability distributions
rather than signed measures (as previously). The methods also produce
Stein magic factors for process approximations which do not increase with
the window of observation and which are simpler to apply than those in
Brown, Weinberg and Xia.

1. Introduction. Stein’s method first appeared in Stein (1971) and has
proved successful in estimating the error in normal approximation to the sum
of dependent random variables. Stein’s method has been adapted for various
distributions, including Poisson in Chen (1975) and Barbour and Hall (1984),
the Poisson process in Barbour (1988) and Barbour and Brown (1992), bino-
mial in Ehm (1991), multinomial in Loh (1992), compound Poisson in Barbour,
Chen and Loh (1992) and negative binomial in Brown and Phillips (1999), etc.
[see also Barbour, Holst and Janson (1992) and references therein]. To adapt
Stein’s method for a particular distribution is to establish an identity for the
distribution (often called the Stein identity), and from this establish a Stein
equation which is solved.

Stein’s method has been spectacularly successful with the Poisson distribu-
tion (in this case it is often appropriately called the Stein-Chen method). For
example, Barbour and Hall (1984) establish upper and lower bounds of the
same, and therefore, correct order for the error in approximating the distri-
bution of the sum of independent 0-1 random variables. This contrasts with
simpler coupling methods which yield upper bounds of the wrong order.

The example of the sum of independent 0-1 random variables is a proto-
type for many others. Coupling methods produce upper bounds which grow
indefinitely as the mean of the distribution increases, whilst Stein’s method
produces upper bounds which are at worst constant in the size of the mean.
This behavior in the upper bound has an important practical consequence: if
the distribution being approximated is from a stochastic process in time or
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space, the order of the upper bound from Stein’s method typically does not de-
pend on how long or over what volume the process is observed. That is, with
Stein’s method the order of error does not increase with the size of the window
of observation. Typically, the order of error depends instead on a crucial sys-
tem parameter; in the case of the sum of independent 0-1 random variables
the parameter (and bound) is the maximum probability of 1. Someone wanting
to use the approximation therefore need only be concerned about the size of
the system parameter rather than the size of the window of observation.

Implementing Stein’s method often involves two parts: the first part ob-
tains estimates on the Stein equation solution and the second part uses these
properties for analysing different problems. The lack of dependence on the size
of the window of observation, mentioned in the previous paragraph, depends
crucially on the the first part. In the case of discrete distributions, it is the
differences of the solution of the Stein equation which are estimated in the
first part, and the maximum size of these is often called the Stein “magic fac-
tor.” For the Poisson case, the Stein magic factor is essentially the reciprocal
of the mean of the distribution. The Stein magic factor depends only on the
approximating distribution and not on the distribution being approximated.
Thus good estimates of the magic factor can then be applied to many different
problems.

Barbour (1988) introduced an important new view of Stein’s method using
reversible Markov processes. In this view, the distribution used for approx-
imation is the equilibrium distribution of a Markov process, and the Stein
identity links the equilibrium distribution to the generator of the Markov pro-
cess. For the case of the Poisson distribution, and the Poisson process, the
Markov process is an immigration-death process. The introduction of Markov
processes permits probability theory to generate new Stein identities for new
approximating distributions. Furthermore, it has been hoped that knowledge
in probability theory would illuminate Stein’s magic factors.

To date, the potential advantages of the probabilistic approach in Stein’s
method have been limited in two ways. Probabilists would hope and expect
that the probabilistic approach would yield elegant and intuitive derivations
of Stein magic factors. Moreover, probabilists would hope that the approach
would also work well with process approximation as well as distribution ap-
proximation. On the other hand, till now there has been no elegant probabilis-
tic derivation of the Stein magic factor, except for the Poisson random variable
case in Xia (1999). Furthermore, although the probabilistic approach was cru-
cial in developing bounds for Poisson process approximation, until recently the
Stein magic factor for process approximation grew with the logarithm of the
size of the window of observation. Brown, Weinberg and Xia (2000) remedied
this but at the expense of bounds which are very complicated to compute for
particular problems.

In Section 2 of this paper, we give a neat probabilistic derivation of Stein
magic factors, not only for the Poisson distribution but for a very large class of
distributions on the non-negative integers. This occurs when the Stein equa-
tion comes from a birth-death process on the integers. A key point is that the
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solution to Stein equation is an explicit linear combination of mean upward
and downward transition times of the birth-death process (Lemma 2.1). There
is a very pleasing probabilistic derivation of explicit formulae for these means
(Lemma 2.2) (essentially three pictures). In many cases, all differences of the
solution of the Stein equation are negative except one. This particular struc-
ture of signs of the differences is another key point in the derivation of the
Poisson Stein magic factors. Necessary and sufficient conditions are given for
this structure if the approximating distribution is on the non-negative integers
and the Stein equation comes from a birth-death process. These conditions in-
clude the sufficient conditions in Barbour, Holst and Jansen [(1992), Lemma
9.2.1].

The general theory suggests a wide class of distributions on the integers
for which probabilities are very simple to compute and which can have an ar-
bitrary number of parameters. The distributions are called polynomial birth-
death distributions and are introduced in section 3. They include Poisson, neg-
ative binomial, binomial and hypergeometric distributions. In the case of two
parameters, the new distributions are perhaps more comparable to the nor-
mal distribution than the Poisson distribution since the normal distribution
is determined by two parameters while the Poisson distribution is determined
by one. It is shown in section 3 that a polynomial birth-death distribution
with two parameters can approximate the sum of independent Bernoulli tri-
als with order of accuracy as good as the compound Poisson signed measure
approximation in Barbour and Xia (1999). The benefit of approximation by a
probability distribution rather than a signed measure is that all of the tools of
probability theory are available for the approximand, and the meaning of mo-
ments of the approximand is clear. Unlike the binomial, the new distribution
does not require truncation in approximation and the accuracy of approxima-
tion is usually also higher. Numerical examples are provided to compare the
performance of Poisson, binomial and polynomial birth-death approximations.

Section 4 shows that the negative binomial distribution approximates the
number of 2-runs of successes in Bernoulli trials with accuracy at worst
p2/

√
λ, where p is the success probability and λ is the mean number of success

runs. The natural approximation to the runs distribution would be compound
Poisson with a geometric summand (since the length of a run of successes is
geometric). However, the order of approximation here is p2. This reveals [as
did approximation with a more complicated compound Poisson distribution in
Barbour and Xia (1999)] a very surprising fact from Stein’s method - the order
of approximation can even improve as the window of observation increases! It
should also be noted that negative binomial approximation is desirable since
this distribution is widely available in computer packages such as EXCEL.

The reason for including these applications is that they are relatively
straightforward and illustrate the power of the general results. In the case
of the negative binomial approximation, the results do not follow from the
results in Barbour, Holst and Janson (1992).

The techniques used in Sections 3 and 4 for calculating bounds use the
Stein magic factors of Section 2: this is part one from the fourth paragraph
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of the introduction. In Section 4, the technique for part 2 is similar to that
in Barbour and Hall (1984) in the way in which independence is exploited,
although the calculations are more complicated. This technique amounts to
use of the Palm distribution of a point process on a discrete space, and thus
extension to dependence is possible. It is not done here to avoid obscuring
the beauty and power of the techniques. Whenever there are unit per capita
death rates, Palm process calculations can be done for part 2. In Section 3,
the death rates are quadratic, and the appropriate point process calculations
use second order Palm distributions. Again, it should be possible, with more
complicated calculations, to incorporate dependence. Furthermore, with cubic
or higher order death rates, Palm distributions of higher order could be used,
and the result would be bounds of arbitrary higher order. Again, it should be
stressed that in each case the approximand would be a probability distribution
not a signed measure.

Poisson process approximation is a natural step forward from Poisson ran-
dom variable approximation. Barbour (1988) and Arratia, Goldstein and Gor-
don (1989) extended Stein’s method to the approximation in distribution by
a Poisson process of discrete sums of the form � = ∑n

i=1 XiδYi
, where Yi is

a (possibly random) mark associated with Xi. The extension to general point
processes was accomplished in Barbour and Brown (1992). There, a point pro-
cess is regarded as a random configuration in a compact metric space and the
approximations were based on either Janossy densities (the “local” approach)
or Palm distributions (the “coupling” approach). It has been shown that Stein’s
magic factors (interpreted as the maximum over all states) for Poisson pro-
cess approximation are by no means as good as those for Poisson random
variable approximation [see Brown and Xia (1995b)], and thus the bounds of
errors based on these uniform magic factors in applications are not as good as
would be hoped. A non-uniform bound is suggested in Brown, Weinberg and
Xia (2000) and has been proved successful in applications, namely, the error
bounds are of optimal order. However, it is necessary to compute a large num-
ber of quantities which are specific to particular applications and this limits
the usefulness of the bounds in Brown, Weinberg and Xia (2000). This defect,
using some of the ideas from section 2 on integer distributions, is remedied in
section 5.

For random variable approximation, we use the total variation distance to
compare the difference between two probability measures Q1 and Q2 on Z+:

dTV�Q1
Q2� = sup
f∈�

∣∣∣∫ fdQ1 −
∫
fdQ2

∣∣∣
= 1

2

∞∑
i=0

	Q1
i� −Q2
i�	

= sup
A⊂Z+

	Q1�A� −Q2�A�	


where � 
= 
f 
 Z+ �→ �0
1��.
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2. Stein identities and birth-death processes. As explained in the In-
troduction, implementations of Stein’s method often involve two parts. This
section is concerned only with the first part: calculation of Stein magic factors.
The result is Theorem 2.10. The main departures from previous work are that
only probabilistic concepts are involved, there is no recursion and necessary
and sufficient conditions are given for the existence of very simple Stein magic
factors.

Suppose π is a distribution on Z+ 
= 
0
1
2
 � � �� or 
0
1
2
 � � � 
m� for
some finite m. Suppose that π attributes positive probability to each integer
in the range - if not, relabel the states so it does so. Consider a birth-death
process that has π as its stationary distribution. From now on we take the
infinite state space but note that everything works in the same way for the
finite state space.

There are infinitely many such birth-death processes and they are all pos-
itive recurrent: if the parameters process are αi for births and βi for deaths,
then we suppose that the parameters are designed so that the detailed balance
equations are satisfied:

πiαi = πi+1βi+1
 i ∈ Z+�(2.1)

Accordingly, any such process is time-reversible [see Keilson (1979)]. Once α0
or β1 is specified (and this can be done in an arbitrary fashion as any non-
negative number), the other is determined by (2.1). Similarly once α1 or β2 is
specified, the other is determined by (2.1) and so on. The positive recurrence
follows from lemma 2.2 and the fact that the transition from any state to
another is the sum of transition times from adjoining states.

Equation (2.1), if multiplied by any bounded function g on Z+ and summed
over i, gives

∞∑
i=0

g�i+ 1�αiπi =
∞∑
i=0

g�i+ 1�πi+1βi+1


which, on introducing a random variable X with distribution π, may be writ-
ten as

E�αXg�X+ 1� − βXg�X�� = 0�(2.2)

This equation is the Stein identity for π, 
αi�, 
βi�. The Stein identity suggests
the Stein equation: for any bounded function f on Z+ let g be the solution to

�g�i� 
= αig�i+ 1� − βig�i� = f�i� − π�f�
(2.3)

[conventionally g�0� = 0]. Taking g to be the indicator of 
i� gives (2.1) from
(2.2). Thus, the reversibility criterion (2.1) is equivalent to the Stein identity
(2.2), and either leads to the Stein equation (2.3).

Suppose that for i ∈ Z+, Zi is a birth-death process satisfying (2.1) and
started in state i. For i
 j ∈ Z+, define

τij = inf
t 
 Zi�t� = j�
 τ+j = τj
j+1
 τ−j = τj
j−1(2.4)
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and

τ+j = E
(
τ+j
)
� τ−j = E

(
τ−j
)
�

Lemma 2.1. If gA is the solution for f = 1A in �2�3� with A ⊂ Z+, then,
for i ≥ 1,

gA�i� = τ−i π�A ∩ �0
 i− 1�� − τ+i−1π�A ∩ �i
∞���(2.5)

Proof. Let g�i� = h�i� − h�i− 1�, and define

�rvh�i� = αi�h�i+ 1� − h�i�� + βi�h�i− 1� − h�i��
 i ∈ Z+�(2.6)

Then �rv is the generator of the birth-death process Z (rv for random variable)
and we can rewrite the Stein equation (2.3) as

�rvh�i� = f�i� − π�f�
 i ∈ Z+�(2.7)

The solution of (2.7) [see Barbour and Brown (1992), noting that Lemma 2.2
shows the required positive recurrence] is

h�f
 i� = −
∫ ∞

0
E�f�Zi�t�� − π�f��dt�(2.8)

In the case that A = 
j�, we simply write gA as gj. If i ≤ j, it follows from
(2.8) and the strong Markov property that

h�1
j�
 i− 1� = −E
∫ τi−1
i

0
�1
j��Zi−1�t�� − πj�dt−E

∫ ∞
τi−1
i

�1
j��Zi−1�t�� − πj�dt

= πjEτi−1
i + h�1
j�
 i�

giving

gj�i� = −πjτ
+
i−1�(2.9)

Similarly, for i ≥ j+ 1,

gj�i� = πjτ
−
i �(2.10)

Now, (2.5) follows from summing up (2.9) and (2.10) over j ∈ A. ✷

Lemma 2.2. For j ∈ Z+,

τ+j =
F�j�
αjπj

and τ−j =
F̄�j�
βjπj


(2.11)

where

F�j� =
j∑

i=0

πi� F̄�j� =
∞∑
i=j

πi�
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Proof. These can be easily proved by conditioning on the time of the first
jump after leaving the starting state, and producing a recurrence relation
using the fact that the time of transition between states which are two apart
is the sum of the times of transition between two adjoining states. It is not
necessary to solve the recurrence relation, just to multiply by πj and add.
This is the proof that is given in Keilson [(1979), page 61] for the first formula
in (2.11). Alternatively, there is a direct probabilistic proof that reveals the
probability behind these pleasingly simple formulae.

We consider only the case of downward transitions because the other case is
entirely similar. Consider a stationary process Z∗ on 
j
 j+1
 � � � 
 � which has
the same birth and death parameters as the process on Z+. The distribution of
Z∗�t� for each t is that of π conditioned to be on 
j
 j+ 1
 � � ��. Define a point
process N using Z∗ by inserting a point at an independent exponential(βj)
time after each transition into state j, provided the process is still in state j
after the exponential time. Continue the same probabilistic mechanism until
the process leaves j and record no further points until the process next enters
j. The inter-point times are therefore independent and identically distributed,
apart from the first one, as after the first one, each inter-point time is the
exponential�βj� with probability βj

αj+βj
and otherwise is exponential�αj + βj�

plus a geometric number of independent upwards excursion times from j back
to j followed by an exponential�βj�. The point process N is stationary, because
Z∗ is stationary. Let the mean number of points be κ per unit time. Since the
compensator of N is 
∫ t

0 βj1�Z∗�s�=j�ds�t≥0,

κ = E�N�1�� =
∫ 1

0
βjP�Z∗�s� = j�ds = βjπj

F̄�j� �(2.12)

But κ is then the reciprocal of the mean time between points in the station-
ary renewal process N and this is the right hand side of (2.11). The proof is
complete if we can construct a stationary version of Z in which the times of
transition from j to j− 1 are the inter-point times of N.

Independent of the process Z∗, realize a coin toss with probability of heads
F�j�. If the coin is tails, then define Z to coincide with Z∗ up to the first point
of N. If the coin is heads, construct an independent fragment of the uncon-
ditional chain which starts in a state distributed according to the conditional
distribution of π on 
0
1
2
 � � � 
 j − 1� and finishes at the first entrance to
j. Omit, if necessary, the first part of Z∗ up till the time that Z∗ enters j
and use the fragment of Z∗ up to the first point of N. The process Z then
has been defined to start with the stationary distribution π, and it evolves
according to the right laws up to the first point of N. Let Z1
Z2
 � � � be inde-
pendent realisations of fragments of the Markov chain each one consisting of
an excursion of the chain starting in j − 1 and finishing in j. Insert one of
these fragments after each point of N. The process Z is stationary, Markov
and the times between points in Z∗ are precisely the times of transition from
j to j − 1, with the possible exception of the first time. However the strong
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law still shows that the expected time between points is the limiting sample
average of the times between points in N, as required.

The process of construction is illustrated in Figures 1–3. ✷

Combining Lemma 2.2 with (2.9) and (2.10) gives the following lemma.

Lemma 2.3. For i ≤ j


gj�i� =
−πjF�i− 1�

βiπi

�
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and for i ≥ j+ 1


gj�i� =
πjF̄�i�
αi−1πi−1

�

Lemma 2.4. Let !gj�i� = gj�i+1�−gj�i� and let δi = �βi+1−βi�−�αi+1−
αi�� The following are equivalent:

(C0) For each j ∈ Z+, !gj�j� is the only non-negative difference for !gj.

(C1) τ+j is increasing in j and τ−j is decreasing in j. Here and in the se-
quel, we use increasing to mean non-decreasing and decreasing to mean non-
increasing.

(C2) For each k = 1
2
 � � �,

F�k�
F�k− 1� ≥

αk

βk

≥ F̄�k+ 1�
F̄�k� �(2.13)

(C3) For each k = 1
2
 � � �,

δk−1 ≥
−∑k−2

l=0 δlF�l�
F�k− 1�(2.14)

and

δk ≥
−∑∞

l=k+1 δlF̄�l+ 1�
F̄�k+ 1� �(2.15)

In particular, a sufficient condition for any of (C0), (C1), (C2) or (C3) is
(C4) For each k = 1
2
 � � �, defining β0 = 0,

αk − αk−1 ≤ βk − βk−1�

We defer the proof of Lemma 2.4 to the end of this section.
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Remark 2.5. If (2.14) holds for all the values up to k − 1, then the right
hand side is negative and the condition specifies that δk must be at least a
certain negative number determined by δ0, � � � , δk−1 and π0, � � � , πk. Similarly
for (2.15).

Remark 2.6. Given any probability distribution there is a range of possible
values of the birth and death parameters for these conditions to hold. It is easy
to construct artificial examples where the conditions do not hold. For example,
take π0 = 1

8 , π1 = 1
2 , α0 = 1, α1 = 10. Then detailed balance in equation (2.1)

gives β1 = 1
4 and equation (2.14) is not satisfied for k = 1.

Remark 2.7. For the Poisson distribution, as in Barbour, Holst and Jan-
son (1992), (C0) is satisfied if the birth rates are constant at the parameter of
the distribution. This follows immediately from (C4).

Example 2.8. If the birth parameters are decreasing and the death param-
eters are increasing, then (C4) is clearly satisfied and (C0) holds. This example
is given as Lemma 9.2.1 in Barbour, Holst and Janson (1992). This includes
the Binomial�n
p� distribution with αj = �n − j�p, βj = j�1 − p� as noted
in Barbour, Holst and Janson (1992). This also includes the Hypergeometric
distribution with parameters R
B
n ∈ Z+ (n ≤ R+B):

πi =
(
R
i

)(
B

n− i

)/(
R+B

n

)

 max�0
 n−B� ≤ i ≤ min�n
R�


by taking αj = �n− j��R− j�, βj = j�B− n+ j�.

Example 2.9. For the negative binomial distribution with parameters r >
0 and 0 < q < 1:

πi =
)�r+ i�
)�r�i!

qr�1− q�i
 i ∈ Z+


and taking αj = a+bj and βj = j with a = r�1−q� and b = 1−q, hence (C4)
is satisfied [Brown and Phillips (1999)].

The following proposition provides non-uniform bounds for the solution g
to Stein equation (2.3).

Theorem 2.10. Any of (C0)–(C4) implies that the solution g to Stein equa-
tion (2.3) satisfies

sup
f∈�

	!g�i�	 = F̄�i+ 1�
αi

+ F�i− 1�
βi

(2.16)

≤ 1
αi

∧ 1
βi

∀i ∈ Z+�(2.17)
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Proof. Replacing f by 1−f if necessary, it suffices to give an upper bound
for !g�i�� Using (2.19) gives

!g�i� =
∞∑
j=0

f�j�!gj�i��(2.18)

Lemma 2.4 ensures that the only positive term in the right hand side of (2.18)
is for j = i, leading to

!g�i� ≤ !gi�i��

Now, (2.16) follows immediately from Lemma 2.3.
Finally, since (C2) implies that F�i − 1�/βi ≤ F�i�/αi and F̄�i + 1�/αi ≤

F̄�i�/βi, the claim (2.17) is evident. ✷

Remark 2.11. One may ask, as happened in the Poisson approximation
case, whether the bound (2.16) is decreasing in i so that a uniform bound could
be achieved at i = 0 from conditions (C0)–(C4). Unfortunately, the answer
is generally negative. For example, if we take π as Binomial�n
p� so that
αi = �n− i�p and βi = �1−p�i for 0 ≤ i ≤ n, then supf∈� 	!g�0�	 = �1− �1−
p�n�/�np� and supf∈� 	!g�n�	 = �1 − pn�/�n�1 − p��, hence supf∈� 	!g�i�	 is
not decreasing if p > 1/2.

However, in the special case where the α’s are a constant and the β’s are in-
creasing, the case i = 0 is the maximum. This includes Poisson approximation
[see Barbour and Eagleson (1983)] and certain other polynomial birth-death
distributions as shown in section 3.

Corollary 2.12. If αj = α for all j ∈ Z+ and βj is increasing, then

sup
f∈�

	!g�i�	 ≤ 1− π0

α
∀ i ∈ Z+�

Proof [cf. Xia (1999)]. In fact,

sup
f∈�

	!g�i�	 = 1− π0

α
+ π0 + � � �+ πi−1

βi

− π1 + � � �+ πi

α

= 1− π0

α
+

i∑
j=1

πj

α

(
βj

βi

− 1
)

≤ 1− π0

α



completing the proof. ✷

To end this section, we give a proof for Lemma 2.4.
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Proof of Lemma 2.4. Noting that the solution g to (2.3) satisfies

g�k� =
∞∑
i=0

f�i�gi�k�
(2.19)

and if f is 1, the solution is g = 0, we have

!gj�j� +
∑
i�=j

!gi�j� = 0�

Condition (C0) is equivalent to all differences except !gj�j� being negative.
For i ≤ j− 1, from Lemma 2.1 and (2.11) we have

!gj�i� = −πj

(
τ+i − τ+i−1

)
�(2.20)

Similarly, for i ≥ j+ 1


!gj�i� = πj

(
τ−i+1 − τ−i

)
�(2.21)

Considering equations (2.20) and (2.21) and allowing j to vary shows that
(C0) is equivalent to (C1).

On the other hand, it follows from (2.11) that, for k = 1
2
3
 � � � 
 τ+k−1 ≤ τ+k
and τ−k ≥ τ−k+1 are equivalent to

βkF�k� − αkF�k− 1� ≥ 0(2.22)

and

βkF̄�k+ 1� − αkF̄�k� ≤ 0
(2.23)

using the detailed balance relations (2.1). Rearrangement gives the equiva-
lence of (C1) and (C2).
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But the left side of inequality (2.22) is, using the detailed balance condition
βkπk = αk−1πk−1,

βkF�k� − αkF�k− 1� = βkπk +
k−1∑
l=0

�βk − αk�πl

= ��βk − βk−1� − �αk − αk−1��πk−1

+βk−1πk−1 +
k−2∑
l=0

�βk − αk�πl

= δk−1πk−1 + ��βk − βk−2� − �αk − αk−2��πk−2

+βk−2πk−2 +
k−3∑
l=0

�βk − αk�πl

= δk−1πk−1 + �δk−1 + δk−2�πk−2

+βk−2πk−2 +
k−3∑
l=0

�βk − αk�πl

= · · ·

=
k−1∑
l=0

�δk−1 + · · · + δl�πl =
k−1∑
l=0

δlF�l�

(2.24)

showing that (2.22) is the same as (2.14). We have used the definition of β0 as
0 in the second last step of these equalities and collected all the terms with
the same δ in the last. Likewise,

βkF̄�k+ 1� − αkF̄�k� = −αkπk +
∞∑

l=k+1

�βk − αk�πl

= −δkπk+1 − αk+1πk+1 +
∞∑

l=k+2

�βk − αk�πl

= · · ·(2.25)

= −
∞∑

l=k+1

�δk + � � �+ δl−1�πl

= −
∞∑

l=k+1

δl−1F̄�l�

showing that (2.23) is the same as (2.15). This gives the equivalence of (C2)
and (C3).

The sufficiency of (C4) follows from the equivalences proved and the fact
that (C4) is the same as all the δ’s being non-negative. ✷

3. Approximation to the sum of independent Bernoulli trials. Let
Xi
 1 ≤ i ≤ n be independent indicator random variables with distribution

P�Xi = 1� = 1−P�Xi = 0� = pi
 1 ≤ i ≤ n�
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Set W = ∑n
i=1 Xi, λl =

∑n
i=1 p

l
i, and θl = λl/λ1, l = 1
2
 � � � We write λ = λ1.

Define

σk =
√√√√ n∑

i=k+1

ρi
(3.1)

where ρi is the ith largest number of p1�1− p1�, p2�1− p2�, · · ·, pn�1− pn�.
We use � W to denote the distribution of W.

It is well-known that the Poisson distribution provides a good approxima-
tion to � W if all the pi’s are small [see Barbour, Holst and Janson (1992)
and references therein]. Barbour and Hall (1984) show, using the Stein-Chen
method, that

1
32

min
{

1
λ

1
} n∑

i=1

p2
i ≤ dTV�� W
Po�λ�� ≤ 1− e−λ

λ

n∑
i=1

p2
i 
(3.2)

where Po�ν� stands for the Poisson distribution with mean ν. The order of
Poisson approximation error in the upper and lower bounds is the same.

On the other hand, it is known that compound Poisson signed measures can
improve the approximation precision [see Barbour and Xia (1999) and refer-
ences therein]. It is not attractive to approximate any non-negative quantity
by a negative one, and signed measures lack standard interpretations of mo-
ments. Thus, it is desirable to find an easily calculable probability measure
which decreases the order of approximation error. Section 2 provides an algo-
rithm for finding such approximating probability measures.

Recall that, in estimating Poisson approximation to � W, we take αj = λ
and βj = j, for j ∈ Z+. Intuitively, if we aim at higher precision than Poisson
approximation, what we need to do is to reduce the variance of the approximat-
ing distribution so that the ‘tailored’ stationary distribution fits � W better.
One way of doing this is to keep the death rates and reduce the birth rates
to αj = c�m − j�, where c is a constant: this results in binomial approxima-
tion [see Ehm (1991) and Barbour, Holst and Janson (1992)]. Another way
is to keep the birth rates as a constant and increase the death rates. More
precisely, let

αj = α
 βj = βj+ j�j− 1�


πj =
αj

3
j
i=1�βi+ i�i− 1��

{
1+

∞∑
k=1

αk

3k
i=1�βi+ i�i− 1��

}−1


 j ∈ Z+�

Since both birth and death rates are polynomial functions, we call this dis-
tribution a polynomial birth-death distribution with birth rates determined
by α and death rates 0+ β× j+ 1× j�j− 1�, abbreviated as PBD�α�0
 β
1�.
Accordingly, the Poisson distribution is PBD�α�0
1�, the binomial distribution
is PBD�np
−p�0
1 − p�, the negative binomial is PBD�r�1 − q�
1 − q�0
1�
and hypergeometric is PBD�nR
−R− n+ 1
1�0
B− n+ 1
1�. Note that the
parameters of the PBD distributions are not uniquely determined.
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Theorem 3.1. With the above setup, if

β = λ2λ−1
2 − 1− 2λ+ 2λ3λ

−1
2 
 α = βλ+ λ2 − λ2
(3.3)

then

dTV�� W
PBD�α�0
 β
1�� ≤ βλ3

ασ1
+ 2λλ2

ασ2
(3.4)

≤ θ3

σ1
+ 2θ2

2

σ2�1− θ2 − θ2/λ�

(3.5)

where �3�5� is valid provided θ2 + θ2/λ < 1�

Remark. When λ is large and pi’s are small, σ1 and σ2 are close to
√
λ,

so the upper bound in (3.5) is asymptotically �θ3 + 2θ2
2�/
√
λ� The order of the

bound is as good as that of compound Poisson signed measure approximation
[see Barbour and Xia (1999)].

Remark. The parameters were chosen in such a way as to make the bound
as small as possible. The error expression is rearranged in such a way that it
involves only second differences of the solution g to the Stein equation. The
parameter choice is quite crucial and delicate in this: equations (3.6) and (3.7)
ensure that various terms have multipliers that match. Interestingly, the ex-
act choice given here arose from numerical work as well as algebra. A first
version had a cruder choice of the β parameter in that the term λ2 was left
out of the right hand side of (3.7). The resulting error expression involved a
first difference as well as a second difference. The resulting calculated exact
total variation distance between the law of W and the polynomial birth-death
distribution came to about the same as for binomial. However, computer explo-
ration of parameter choice showed that subtracting one from the β parameter
yielded a much lower total variation distance. The algebraic reason for this
then became apparent by re-examining the error expression and giving the
results here.

Remark. Although the particular implementation here uses the indepen-
dence of the X’s, a similar expression holds for dependent trials but the random
variables Wi (resp. Wij) need in general to have the distribution of W −Xi

(resp. W −Xi −Xj) conditional on Xi = 1 (resp. Xi = 1 and Xj = 1). In
point process terms, the calculations use the first and second order reduced
Palm distributions. It is difficult but not conceptually impossible to extend
the analysis to higher order Palm distributions and to dependent trials. This
would involve some degree of case-by-case analysis, with a careful choice of
parameters to match the multipliers in the various terms.

Before we prove the theorem, we present an example to illustrate the per-
formance of the PBD approximation.
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Example 3.2. Suppose

SX1 ∼ Binomial�70
0�1�
 SX2 ∼ Binomial�9
1/3�
and SX3 ∼ Binomial�2
1/

√
2�

are independent random variables and let W = SX1 + SX2 + SX3, then
EW = 11�4142, Var�W�=8.7142. We apply (3.3) to get α = 415�765255 and
β = 25�247555, then the mean and variance of PBD�α�0
 β
1� are 11.4142
and 8.71390 respectively, and an exact calculation gives

dTV�� W
PBD�α�0
 β
1�� = 0�00040

[the bound of (3.4) is 0.074692]. However, an exact calculation gives

dTV�� W
Po�EW�� = 0�066

(the upper bound of (3.2) is 0.236545) and

dTV�� W
Binomial�n
p�� = 0�0048


[the upper bound of Theorem 9.E of Barbour, Holst and Janson (1992) is
0.218542] with n = 48 and p = 0�237796 so that np = EW and np�1 − p� ≈
Var�W�. The PBD(α�0
 β
1� approximation is more than 10 times better than
the binomial approximation, and the binomial approximation does more than
10 times better than the Poisson approximation. It is worth noting that the
computation of PBD distribution is as quick as Poisson and Binomial (in EX-
CEL or Minitab, logarithms of PBD probabilities are differences of logarithms
of polynomials; knowledge of means and variances of the actual distribution
makes it easy to pick the range where the probabilities are not essentially
zero), but it is much harder to calculate the actual probabilities of W (in gen-
eral, computation of the probabilities of W is thought to be NP-complete).
Figures 4 and 5 provide details of the comparison among the three approxi-
mations.

Proof of Theorem 3.1. Set Wi = W −Xi and Wij = W −Xi −Xj, for
i
 j ∈ Z+, i �= j, so that

E�g�W� = αEg�W+ 1� − βE
n∑

i=1

pig�Wi + 1� −∑
j �=i

pipjEg�Wij + 2�

= β
n∑

i=1

p2
iE!g�Wi + 1� + �α− βλ�Eg�W+ 1� −∑

j �=i
pipjEg�Wij + 2��

Taking

α− βλ = ∑
j �=i

pipj = λ2 − λ2
(3.6)
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we get

E�g�W� = β
n∑

i=1

p2
iE!g�Wi + 1� +∑

j �=i
pipj�Eg�W+ 1� −Eg�Wij + 2��

= β
n∑

i=1

p2
iE!g�Wi + 1� +∑

j �=i
p2

ip
2
jE!g�Wij + 2�

−∑
j �=i

pipj�1− pi��1− pj�E!g�Wij + 1�
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Fig. 5. Approximate divided actual probability versus value
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= β
n∑

i=1

p2
iE!g�Wi + 1� +∑

j �=i
p2

ip
2
jE!2g�Wij + 1�

−∑
j �=i

pipj�1− pi − pj�E!g�Wij + 1�


where !2g�k� = !g�k+ 1� − !g�k�
 k ∈ Z+. Let

βλ2 =
∑
j �=i

pipj�1− pi − pj� = λ2 − λ2 − 2λλ2 + 2λ3�(3.7)

It follows that

E�g�W� = β
n∑

i=1

p2
iE�!g�Wi + 1� − !g�W+ 1�� +∑

j �=i
p2

ip
2
jE!2g�Wij + 1�

+∑
j �=i

pipj�1− pi − pj�E�!g�W+ 1� − !g�Wij + 1��

= −β
n∑

i=1

p3
iE!2g�Wi + 1� +∑

j �=i
p2

ip
2
jE!2g�Wij + 1�

+∑
j �=i

pipj�1− pi − pj��pi�1− pj� + pj�1− pi��E!2g�Wij + 1�

+∑
j �=i

p2
ip

2
j�1− pi − pj�E�!2g�Wij + 1� + !2g�Wij + 2��

= −β
n∑

i=1

p3
iE!2g�Wi + 1�

+∑
j �=i

pipj�pi + pj��1− pi��1− pj�E!2g�Wij + 1�

+∑
j �=i

p2
ip

2
j�1− pi − pj�E!2g�Wij + 2��

Noting that

	E!2g�Wi + 1�	 ≤ 2�!g�dTV�� Wi
� �Wi + 1�� ≤ �!g�
σ1




where �!g� 
= supk 	!g�k�	 [see Barbour and Jensen (1989)], and correspond-
ingly

	E!2g�Wij + k�	 ≤ �!g�
σ2

∀k ∈ Z+


we obtain

	E�g�W�	 ≤ �!g�
{
βλ3

σ1
+
∑

j �=i�pipj�pi + pj��1− pi��1− pj� + p2
ip

2
j�

σ2

}

≤ �!g�
[
βλ3

σ1
+ 2λλ2

σ2

]





STEIN’S METHOD AND BIRTH-DEATH PROCESSES 1391

so (3.4) follows from (2.17). Equation (3.5) is due to the facts that α ≥ βλ and
α ≥ λ3λ−1

2 − λ− λ2�
Finally, (3.3) comes from solving the equations (3.6) and (3.7). ✷

4. Negative binomial approximation to the number of 2-runs. Let
J1
J2
 � � � 
 Jn be independent identically distributed Bernoulli random vari-
ables with P�Ji = 1� = p, 1 ≤ i ≤ n. To avoid edge effects, we treat i+nj as i
for 1 ≤ i ≤ n
 j = 0
±1
±2
 � � � � Define Ii = JiJi−1 and W = ∑n

i=1 Ii. Our
random variable of interest is W, which counts the number of 2-runs of Ji,
1 ≤ i ≤ n�

The approximation to the number of 2-runs has been well studied pre-
viously, see, for example, compound Poisson approximation in total varia-
tion in Arratia, Goldstein and Gordon (1990), Roos (1993), Eichelsbacher and
Roos (1999) and Barbour and Xia (1999). In this section, we will estimate the
accuracy of negative binomial approximation to � W.

It is easy to establish EIi = p2, EW = np2 and Var�W� = np2�1+2p−3p2�.
If p < 2/3, then Var�W� > EW, indicating that, in comparison with Poisson
approximation, we need to either reduce the death rate or increase the birth
rate. For simplicity, we increase the birth rate by taking αj = a + bj with
0 ≤ b < 1 and βj = j in (2.1). The equilibrium distribution is then a negative
binomial distribution [see Example 2.9]. To keep our notation consistent, we
denote the equilibrium distribution as PBD�a
 b�0
1�.

Our argument is similar to that in Barbour and Xia (1999). The following
result can be found as Lemma 5.1 of Barbour and Xia (1999).

Lemma 4.1. Let �ηm
 m ≥ 1� be independent indicator random variables
with P�ηm = 1� = γm
 m ≥ 1, and set η0 = 0, that is, γ0 = 0
 and Ym =∑m

i=1 ηiηi−1. Then, for each n ≥ 2,

bn�γ1
 γ2
 � � � 
 γn� 
= 2dTV�� �Yn�
� �Yn + 1��
≤ 4�6√∑n

i=2�1− γi−2�2γi−1�1− γi−1�γi

�

Now, we state the main result of this section.

Theorem 4.2. Let b = 2p−3p2

1+2p−3p2 and a = �1− b�np2, if p < 2/3, then

dTV�� �W�
PBD�a
 b�0
1�� ≤ 32�2p2√�n− 1�p2�1− p�3
�

Proof. Let W1 =W− I1− I2− I3. Using the fact that W1, J1 and J2 are
independent, we have

Eg�W+ 1�
= E
g�W+ 1��J1J2 + �1−J2�J1 + �1−J1�J2 + �1−J1��1−J2��
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= E
g�W1 +Jn +J3 + 2�J1J2� +E
g�W1 +Jn + 1��1−J2�J1�
+E
g�W1 +J3 + 1��1−J1�J2� +E
g�W1 + 1��1−J1��1−J2��
= E
�g�W1 +Jn +J3 + 2� − g�W1 +Jn + 2� − g�W1 +J3 + 2�
+g�W1 + 2��J1J2�
+E
�g�W1 +Jn + 2� − g�W1 +Jn + 1� − g�W1 + 2� + g�W1 + 1��J1J2�
+E
�g�W1 +J3 + 2� − g�W1 +J3 + 1� − g�W1 + 2� + g�W1 + 1��J1J2�
+E
�g�W1 +Jn + 1� − g�W1 + 1��J1�
+E
�g�W1 +J3 + 1� − g�W1 + 1��J2�
+E
!g�W1 + 1�J1J2� +Eg�W1 + 1�
= p2E
!2g�W1 + 2�J3Jn� + p2E
!2g�W1 + 1��J3 +Jn��
+pE
!g�W1 + 1��J3 +Jn + p�� +Eg�W1 + 1�

and

EI2g�W�
=p2E
g�W1+Jn+J3+1��JnJ3+Jn�1−J3�+J3�1−Jn�+�1−Jn��1−J3���
=p2E
g�W1+3�JnJ3+g�W1+2��Jn�1−J3�+�1−Jn�J3�
+g�W1+1��1−Jn��1−J3��
=p2{E
!2g�W1+1�JnJ3�+E
!g�W1+1��Jn+J3��+Eg�W1+1�}�

Similarly,

EI2g�W+ 1� = p2E
!2g�W1 + 2�JnJ3� + p2E
!2g�W1 + 1��Jn +J3��
+p2E
!g�W1 + 1��Jn +J3 + 1�� + p2Eg�W1 + 1��

Combining the three expansions, we find that

E��a+ bW�g�W+ 1� −Wg�W��
= p2�a+ nb�E
!2g�W1 + 2�J3Jn�
+ p2E
!2g�W1 + 1��−nJnJ3 + �a+ nb�Jn + �a+ nb�J3��(4.1)

+E
!g�W1 + 1��apJ3 + apJn + ap2 + nbp2�Jn +J3 + 1�
− np2�Jn +J3��� + �a− np2 + nbp2�Eg�W1 + 1��

We choose

a = np2�1− b�(4.2)

so that the last term of (4.1) vanishes. Lemma 4.1 may now be applied to
bound (4.1). The first term of (4.1) is bounded by

p2�a+ nb�	E
!2g�W1 + 2�J3Jn�	
≤ p4�a+ nb�	E
!2g�W2 +Jn−1 +J4 + 2��	
≤ p4�a+ nb��!g�bn−2�1
 p
 � � � 
 p
1�
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where W2 = W1 − In − I4. By symmetry, the second term of (4.1) can be
bounded by

np4	E
!2g�W2 +Jn−1 +J4 + 1��	 + 2�a+ nb�p3	E
!2g�W3 +Jn−1 + 1��	
≤ np4�!g�bn−2�1
 p
 � � � 
 p
1� + 2�a+ nb�p3�!g�bn−2�p
 � � � 
 p
1�


where W3 =W1 − In� Finally, by taking

2�a+ nbp− np� + �a+ nb� = 0
(4.3)

the third term of (4.1) can be reduced to

	E
!g�W1+1��p�a+nbp−np��J3+Jn�+�a+nb�p2��	
=p2	2�a+np�b−1��E!g�W3+Jn−1+1�+�a+nb�E!g�W3+Jn−1Jn+1�	
=�a+nb�p2	E
!2g�W3+1�Jn−1�1−Jn��	
≤�a+nb��1−p�p3	E
!2g�W4+Jn−2+1��	
≤�a+nb��1−p�p3�!g�bn−3�p
���
p
1�


where W4 =W3 − In−1.
Now, we have from Lemma 4.1 that bn−2�1
 p
 � � � 
 p
1�, bn−2�p
 � � � 
 p
1�

and bn−3�p
 � � � 
 p
1� are all bounded by

4�6√
p2�1− p� + p�1− p�3 + �n− 6�p2�1− p�3

≤ 4�6√�n− 1�p2�1− p�3

since

p2�1− p� + p�1− p�3 ≥ 5p2�1− p�3
 0 ≤ p ≤ 1�

The values of a and b follow from (4.2) and (4.3). It is easy to show that con-
dition (C4) in Lemma 2.4 is satisfied so Theorem 2.10 gives �!g� ≤ a−1. The
proof is now complete by collecting the three estimates above and simplifying
the bound. ✷

Remark 4.3. Another way to tackle this problem is to declump the se-
quence of J1, � � � , Jn into strings of 1’s separated by 0’s, as discussed in Ar-
ratia, Goldstein and Gordon (1990). As each string follows approximately a
geometric distribution and the number of strings is roughly binomial, we can
approximate the number of strings of at least two 1’s by an appropriate Pois-
son distribution, giving us a bound of order p2. This shows how impressive
the bound in Theorem 4.2 is since it is of order p2/

√
np2.

The bound in Theorem 4.2 is as good as that of compound Poisson approx-
imation obtained in Barbour and Xia (1999). As a matter of fact, a negative
binomial can also be viewed as a Poisson sum of variables each with logarith-
mic distribution [see Johnson, Kotz and Kemp (1992), page 204 ], so the result
here is also approximation by a compound Poisson distribution. It is surprising
that the order of approximation seems to be better for this compound Poisson
than the one in Arratia, Goldstein and Gordon (1990).
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In general, let Xi ∼Poisson�λi�, i ≥ 1 be independent and set X = X1 +
2X2 + 3X3 + · · ·, then X has compound Poisson distribution, denoted as
CP�λ1
 λ2
 � � ��. Our PBD distribution approximation theory developed in sec-
tion 2 includes a family of compound Poisson approximations provided λi+1/λi,
i ≥ 1 are all small. For example, the following proposition gives an estimate
for the difference between the compound Poisson distribution with two free
parameters and the negative binomial distribution [cf Corollary 4.8 of Barbour
and Xia (1999)].

Proposition 4.4. Let λ3 = λ4 = · · · = 0 and define

b = 2λ2

λ1 + 4λ2

 a = �λ1 + 2λ2�2

λ1 + 4λ2



then

dTV�CP�λ1
 λ2
0
 � � ��
PBD�a
 b�0
1�� ≤ 8λ2
2

�λ1 + 2λ2�2
√

2eλ1

�

Proof. In fact,

E�ag�X+ 1� + bXg�X+ 1� −Xg�X��
= E�2bλ2g�X+ 3� + �bλ1 − 2λ2�g�X+ 2� + �a− λ1�g�X+ 1��
= 2bλ2E�!2g�X+ 1�� + �bλ1 − 2λ2 + 4bλ2�E�g�X+ 2��
+�a− λ1 − 2bλ2�E�g�X+ 1���

Take bλ1 − 2λ2 + 4bλ2 = 0 and a − λ1 − 2bλ2 = 0
 which are equivalent to
b = 2λ2

λ1+4λ2
and a = �λ1+2λ2�2

λ1+4λ2

 so that the last two terms vanish. Thus,

	E�ag�X+ 1� + bXg�X+ 1� −Xg�X��	

≤ 4bλ2�!g�dTV�� �X�
� �X+ 1�� ≤ 8λ2
2

�λ1 + 2λ2�2
√

2eλ1

[see Barbour, Holst and Janson (1992), page 262], completing the proof. ✷

An immediate consequence of the Proposition is that the negative binomial
distribution can approximate the number of 2-runs of W = ∑n

i=1 Ji−1Ji with
the same precision as compound Poisson approximation, even in the case that
J1
 � � � 
 Jn are independent, but not identically distributed, indicators, as in-
vestigated in Barbour and Xia (1999). We omit the details of the analysis due
to the complexity of the exercise.

5. Poisson process approximation. The idea presented in section 2
can also be extended to solve a counterpart problem in Poisson process ap-
proximation. To start with, we recall briefly the notation from Barbour and
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Brown (1992) [see also Brown and Xia (1995a)]. Let ) be a compact metric
space with metric d0 bounded by 1, and let � be the space of finite configura-
tions on ), that is, the space of integer-valued finite measures on ). For each
ξ ∈ � , we use 	ξ	 to denote the total number of points of ξ. The metric d1 on
� is 1 if the two configurations do not have the same number of points and
is otherwise the average d0-distance between the points of the configurations
under the closest matching. The metric d2 between two probability distribu-
tions on � is the infimum of expected values of the d1 distance between any
two realisations of the probability distributions. Define, for suitable function
h on � , the generator �pp by

�pph�ξ� =
∫
)
�h�ξ + δx� − h�ξ����dx� +

∫
)
�h�ξ − δx� − h�ξ��ξ�dx��(5.1)

Then �pp is the generator of an � -valued immigration-death process Zξ�t�
with immigration intensity � and unit per capita death rate, where Zξ�0� = ξ
and pp stands for Poisson process. Note that, when ξ = 0, the immigration-
death process Zξ is written as Z0� The equilibrium distribution of Zξ is a
Poisson process with mean measure �, denoted by Po���. Thus, as in Sec-
tion 2, the generator �pp can be used to establish a Stein equation for Po���
approximation:

�pph�ξ� = f�ξ� − Po����f�
(5.2)

for bounded function f on � . The solution to (5.2) is given by

h�ξ� = −
∫ ∞

0
�Ef�Zξ�t�� − Po����f��dt(5.3)

[see Barbour and Brown (1992), Proposition 2.3].
Let � be the space of all d1-Lipschitz functions f on � , namely, 	f�ξ1� −

f�ξ2�	 ≤ d1�ξ1
 ξ2� for all ξ1
 ξ2 ∈ � (so in particular, since d1 is bounded by
1, f is bounded). Then for any point process � on ),

d2�� �
Po���� = sup
f∈�

	Ef��� − Po����f�	�

Hence, to use the Stein equation (5.2) in bounding the errors of Po��� approx-
imation to � �, we need to estimate

!2h�ξ�x
y� 
= h�ξ + δx + δy� − h�ξ + δx� − h�ξ + δy� + h�ξ�

where h is the solution (5.3) to Stein’s equation (5.2), f ∈ � , x
y ∈ ). Theo-
rem 2.1 of Brown, Weinberg and Xia (2000) gives

	!2h�ξ�x
y�	 ≤ 3
λ
+ 1

n+ 3
+ n

λ2
+ 1�65

λ1�5
	n+ 1− λ	
(5.4)

where n = 	ξ	 and λ = ��)��
The estimate (5.4) is indeed of optimal order, as demonstrated in a number

of applications in the paper. However, there are four terms in the bound and
extra effort is needed in applying the bound in concrete problems. Here, we
prove a simplified version of the bound using the techniques from Section 2.
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Theorem 5.1. For each f ∈ � , x
y ∈ ) and ξ ∈ � with 	ξ	 = n, the
solution h of �5�3� satisfies

	!2h�ξ�x
y�	 ≤ 5
λ
+ 3

n+ 1
�(5.5)

To prove Theorem 5.1, we need a few technical lemmas. Note that 	Zξ	 is a
birth-death process with birth rates αi = λ and death rates βi = i, for i ∈ Z+,
the notation in section 2 is hence in force, with πi = Po�λ�
i��

Lemma 5.2. Let e+n = E exp�−τ+n � and e−n = E exp�−τ−n �, then

e+n =
λF�n�

�n+ 1�F�n+ 1� 
 e−n = 1+ n

λ
− F̄�n− 1�

F̄�n� �(5.6)

Proof. By conditioning on the time of the first jump after leaving the
initial state, we can produce recurrence relations for e+n and e−n :

e+n =
λ

λ+ n+ 1− ne+n−1


 n ≥ 1� e+0 =
λ

λ+ 1
�(5.7)

e−n =
n+ λ

λ
− n− 1

λe−n−1

 n ≥ 2� e−1 =

λ+ 1
λ

− 1
λ
∫∞

0 p00�t�e−tdt

(5.8)

where p00�t� = P�	Z0�t�	 = 0� [see Wang and Yang (1992), pages 154–156 and
pages 174–176]. Now, the claim for e+n follows from (5.7) and mathematical
induction. On the other hand, it is well-known that 	Z0�t�	 ∼ Po �λ�1− e−t��,
so

e−1 =
λ+ 1
λ

− 1
1− e−λ

�

Using mathematical induction in (5.8) gives the claim for e−n . ✷

Lemma 5.3. If 	ξ1	 = 	ξ2	 = n, then for each f ∈ � , the solution h of �5�3�
satisfies

	h�ξ1� − h�ξ2�	 ≤ nd1�ξ1
 ξ2�
(

1
λ
+ 1

n+ 1

)
�

Proof. Write ξ1 =
∑n

i=1 δxi
and ξ2 =

∑n
i=1 δyi

. Without loss of generality,

we may assume d1�ξ1
 ξ2� =
∑n

i=1 d0�xi
yi�
n

� Set ηk =
∑k

i=1 δxi
+∑n

i=k+1 δyi
, 0 ≤

k ≤ n, then η0 = ξ2 and ηn = ξ1. By the triangle inequality, it suffices to show
that

	h�ηk� − h�ηk+1�	 ≤ d0�xk+1
 yk+1�
(

1
λ
+ 1

n+ 1

)

 0 ≤ k ≤ n− 1�(5.9)
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Fix 0 ≤ k ≤ n − 1, and let ψk =
∑k

i=1 δxi
+ ∑n

i=k+2 δyi
. Let S ∼ exp�1� be

independent of Zψk
and construct Zηk

�t� = Zψk
�t� + δyk+1

1S>t and Zηk+1
�t� =

Zψk
�t� + δxk+1

1S>t, so that

	h�ηk� − h�ηk+1�	 =
∣∣∣∣
∫ ∞

0
E�f�Zηk

�t�� − f�Zηk+1
�t���dt

∣∣∣∣
=
∣∣∣∣
∫ ∞

0
e−tE�f�Zψk

�t� + δyk+1
� − f�Zψk

�t� + δxk+1
��dt

∣∣∣∣
≤ d0�xk+1
 yk+1�

∫ ∞
0

e−tE
1

	Zψk
�t�	 + 1

dt

≤ d0�xk+1
 yk+1�
(

1
λ
+ 1

n+ 1

)



where the last inequality is from Lemma 2.2 of Brown, Weinberg and
Xia (2000). ✷

The following lemma is taken from a statement in the proof of Lemma 3.2
of Brown, Weinberg and Xia (2000).

Lemma 5.4. If 	ξ1	 = 	ξ2	 = n, then for each f ∈ � and x ∈ ),

	�h�ξ1 + δx� − h�ξ1�� − �h�ξ2 + δx� − h�ξ2��	 ≤
2n

n+ 1
d1�ξ1
 ξ2��

Proof of Theorem 5.1. By conditioning on the first jump time of leaving
ξ + δx, it follows from (5.3) that

h�ξ + δx� =
−�f�ξ + δx� − Po����f��

n+ 1+ λ

+ λ

n+ 1+ λ
Eh�ξ + δx + δV� +

n+ 1
n+ 1+ λ

Eh�ξ + δx − δUx
�


where V ∼ �/λ and Ux is uniformly distributed on 
z1
 � � � 
 zn
 x� with
z1
 � � � 
 zn the atoms of ξ. Rearranging the equation gives

Eh�ξ + δx + δV� =
f�ξ + δx� − Po����f�

λ

+n+ 1+ λ

λ
h�ξ + δx� −

n+ 1
λ

Eh�ξ + δx − δUx
��

This in turn yields

!2h�ξ�x
y� = �h�ξ + δx + δy� −Eh�ξ + δx + δV�� + �h�ξ + δx� − h�ξ + δy��

+�h�ξ� −Eh�ξ + δx − δUx
�� + f�ξ + δx� − Po����f�

λ
(5.10)

+n+ 1− λ

λ
�h�ξ + δx� −Eh�ξ + δx − δUx

���
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Swap x and y to get

!2h�ξ�x
y� = �h�ξ + δx + δy� −Eh�ξ + δy + δV�� + �h�ξ + δy� − h�ξ + δx��
+�h�ξ� −Eh�ξ + δy − δUy

�� + f�ξ + δy� − Po����f�
λ

(5.11)

+n+ 1− λ

λ
�h�ξ + δy� −Eh�ξ + δy − δUy

��


where Uy is uniformly distributed on 
z1
 � � � 
 zn
 y�.
Adding up (5.10) and (5.11) and then dividing by 2, we obtain∣∣!2h�ξ�x
y�∣∣ ≤ max

z=x
y
∣∣h�ξ + δx + δy� −Eh�ξ + δz + δV�

∣∣
+max

z=x
y
∣∣h�ξ� −Eh�ξ + δz − δUz

�∣∣
+max

z=x
y

∣∣∣∣f�ξ + δz� − Po����f�
λ

∣∣∣∣
+max

z=x
y

∣∣∣∣n+ 1− λ

λ
�h�ξ + δz� −Eh�ξ + δz − δUz

��
∣∣∣∣ �

(5.12)

First, using the fact that f is Lipschitz, the third term in (5.12) is clearly
bounded by 1/λ� Next, we apply Lemma 5.3 to the first two terms of (5.12) to
conclude that each is bounded by 1

λ
+ 1

n+1 � Finally, for z = x or y,∣∣∣∣n+ 1− λ

λ
�h�ξ + δz� −Eh�ξ + δz − δUz

��
∣∣∣∣ ≤ 2

λ
+ 1

n+ 1
(5.13)

so that (5.5) follows from collecting the bounds for the terms in (5.12).

To prove (5.13), it is enough to consider the following two cases.

Case I: n+ 1 > λ. Let τ−n+1 = inf
t 
 	Zξ+δz
�t�	 = n�. Then using strong

Markov property gives

h�ξ + δz� = −E
∫ τ−n+1

0
�f�Zξ+δz

�t�� − Po����f��dt+Eh�ζ�


where ζ = Zξ+δz
�τ−n+1�� Consequently,∣∣∣∣n+ 1− λ

λ
�h�ξ + δz� −Eh�ξ + δz − δUz

��
∣∣∣∣

≤ n+ 1− λ

λ
Eτ−n+1 +

n+ 1− λ

λ
	Eh�ζ� −Eh�ξ + δz − δUz

�	�
(5.14)

However, by (2.11) and Proposition A.2.3 of Barbour, Holst and Janson (1992),

n+ 1− λ

λ
Eτ−n+1 =

�n+ 1− λ�F̄�n+ 1�
λ�n+ 1�Po�λ�
n+ 1� ≤

�n+ 1− λ��n+ 2�
λ�n+ 1��n+ 2− λ� ≤

1
λ
�(5.15)

The second term of (5.14) depends on the difference between ζ and ξ+δz−δUz
.

For convenience, write z as zn+1 and realize Zξ+δz
from

Zξ+δz
�t� = Z0�t� +

n+1∑
i=1

δzi
1Si>t
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where S1
 � � � 
 Sn+1 are independent exp(1) random variables and independent
of Z0. At time τ−n+1,

∑n+1
i=1 1Si>τ−n+1

of z1
 � � � 
 zn+1 are still alive and at least one of
them has died. Since the death can happen to z1
 � � � 
 zn+1 with equal chance,
we can construct a coupling such that

ξ + δz −
n+1∑
i=1

δzi
1Si>τ−n+1

=
n+1∑
i=1

δzi
1Si≤τ−n+1

= δUz
+ η

with random element η ∈ � . Under this coupling,

ξ + δz − δUz
= η+

n+1∑
i=1

δzi
1Si>τ−n+1




giving

nd1�ξ + δz − δUz

 ζ� ≤ 	Z0�τ−n+1�	�(5.16)

On the other hand,

E	Z0�τ−n+1�	 = n−E
n+1∑
i=1

1Si>τ−n+1
= n− �n+ 1�P�S1 > τ−n+1��

Noting that S1 > τ−n+1 is equivalent to

S1 > inf

{
t 
 	Z0�t�	 +

n+1∑
i=2

1Si>t = n− 1

}

= τ−n

and S1 is independent of τ−n , we have from (5.6) that

E	Z0�τ−n+1�	=n−�n+1�Eexp�−τ−n �=−1+�n+1�
(
F̄�n−1�
F̄�n� − n

λ

)
�(5.17)

Now, we claim that

n+ 1− λ

λ
E	Z0�τ−n+1�	 ≤ 1�(5.18)

In fact, by (5.17), (5.18) is equivalent to

�n+ 1− λ��λF̄�n− 1� − nF̄�n�� − λF̄�n� ≤ 0�

Expanding the formula into a power series of λ, we have that (5.18) is the
same as

∞∑
i=n+1

λi

�i− 1�! �2n+ 1− i− �n+ 1�n/i� ≤ 0


which is obviously true.
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Thus, it follows from Lemma 5.3, (5.16) and (5.18) that the second term of
(5.14) is bounded by

n+ 1− λ

λ
	Eh�ζ� −Eh�ξ + δz − δUz

�	

≤ n+ 1− λ

λ
E	Z0�τ−n+1�	

(
1
λ
+ 1

n+ 1

)
≤ 1

λ
+ 1

n+ 1
�

(5.19)

Combining (5.15) and (5.19) yields (5.13).

Case II: n+ 1 ≤ λ. Likewise, let τ+n = inf
t 
 	Zξ+δz−δUz
�t�	 = n + 1�, then

we get from strong Markov property that

h�ξ + δz − δUz
� = −E

∫ τ+n

0
�f�Zξ+δz−δUz

�t� − Po����f��dt+Eh�ς�


where ς = Zξ+δz−δUz
�τ+n �� Hence∣∣∣∣n+ 1− λ

λ
�h�ξ + δz� −Eh�ξ + δz − δUz

��
∣∣∣∣

≤ λ− �n+ 1�
λ

Eτ+n +
λ− �n+ 1�

λ
	Eh�ς� −Eh�ξ + δz�	�

(5.20)

Using (2.11) and Proposition A.2.3 of Barbour, Holst and Janson (1992) again,
we have

λ− �n+ 1�
λ

Eτ+n =
�λ− �n+ 1��F�n�

λ2Po�λ�
n� ≤ �λ− �n+ 1��λ
λ2�λ− n� ≤ 1

λ
�(5.21)

To estimate the second term of (5.20), without loss of generality, we may as-
sume Uz = zn+1 and realize

Zξ�t� = Z0�t� +
n∑

i=1

δzi
1Si>t


where S1
 � � � 
 Sn and Z0 are as in Case I. At time τ+n , there are
∑n

i=1 1Si>τ+n of
z1
 � � � 
 zn still alive, so

�n+ 1�d1�ξ + δz
 ς� ≤ 	Z0�τ+n �	�(5.22)

But

E	Z0�τ+n �	 = n+ 1−E
n∑

i=1

1Si>τ+n = n+ 1− nP�S1 > τ+n ��

Since S1 > τ+n is equivalent to

S1 > inf

{
t 
 	Z0�t�	 +

n∑
i=2

1Si>t = n

}

= τ+n−1

and S1 is independent of τ+n−1, we get from (5.6) that

E	Z0�τ+n �	 = n+ 1− nE exp�−τ+n−1� = 1+ nF�n� − λF�n− 1�
F�n� �(5.23)
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We now show

λ− �n+ 1�
λ

E	Z0�τ+n �	 ≤ 1�(5.24)

Using (5.23), (5.24) can be rewritten as

�λ− �n+ 1���nF�n� − λF�n− 1�� ≤ �n+ 1�F�n�

which can be verified by rearranging the terms into a series of λ, as in Case I.

Applying Lemma 5.3, (5.22) and (5.24), it follows that

λ− �n+ 1�
λ

	Eh�ς� −Eh�ξ + δz�	

≤ λ− �n+ 1�
λ

E	Z0�τ+n �	
(

1
λ
+ 1

n+ 1

)
≤ 1

λ
+ 1

n+ 1



which, together with (5.20) and (5.21), gives (5.13). ✷

The implication of the improved estimate (5.5) is that the calculations for
bounding the errors of Poisson process approximation in terms of d2-metric
can be significantly simplified. To illustrate the degree of simplification, we
present a theorem based on Palm processes.

Recall that for a point process � with mean measure � the point process �x

is said to be a Palm process associated with � at x ∈ ) if for any measurable
function f 
 )×� �→ �0
∞�,

E
(∫

)
f�x
����dx�

)
= E

(∫
)
f�x
�x���dx�

)

[see Kallenberg (1976)]. The process �x−δx is called the reduced Palm process.
The metric we shall use for bounding the approximation errors is d′′1 as

introduced in Brown and Xia (1995a): for ξ1 =
∑n

i=1 δxi
, ξ2 =

∑m
i=1 δyi

∈ �
with m ≥ n,

d′′1�ξ1
 ξ2� 
= min
�

n∑
i=1

d0�xi
 y� �i�� + �m− n�


where � ranges over all permutations of �1
 � � � 
m�� Note that d′′1�ξ1
 ξ2� ≤
�ξ1 − ξ2�, the total variation norm of the signed measure ξ1 − ξ2. Also, if
	ξ1	 = 	ξ2	 = n, then d′′1�ξ1
 ξ2� = nd1�ξ1
 ξ2�� This results in

Lemma 5.5. For ξ
η ∈ � and x ∈ ),

	�h�ξ + δx� − h�ξ�� − �h�η+ δx� − h�η��	

≤ 2
	η	 ∧ 	ξ	 + 1

�d′′1�ξ
η� −
∣∣	η	 − 	ξ	∣∣� + (5

λ
+ 3
	η	 ∧ 	ξ	 + 1

) ∣∣	η	 − 	ξ	∣∣
≤
(

5
λ
+ 3
	η	 ∧ 	ξ	 + 1

)
d′′1�ξ
η��
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Proof. Write ξ = ∑n
i=1 δxi

and η = ∑m
i=1 δyi

. Without loss of generality,
we assume m ≥ n and

d′′1�ξ
η� =
n∑

i=1

d0�xi
 yi� + �m− n��

Define η′ =∑n
i=1 δyi

, then

	�h�ξ + δx� − h�ξ�� − �h�η+ δx� − h�η��	
≤ 	�h�ξ + δx� − h�ξ�� − �h�η′ + δx� − h�η′��	
+ 	�h�η′ + δx� − h�η′�� − �h�η+ δx� − h�η��	�

The proof is then complete by applying Lemma 5.4 and Theorem 5.1. ✷

As an immediate application of Lemma 5.5, we now state a theorem for
estimating the errors of Poisson process approximation in terms of Palm pro-
cesses.

Theorem 5.6. Let � be a finite point process on ) with mean measure �.
Suppose for each x ∈ ) that �x is the Palm process associated with � at x.
Then

d2�� �
Po���� ≤ E
∫
)

2
	�	∧	�x−δx	+1

�d′′1��
�x−δx�−
∣∣	�	−	�x−δx	

∣∣���dx�
+E

∫
)

(
5
λ
+ 3
	�	∧	�x−δx	+1

)∣∣	�	−	�x−δx	
∣∣��dx�(5.25)

≤ E
∫
)

(
5
λ
+ 3
	�	∧	�x−δx	+1

)
d′′1��
�x−δx���dx��(5.26)

Remark 5.7. These simplified bounds, with only one integrand in (5.26),
are to be compared with Theorem 3.1 of Brown, Weinberg and Xia (2000),
which has three terms to compute. Thus, Theorem 5.6 is more applicable and
the order of the estimated bounds will be the same as that obtained from
Theorem 3.1 of Brown, Weinberg and Xia (2000).
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STEIN’S METHOD AND BIRTH-DEATH PROCESSES 1403

REFERENCES

Arratia, R., Goldstein, L. and Gordon, L. (1989). Two moments suffice for Poisson approxima-
tions: the Chen-Stein method Ann. Probab. 17 9–25.

Arratia, R., Goldstein, L. and Gordon, L. (1990). Poisson approximation and the Chen-Stein
method. Statist. Sci. 5 403–434.

Barbour, A. D. (1988). Stein’s method and Poisson process convergence. J. Appl. Probab. 25 175–
184.

Barbour, A. D. and Brown, T. C. (1992). Stein’s method and point process approximation. Stochas-
tic Processes Appl. 43 9–31.

Barbour, A. D., Chen, L. H. Y. and Loh, W. (1992). Compound Poisson approximation for non-
negative random variables using Stein’s method. Ann. Probab. 20 1843–1866.

Barbour, A. D. and Eagleson, G. K. (1983). Poisson approximation for some statistics based on
exchangeable trials. Adv. Appl. Prob. 15 585–600.

Barbour, A. D. and Hall, P. (1984). On the rate of Poisson convergence. Math. Proc. Cambridge
Philos. Soc. 95 473–480.

Barbour, A. D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford Univ. Press.
Barbour, A. D. and Jensen, J. L. (1989). Local and tail approximations near the Poisson limit.

Scandinavian J. Statist. 16 75–87.
Barbour, A. D. and Xia, A. (1999). Poisson perturbation. ESAIM: Probab. Statist. 3 131–150.
Brown, T. C. and Phillips, M. J. (1999). Negative binomial approximation with Stein’s method.

Method. Comput. Appl. Probab. 1 407–421.
Brown, T. C., Weinberg, G. V. and Xia, A. (2000). Removing logarithms from Poisson process

error bounds. Stochastic Processes Appl. 87 149–165.
Brown, T. C. and Xia, A. (1995a). On metrics in point process approximation. Stochastics Stochas-

tics Rep. 52 247–263.
Brown, T. C. and Xia, A. (1995b). On Stein-Chen factors for Poisson approximation. Statist.

Probab. Lett. 23 327–332.
Chen, L.H.Y. (1975). Poisson approximation for dependent trials. Ann. Probab. 3 534–545.
Ehm, W. (1991). Binomial approximation to the Poisson binomial distribution. Statist. Probab.

Lett. 11 7–16.
Eichelsbacher, P. and Roos, M. (1999). Compound Poisson approximation for dissociated random

variables via Stein’s method. Combin. Probab. Comput. 8 335–346.
Johnson, N. L., Kotz, S. and Kemp, A. (1992). Univariate Discrete Distributions. Wiley, New York.
Kallenberg, O. (1976). Random Measures. Academic Press, New York.
Keilson, J. (1979). Markov Chain Models–Rarity and Exponentiality. Springer, New York.
Loh, W. (1992). Stein’s method and multinomial approximation. Ann. Appl. Probab. 2 536–554.
Roos, M. (1993). Stein–Chen method for compound Poisson approximation. Ph.D. dissertation,

Univ. Zürich.
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