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LARGE DEVIATIONS UPPER BOUNDS FOR THE
LAWS OF MATRIX-VALUED PROCESSES AND

NON-COMMUNICATIVE ENTROPIES

By T. Cabanal Duvillard and A. Guionnet

Université Paris 5 and Ecole Normale Supérieure de Lyon

Using Itô’s calculus, we study the large deviations properties of the law
of the spectral measure of the Hermitian Brownian motion. We extend this
strategy to the symmetric, unitary and Wishart processes. This dynamical
approach is generalized to the study of the large deviations of the non-
commutative laws of several independent Hermitian Brownian motions.
As a consequence, we can bound from above entropies defined in the spirit
of the microstates entropy introduced by Voiculescu.

1. Introduction. In this paper, we study the large deviations properties
of non-commutative laws of large random matrices and related non-commu-
tative entropies. In [2], the authors have studied the large deviations of the
spectral measure of Wigner’s matrices for the weak topology. They proved that
the related rate function can be written as the sum of the non-commutative en-
tropy defined by D. Voiculescu [27] and a Gaussian term. Similar results have
also been proved for Wishart matrices in [20] and for the circular law in [3]
and [21]. Since the spectral measure of a matrix describes its non-commutative
law, it is natural to wish to generalize this result and seek for large deviation
properties for the non-commutative law of several independent Wigner’s ma-
trices and to relate their rate functions with the free entropies defined by D.
Voiculescu in [28] and [29]. In this direction, we shall precise what we mean
by the large deviations for a non-commutative law and, in particular, what
topology is involved. We shall describe these large deviations as large devi-
ations of order II to underline the fact that they will imply large deviations
statements (for the standard weak topology) for the spectral measure of any
reasonable matrix-valued function of several independent Wigner’s matrices.

Our approach is different from that of [2], [3] and [20] since it will not
rely on the explicit knowledge of the law of the spectral measure. Indeed, this
strategy is meaningless when we will consider the empirical law ofmmatrices,
m ≥ 2, where there is no spectral measure, except possibly for marginals. Our
approach will be based on the study of matrix-valued processes with Brownian
motion entries which we shall analyze via Itô’s calculus and shall prove to be
Markov processes with well-defined generators. Consequently, we can use the
techniques developed in the field of hydrodynamics (see [23] for instance) to
obtain large deviations bounds for the empirical processes. We will apply this
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strategy to study the Hermitian Brownian motion, the symmetric Brownian
motion, the Wishart process, the Unitary Brownian motion and several inde-
pendent Hermitian Brownian motions. It is then standard by the contraction
principle to deduce large deviation estimates for the time marginals of these
processes. In particular, since a Wigner’s matrix can be seen as a Hermitian
Brownian motion at time 1, we shall obtain large deviations estimates for the
non-commutative law of several independent Wigner’s matrices. We will com-
pare the rate function governing these large deviations with the free entropy
defined by D. Voiculescu via Free Fisher’s information in [29]; it appears to be
smaller or equal.

The ideas developed in hydrodynamics are very powerful to prove large
deviations upper bounds, but more sophisticated to apply to obtain the cor-
responding large deviations lower bounds. This is why, except in the case of
the Hermitian Brownian motion, we will only provide large deviations upper
bounds. In the case of the Hermitian Brownian motion, we will prove a large
deviation lower bound with a rate possibly greater than the rate we get for
the upper bound; hence our result may not be sharp. However, it is proved
in [8] that the rate function we get by contraction for the large deviation up-
per bound of one time marginal of the Hermitian Brownian motion is optimal
since it agrees with the one found in [2] where a full large deviation principle
was proven.

Let us describe more precisely in this introduction the general strategy we
shall follow to obtain large deviation results for the Hermitian Brownian mo-
tion, and therefore for the Gaussian Wigner matrix. We shall then briefly state
their generalization to several independent Hermitian Brownian motions.

The Hermitian Brownian motion is described on the space �N of Hermitian
matrices of dimension N as the Markov process �HN�t��t∈�+ with values in
�N and complex Brownian motions entries so that

E�Hi�j
N �t�Hk�l

N �s�� = t ∧ s
N

δliδ
j
k

More precisely, we can construct the entries 
Hi�j
N �t�� t≥ 0� �i� j� ∈ 
1�    �N��

via independent real valued Brownian motions �βi�j� β′
k�l�1≤k<l≤N1≤i≤j≤N living on a

probability space ����� by

H
k�l
N = 1√

2N

(
βk�l + iβ′

k�l

)
if k < l�

= 1√
2N

(
βl�k − iβ′

l�k

)
if k > l�

= 1√
N
βl�l if k = l

Observe that, at any given time t, HN�t� is a Wigner’s matrix of the Gaussian
Unitary Ensemble (GUE). Hence, it is enough to study HN on compact time
intervals, say �0�1�, to study the GUE.
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The idea to consider the processHN to study its time marginals may sound
at first bizarre, not to say stupid. However, the process may be studied thanks
to Itô’s differential calculus which will appear to be a very powerful tool here.

Indeed, let �λ�N�
i �t��1≤i≤N be the (real-valued) eigenvalues of HN�t� and

define the spectral empirical process by

µ̂�N� � �0�1� −→ � ���
t −→ µ̂

�N�
t ≡ 1

N

N∑
i=1

δ
λ
�N�
i �t�

where � ��� is the set of probability measures on the real line. Then, it turns
out that, due to the independence between the eigenvectors and the eigenval-
ues of the GUE, µ̂�N� satisfies a stochastic differential equation with generator
and martingale bracket which only depend on µ̂�N�. More precisely, let us de-
fine, for s ≤ t ∈ �0�1�, f ∈ � 2�1

b ��× �0�1��, and ν ∈ � ��0�1��� ����,

Ss�t�ν� f� =
∫
f�x� t�dνt�x� −

∫
f�x� s�dνs�x�

−
∫ t

s

∫
∂uf�x�u�dνu�x�du

−1
2

∫ t

s

∫ ∫ ∂xf�x�u� − ∂xf�y�u�
x− y

dνu�x�dνu�y�du

Then, we shall prove (see Lemma 2.3) that:

Lemma 1.1. For any f ∈ � 2�1
b ��×�0�1��, the processQ

�N�
f given for t ∈ �0�1�

by

Q
�N�
f �t� = S0�t�µ̂�N�� f�

is a martingale with bracket〈
Q

�N�
f

〉
t
= 1
N2

∫ t

0
µ̂

�N�
s

(�∂xf�2�x� s�)ds
Hence, we can use the techniques developed in hydrodynamics (see [23])
which, at least for the upper bound, rely on classical bounds on exponential
martingales, to prove large deviations results for the process µ̂�N�. In fact, if
we let

S0�1�ν� = sup
f∈� 2�1

b ��×�0�1��

(
S0�1�ν� f� − 1

2

∫ 1

0

∫
�∂xf�x�u��2dνu�x�du

)
�

we shall prove that, if µ̂�N� is viewed as an element of the space � ��0�1��� ����
of continuous measure-valued processes furnished with the topology generated
by the weak topology on � ��� and the uniform topology on �0�1�, then:
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Theorem 1.1. The law of µ̂�N� satisfies a large deviation upper bound in
the scale N2 with good rate function S such that

S�ν� =
{∞� if ν0 �= δ0�
S0�1�ν�� otherwise.

In other words, for every closed subset F ∈ � ��0�1��� ����,

lim sup
N→∞

1
N2

ln�
(
µ̂�N� ∈ F

)
≤ − inf

ν∈F
S�ν�

Further, the law of µ̂�N� satisfies a large deviation lower bound in the scale N2

which states as follows: for any open subset O ∈ � ��0�1��� ����,

lim inf
N→∞

1
N2

ln�
(
µ̂�N� ∈ O

)
≥ − inf

ν∈O∩�∞��0�1��� ����
S�ν�

where �∞��0�1��� ���� is the subset of � ��0�1��� ���� of weak solutions ν such
that ν0 = δ0 of the differential equation

S0�1�ν� f� =
∫ 1

0

∫
∂xhu�x�∂xfu�x�dνu�x�du

for any f ∈ � 2�1
b ��× �0�1��, with h ∈ ��∞ ⊂ �∞�1

b ��× �0�1�� so that

��∞ =
{
h ∈ �∞�1

b ��× �0�1�� ∩ � ��0�1��L2�����

∃C�ε ∈ �0�∞�� sup
t∈�0�1�

�ĥt�λ�� ≤ Ce−ε�λ�
}

where ĥt stands for the Fourier transform of ht.

Note here that the lower bound may not be sharp. However, very recent
investigations of O. Zeitouni and one of the authors were able to improve into
a full large deviation lower bound (see [17]).

As a consequence of Theorem 1.1, we get by the contraction principle:

Corollary 1.1. The law of µ̂
�N�
1 ∈ � ��� satisfies the following large devi-

ation bounds�
(i) For every closed subset F ∈ � ���,

lim sup
N→∞

1
N2

ln�
(
µ̂

�N�
1 ∈ F

)
≤ − inf
S�ν�� ν1 ∈ F�

(ii) For any open subset O ∈ � ���,

lim inf
N→∞

1
N2

ln�
(
µ̂

�N�
1 ∈ O

)
≥ − inf
S�ν�� ν ∈ �∞��0�1��� ����� ν1 ∈ O�
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It is proved in [8] (see also [9]) that I�µ� = inf
S�ν�� ν1 = µ� is the rate
function obtained in [2] for the full large deviation principle of the spectral
measure of the GUE; the above upper bound is therefore sharp.

Consequently to the large deviation upper bound result of Theorem 1.1, we
also obtain the exponentially fast convergence of µ̂�N� toward the semi-circular
process.

Corollary 1.2. The process µ̂�N� converges almost surely to the unique
minimum of S which is described by the differential equation with initial data
σ0 = δ0,

σt�ft� − σ0�f0� =
∫ t

0
σs�∂sfs�ds+

1
2

∫ t

0
σs ⊗ σs

(
∂xfs�x� − ∂xfs�y�

x− y

)
ds(1.1)

for every function f ∈ � 2�1
b ��×�0�1��. Equivalently, σt is, for any t ∈ �0�1�, the

semi-circular law

σt�dx� =
1

2πt

√
4t− x21�−2

√
t�2

√
t�dx(1.2)

Proof. Clearly, the law of µ̂�N�
 concentrates on the minimizers of the rate

function S0�1. Let ν ∈ � ��0�1��� ���� be a continuous � ���-valued process
with initial data δ0. If we denote for �f�g� ∈ � 2�1

b ��× �0�1��, 0 ≤ s ≤ t ≤ 1,

� f�g �s�t
ν ≡

∫ t

s

∫
∂xf�x�u�∂xg�x�u�dνu�x�du�

S0�1�ν� = sup
f∈� 2�1

b ��×�0�1��

(
S0�1�ν� f� − 1

2
� f�f�0�1

ν

)

= sup
f∈� 2�1

b ��×�0�1��
sup
λ∈�

(
S0�1�ν� λf� − 1

2
� λf� λf�0�1

ν

)
(1.3)

= sup
f∈� 2�1

b ��×�0�1��

1
2
�S0�1�ν� f��2
� f�f�0�1

ν



In particular, S0�1�ν� is null iff S0�1�ν� f� is null for every f ∈ � 2�1
b ��× �0�1��.

In other words, the minimizers of S0�1 are characterized by (1.1). It is not
difficult to check that the semi-circular process defined by (1.2) satisfies this
equation. Hence, the only point is to show that equation (1.1) admits a unique
solution (existence is already a consequence of the convergence of µ̂�N�

 toward
such solutions). This problem was solved by T. Chan for solutions with all
their moments and in [7] when an extra diffusive term is added (i.e., when
one considers Burger’s equation). In fact, this equation is completely solvable
as proved in [25]. An alternative proof of the uniqueness result is presented
in Lemma 2.6. ✷
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Turning to the study of large deviations for several Hermitian Brownian
motions, we shall here illustrate our main theorem by describing two of its
applications which hopefully will motivate the reader. More precise definitions
and statements are given in section 4. For N ∈ �, we shall denote �N the
space of N ×N complex matrices and trN the normalized trace in �N given
for any A ∈ �N by trN�A� = �1/N�∑N

i=1Aii. Let m ∈ � and �Hk
N�1≤k≤m

be independent copies of HN. To define functions of m Hermitian matrices
�Xk�1≤k≤m ∈ � m

N , N ∈ �, recall that to every complex valued function f
on �, we can associate a function Ff from �N into �N, N ∈ �, so that, if
A ∈ �N is decomposed as A = U∗DU for a diagonal matrix D and a unitary
matrix U, Ff�A� = U∗f�D�U where f�D� stands for the diagonal matrix
with entries �f�D11��    � f�DNN��. In particular, if f�z� = �z − x�−1, for any
�αk�1≤k≤m ∈ �m and z ∈ 	\�, we can define a function 0z�α mapping � m

N into
�N for any N ∈ �, so that for any N ∈ �, �Xk�1≤k≤m ∈ � m

N ,

0z�α�X� =
(
z−

m∑
k=1

αkXk

)−1

= Ff

(
m∑
k=1

αkXk

)


We denote by
→∏

the non-commutative product. Let ��st�	� be the complex
vector space generated by the functions mapping, for any N ∈ �, � m

N into
�N, given by

ST�	� =
F�Xk�1 ≤ k ≤m� =

→∏
1≤i≤n

(
zi −

m∑
k=1

αkiXk

)−1

�

zi ∈ 	 \�� αki ∈ �� n ∈ �

}
and ��st��� be its restriction to the functions F mapping � m

N into �N for any
N ∈ �. We let �

=
1 be the subset of the topological dual of ��st�	� with real

valued restriction to ��st��� satisfying some natural assumptions of bounded-
ness, positiveness and total mass described in section 4.3. � ��0�1���=

1 � will
be the space of continuous �

=
1 valued processes. We shall describe a good rate

functionS on the space of continuous non-commutative laws-valued processes
� ��0�1���=

1 �, furnished with the �� st���-topology on the �
=
1 variable and

the uniform topology on the time variable, so that:

Corollary 1.3. For any integer number n, any times �tj�nj=1 ∈ �0�1�n, any
family �Fj�nj=1 ∈ ��st���, for any real constants �aj� bj� aj ≤ bj�nj=1,

lim sup
N→∞

1
N2

ln�

(
n⋂
j=1


trN
(
Fj�Hk

N�tj��1 ≤ k ≤m�
)
∈ �aj� bj��

)

≤ − inf
{
S�ν� � νtj

(
Fj�Xk�1 ≤ k ≤m�) ∈ �aj� bj� ∀j ∈ 
1�    � n�

}
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The �� st���-topology will be seen to be compatible with the standard weak
topology so that the contraction principle will give:

Property 1.1. For any function F ∈ ��st���, the law of the spectral mea-
sure of �F�Hk

N�t��1 ≤ k ≤ m��t∈�0�1� ∈ � ��0�1��� ���� satisfies a large devia-

tion upper bound in the scale N2 in the weak topology with good rate function


F�ν� = inf
S�ν̃�� ν = ν̃ ◦F−1�
where ν̃◦F−1 is the measure valued-process so that, for any function g ∈ �b���,
for any time t ∈ �0�1�,

ν̃t ◦F−1�g� ≡ ν̃t�g�F��

In this sense, our result can be seen as large deviation of order II. The full
statement of our theorem is given in Theorem 4.1. The comparison of our
free entropy and Voiculescu’s follows it. Also, our large deviations theorem
will entail the convergence of the non-commutative law of �Hk

N�1 ≤ k ≤ m�
toward the law of m free Brownian motions.

Our paper is organized as follows. In Section 2, we provide a detailed study
of the large deviations results for the Hermitian Brownian motion, and also
as a key step toward it, we describe its generator. In Section 3, we generalize
our approach to other matrices ensembles: the symmetric Brownian motion,
the Wishart process and the Unitary Brownian motion. In Section 4, we intro-
duce a topology on the non-commutative law of several independent Hermitian
Brownian motions and prove the corresponding large deviation result.

In this paper, whenever we state a large deviation result for a spectral mea-
sure valued-process, the topology under study is in the space � ��0�1��� �4�� of
continuous processes on �0�1� endowed with the uniform topology with values
in the Polish space of probability measures � �4� on a Polish alphabet space
4. Let d denote the Wasserstein distance on � �4� given for any �µ� ν� ∈ � �4�2
by

d�µ� ν� = sup
∣∣∣∫ fdµ−

∫
fdν

∣∣∣(1.4)

where the supremum is taken over all the Lipschitz functions on 4, equipped
with the distance l, with Lipschitz constant

��f��� = sup
x∈�

�f�x�� + sup
x�y∈4

�f�x� − f�y��
l�x�y�

bounded by one. The above topology on � ��0�1��� �4�� is compatible with the
distance given, for any �µ� ν� ∈ � ��0�1��� �4��, by

� �µ� ν� = sup
t∈�0�1�

d�µt� νt�(1.5)

We shall denote �0��� [resp. �c���� the set of continuous functions on � going
to zero at infinity (resp. compactly supported), and, for p ∈ �, � p�1

b ��× �0�1��
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the set of continuously differentiable functions of the time, with values in
�
p
b ���, the set of p-times bounded continuously differentiable functions on �

with bounded space-continuous time derivatives. The non-commutative law
of several matrices will be seen as a subset �

=
1 of the topological dual �

of the vector space ��st���. The large deviations for the non-commutative
laws-valued processes will be in the space � ��0�1���=

1 � of continuous �
=
1 -

valued processes. An extra tightness criterium will be added to strengthen the
��st���-topology.

2. Large deviations results and entropy for the Hermitian Brown-
ian motion. To study the Markov process �HN�t��t∈�0�1� we shall first de-
scribe its generator, key step toward large deviations estimates for the
measure-valued process µ̂�N�. This can be done thanks to Itô’s formula (see
Lemma 1.1).

2.1. Stochastic calculus. To state Itô’s formula, we need to introduce a few
extra notations due to the absence of commutativity. In particular, we shall
introduce the notion of bi-process. Namely, if we denote �

�N�
t the natural

filtration of �HN�s�� s ≤ t�, a bi-process is a random process, � �N�
t -adapted,

with value in �N ⊗ �N. For instance, if we consider two �N-valued �
�N�
t -

adapted processes �P�s��s≥0 and �Q�s��s≥0, �Y�s� = P�s� ⊗ Q�s��s≥0 is a bi-
process. The integral of Y against HN is defined as the matrix∫ t

0
Y�s�9dHN�s�≡

∫ t

0
P�s�dHN�s�Q�s�=

(
N∑

k�l=1

∫ t

0
pi�k�s�ql�j�s�dHk�l

N �s�
)

1≤i�j≤N

This definition extends naturally to more general bi-process as follows:∫ t

0
Y�s�9dHN�s� ≡

( ∑
1≤k�l≤N

∫ t

0
Yi�k�l�j�s�dHk�l

N �s�
)

1≤i�j≤N


Multi-dimensional Itô’s calculus yield, for any adapted processes A�B�C
and D, ∫ t

0
�As ⊗Bs�9dHN�s�

∫ t

0
�Cs ⊗Ds�9dHN�s�

=
∫ t

0

(
As ⊗

[
Bs

∫ s

0
�Cu ⊗Du�9dHN�u�

])
9dHN�s�

+
∫ t

0

([∫ s

0
�Au ⊗Bu�9dHN�u�Cs

]
⊗Ds

)
9dHN�s�

+
∫ t

0
AstrN�BsCs�Dsds

(2.1)

To write Itô’s formula, we need to introduce two linear maps on the set of
smooth test functions, here reduced to the set of polynomial functions, which
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are the analogue of classical derivation and Laplacian:

D0 � 	�X� −→ 	�X� ⊗ 	�X�
Xn $−→

n−1∑
i=0

Xi ⊗Xn−1−i

L0 � 	�X� −→ 	�X� ⊗ 	�X�
Xn $−→

n−1∑
i=1

iXi−1 ⊗Xn−1−i

Remarks. (i) L0 = �∂x⊗ Id� ◦D0 where ∂x denotes the classical derivation.
(ii) If a polynomial function f is considered as a complex function, our

formulae read

D0f�x�y� =
f�x� − f�y�

x− y
�

L0f�x�y� =
1

x− y

(
∂xf�x� −

f�x� − f�y�
x− y

)
=

∫ 1

0
∂2xf

(
ux+ �1− u�y)udu

Note that

lim
y→x

D0f�x�y� = ∂xf�x� and lim
y→x

L0f�x�y� = 1
2∂

2
xf�x�

Denote � 1
b ��0�1��	�X�� the set of polynomial functions with bounded con-

tinuously differentiable coefficients. We have:

Lemma 2.1. Itô’s formula for HN: for every f ∈ � 1
b ��0�1��	�X��,

f�HN�t�� t� = f�HN�0��0�
∫ t

0
D0f�HN�s��HN�s�� s�9dHN�s�

+
∫ t

0
∂sf�HN�s�� s�ds

+
∫ t

0
�IdN ⊗ trN� ◦ �L0f��HN�s��HN�s�� s�ds

where IdN⊗trN is the linear operator on �N⊗�N so that for any A�B ∈ �N,
IdN ⊗ trN�A⊗B� = trN�B�A.

Proof. Even though this point is a direct consequence of multidimensional
Itô’s formula, let us detail the computation for f�x� = xk with an integer
number k ∈ �. Then, for any �i� j� ∈ 
1�    �N�, Itô’s calculus gives

d�HN�t�k�ij =
k−1∑
l=0

N∑
p�n=1

�HN�t�l�ipd�HN�t��pn�HN�t�k−l−1�nj

+ 1
N

k−2∑
l+m=0

N∑
p�n=1

�HN�t�l�ip�HN�t�m�nn�HN�t�k−l−m−2�pjdt
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=
k−1∑
l=0

(
HN�t�ldHN�t�HN�t�k−l−1

)
ij

+
k−2∑
l=0

�k− l− 1�trN�HN�t�l��HN�t�k−l−2�ijdt

This also proves the first formula of Lemma 2.1 for more general polynomial
functions by linearity. Let us finally compute the martingale bracket of the
normalized trace of the above martingale. We have〈∫ 

0

k−1∑
l=0

trN
(
HN�s�ldHN�s�HN�s�k−l−1

)〉
t

= 1
N2

k2 ∑
ij

∑
mn

〈∫ 

0
�HN�s�k−1�ijd�HN�s��ij�

∫ 

0
�HN�s�k−1�mnd�HN�s��mn

〉
t

= 1
N2

k2 ∑
ij

∑
mn=ji

〈∫ 

0
�HN�s�k−1�ijd�HN�s��ij�

∫ 

0
�HN�s�k−1�mnd�HN�s��mn

〉
t

= 1
N2

k2trN

(∫ t

0
�HN�s�2�k−1��ds

)


Similar computations give the bracket of more general polynomial functions. ✷

We shall generalize this formula to smooth bounded functions. To this end,
let us recall that, for any real-valued function f, for any N ∈ �, we can define
f on �N by

f�A� = U∗f�D�U
if A = U∗DU with a diagonal matrix D and a unitary matrix U and f�D� is
the diagonal matrix with entries �f�D1�1��    � f�DN�N��. For f ∈ � 1

b ���, we
let, for any N ∈ � and any A�B ∈ �N, A = UDU∗, B = ŨD̃Ũ∗,

D0f�A�B� =
∫ 1

0
U⊗ Ũf′�αD⊗ �1− α�D̃�U∗ ⊗ Ũ∗dα�

with for any �i� j� k� l� ∈ 
1�    �N�4,
f′�αD⊗ �1− α�D̃�i�j�k�l = δi=jδk=lf

′�αDi�i + �1− α�D̃k�k�
and

�U⊗ Ũ�i�j�k�l = Ui�jŨk�l
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Similarly, for any N ∈ � and any A�B ∈ �N, A = UDU∗, B = ŨD̃Ũ∗,

L0f�A�B� =
∫ 1

0
αU⊗ Ũf′′�αD⊗ �1− α�D̃�U∗ ⊗ Ũ∗dα

With these natural extensions of D0 and L0, we have:

Lemma 2.2. Any f ∈ � 2�1
b �� × �0�1�� satisfies the conclusions of Lemma

21

Proof. To prove Lemma 2.2, we shall first consider functions fλ�x� = eiλx

for a real number x [or equivalently, cos�λx� or sin�λx�]. We shall approximate
fλ by the polynomial functions

fnλ�x� =
n∑

k=0

�iλx�k
k!



Set

Mfλ
�t� ≡ fλ�HN�t�� t� − fλ�HN�0��0� −

∫ t

0
∂sfλ�HN�s�� s�ds

−
∫ t

0
�IdN ⊗ trN� ◦ �L0fλ��HN�s��HN�s�� s�ds

Mfnλ
converges point-wise toward Mfλ

since fnλ (and its derivatives) converges
point-wise toward fλ(and its derivatives). Let

M̄fλ
�t� =

∫ t

0
D0fλ�HN�s��HN�s�� s�9dHN�s�

To prove that the matrix valued martingale M̄fnλ
converges almost surely to-

ward the matrix valued martingale M̄fλ
, it is enough to prove that for any

t ≥ 0,

lim
n→∞ ��M̄fnλ

�t� − M̄fλ
�t���2 = 0(2.2)

where �� ��2 is the natural norm defined for any random matrix A in �N by

��A��22 = Ɛ�trN�AA∗��
Then, since for every n ∈ �, Mfnλ

= M̄fnλ
, we deduce Mfλ

= M̄fλ
.

But

��M̄fnλ
�t� − M̄fλ

�t���2

= 1
N

∑
1≤i�j≤N

Ɛ

[(∫ t

0
D0�fλ − fnλ��HN�s��HN�s�� s�9dHN�s�

)2

i�j

]

= Ɛ

[∫ t

0
trN ⊗ trN�D0�fλ − fnλ��2�HN�s�� s�ds

]

= Ɛ

[∫ t

0
µ̂

�N�
s ⊗ µ̂

�N�
s

[(∫ 1

0
∂x�fλ − fnλ��ux+ �1− u�y�du

)2
]
ds

]
(2.3)
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where the second line was obtained by use of (2.1). Moreover, observe that
Taylor’s formula reads

�fλ − fnλ��x� =
�iλx�n+1

n!

∫ 1

0
�1− t�nfλ�tx�dt

so that with (2.3) we conclude

��M̄fnλ
�t� − M̄fλ

�t���22

≤ ��λ��2�n+1�

n!2
Ɛ

[∫ t

0
µ̂

�N�
s ⊗ µ̂

�N�
s

(∫ 1

0
�ux+ �1− u�y�ndu

)2
]

≤ ��λ��2�n+1�

n!2
Ɛ

[∫ t

0
trN��HN�s��2n�ds

]
≤ λ2 �2n�!

4n�n!2�Ɛ
[∫ t

0
trN

( �2λ�2n
2n!

�HN�s��2n
)
ds

]
(2.4)

where the convexity of x→ xn and of x→ x2 was used to get the second line.
To control the above bound, let us invoke the result of [19] which says that
for any integer number N there exists a polynomial function BN so that for
any y ∈ 	,

Ɛ

[ ∞∑
n=0

yn

n!
trN�Hn

N�t��
]
= exp

(
y2t

2N

)
BN�y2t�

Hence, for any s ∈ �0�1�, any λ ∈ �,

Ɛ

[
trN��2λ�

2n

2n!
�HN�s��2n�

]
goes to zero as n goes to infinity. It is also uniformly bounded [for instance,
by exp� λ2

2N � supt∈�0�1�BN�λ2t�]. Hence, dominated convergence theorem results
with (2.2), giving the almost sure convergence of M̄fnλ

. Since Mfnλ
= M̄fnλ

con-
verges everywhere toward Mfλ

, we conclude that Mfλ
= M̄fλ

.
Now, if f is continuously differentiable, with bounded derivative and so

that:

1. For every t ∈ �0�1�, f�x� t� = ∫
� e

ixλµt�dλ� with a complex measure µt with
finite mass.

2. For every t ∈ �0�1�, ∂tf�x� t� = ∫
� e

ixλµ′
t�dλ� with a complex measure µ′

t

with finite mass.
3. sup0≤s≤1

∫
� λ

2�µs��dλ� <∞ and sup0≤s≤1 �µ′
s���� <∞

Then we can apply Fubini’s theorem to conclude that Lemma 2.2 holds for
such functions.

Finally, if f ∈ � 2�1
b ��� �0�1��, set fα�x� t� = f�x�t�

1+αx2  Then fα�� t� satisfies the

hypotheses above with µαt �dλ� = f̂α�λ� t�dλ and �µαt �′�dλ� = ˆ�∂tfα��λ� t�dλ.
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In fact, it belongs to L2��� and its Fourier transform belong to L1��� for any
t ∈ �0�1� so that the inversion theorem results with

fα�x� t� =
∫
�
e−iλxf̂α�λ� t�dλ

where f̂α is the Fourier transform of fα. Since∫
�
λ2�f̂α�λ� t��dλ ≤

(∫
�λ�>1

�λ2f̂α�λ� t��2dλ
) 1

2
(∫

�λ�>1

1
�λ�2dλ

) 1
2

+
√
2
(∫

�−1�1�
�f̂α�λ� t��2dλ

) 1
2

(2.5)

with Plancherel’s theorem resulting with∫
�λ�>1

�λ2f̂α�λ� t��2dλ =
∫
�λ�>1

�∂̂2xfα�λ� t��2dλ ≤
∫
�
�∂2xf�x� t��2dx

we get ∫
�
λ2�f̂α�λ� t��dλ ≤

√
2
{��∂2xfα��2 + ��fα��2

}


Hence,
∫
λ2�µαs ��dλ� = ∫

� λ
2�f̂α�λ� t��dλ is uniformly bounded for α > 0 and

f ∈ � 2�1
b ��× �0�1��. Similarly, one can prove that

∫
�

∣∣∣∣∣ ̂�∂tfα��λ� t�
2π

∣∣∣∣∣dλ
is uniformly bounded.

Now, as in the first part of the proof, the martingale valued process Mfα
converges point-wise toMf as α ↓ 0. Hence, to conclude, we need to prove that
the martingale valued process

∫ t
0 D0fα�HN�s��HN�s�� s�9dHN�s� converges

toward
∫ t
0 D0f�HN�s��HN�s�� s�9dHN�s� as α goes to zero, that is ��M̄fα

�t� −
M̄f�t���2 goes to zero as α goes to zero. As above, this point boils down to
proving that

Ɛ
[
trN��∂x�fα − f��2�HN�t�� t��]

goes to zero as N goes to infinity. But we find a finite constant c so that

Ɛ
[
trN��∂x�fα − f��2�HN�t�� t�] ≤ cα���f��∞ + ��∂xf��∞�2Ɛ�trN�HN�t�2��

which goes to zero as α decreases to zero. Hence, the formula is verified for
every f ∈ � 2�1

b ��× �0�1�� and the proof of the lemma is complete. ✷

As a consequence of Lemma 2.2, the spectral process µ̂�N�
t satisfies:
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Lemma 2.3. For any f ∈ � 2�1
b ��× �0�1��, the process Q

�N�
f defined by

Q
�N�
f �t� = µ̂

�N�
t

(
f�x� t�)− µ̂

�N�
0

(
f�x�0�)− ∫ t

0
µ̂

�N�
s

(
∂sf�x� s�

)
ds

−
∫ t

0
�µ̂�N�

s ⊗ µ̂
�N�
s � ◦ �L0f��s�ds

is a martingale with bracket〈
Q

�N�
f

〉
t
= 1
N2

∫ t

0
µ̂

�N�
s

(�∂xf�2�x� s�)ds
This result is a direct consequence of Lemma 2.2 once one takes the normalized
trace trN and realizes that for any adapted processes A and B,〈

trN

(∫ 

0
AsdH

N
s

)
� trN

(∫ 

0
BsdH

N
s

)〉
t

= 1
N2

∫ t

0
trN�AsBs�ds

Lemma 2.3 is reminiscent of mean field interacting particles systems; the
law of µ̂�N�

 is described via a generator depending (non linearly) on µ̂�N�
 .

However, a crucial difference lies in the fact that the non linear dependence
on µ̂�N�

 is contained in the diffusive part rather than in the drift part. We
can still follow the ideas developed in hydrodynamics (see [23]) to prove large
deviation results.

The proof of Theorem 1.1 follows the usual scheme: first, we prove that S is
a good rate function, then we show that µ̂�N�

 is exponentially tight and that a
weak large deviation upper bound holds. Finally, we study the large deviation
lower bound.

2.2. S is a good rate function.

Lemma 2.4. S is a good rate function, that is that S is a non-negative
function such that for any M ∈ �+, 
ν ∈ � ��0�1��� �����S�ν� ≤M� is compact.

Proof. S0�1 is non-negative according to (1.4). As a supremum of continu-
ous functions on � ��0�1��� ����, S is lower semi-continuous. Hence, the only
point is to show that the level sets of S are included into relatively compact
sets. Following Lemma 5.4 of [13] and Lemma 1.3 of [16], the relatively com-
pact subsets of � ��0�1��� ���� are included into compact sets of the form

� = ��

⋂( ⋂
n∈�

�n

)
(2.6)

with

�� = 
ν ∈ � ��0�1��� ����� νt ∈KM ∀t ∈ �0�1��(2.7)
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and

�n = 
ν ∈ � ��0�1��� ����� �t→ νt�fn�� ∈Kn�(2.8)

where KM and Kn are compact subsets of � ��� and � ��0�1���� and �fn�n∈�
a family of bounded continuous functions dense in �c���. Indeed, the elements
of

⋂
n∈� �n can easily be seen to be tight by a standard diagonalization pro-

cedure with limit points in � ��0�1���c���′� if �c���′ denotes the algebraic
dual of �c���. If they also belong to �� , their limits can be seen to be in
� ��0�1��� ����. We shall assume further that the fn’s belong to � 2

b ���. Ac-
cording to Prohorov’s theorem, we may take KM as

KM�L� = ⋂
m∈�

{
µ ∈ � ��� � µ��x� ≥ Lm� ≤

1
m

}
with a positive real valued sequence L = �Lm�m∈�.

Moreover, since for every integer number n, t → νt�fn� is uniformly
bounded on � ��0�1��� ���� - because fn is bounded -, we deduce from Arzéla-
Ascoli’s theorem that we can take Kn of the form

K�δ� = ⋂
m∈�

{
g ∈ � ��0�1����� sup

�t−s�≤δm
�g�t� − g�s�� ≤ 1

m

}
for a positive sequence δ = �δm�m∈�.

Following the above description of relatively compact subsets of � ��0�1��
� ����, to achieve our proof, we need to show that, for any M> 0:

(i) For any m ∈ �∗, there is a positive real number LM
m so that for any

ν ∈ 
S ≤M�,

sup
0≤s≤1

νs��x� ≥ LM
m � ≤ 1

m


(ii) For any m ∈ �∗ and f ∈ � 2
b ���, there exists a positive real number δMm

so that for any ν ∈ 
S ≤M�,

sup
�t−s�≤δMm

�νt�f� − νs�f�� ≤
1
m


To show these two points, let us first remark that, as in [13], we may write

S0�1�ν� = sup
0≤s≤t≤1

Ss�t�ν�

with

Ss�t�ν� = sup
f∈� 2�1

b ��×�0�1��

(
Ss�t�ν� f� − 1

2

∫ t

s

∫
�∂xf�x�u��2dνu�x�du

)
To prove (i), we take for δ > 0, f�x� = fδ�x� = x2�1+ δx2�−1 ∈ � 2�1��× �0�1��
in the following inequality:

S0�t�ν� f� − 1
2 � f�f�0�t

ν ≤ S0�t�ν� ≤ S0�1�ν�(2.9)
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for t ∈ �0�1�. We then get

νt�fδ�≤8t+8
∫ t

0
νs

(
x2

�1+δ2x2�2
)
ds+S0�1�ν�≤8t+8

∫ t

0
νs�fδ�ds+S0�1�ν�

With fδ uniformly bounded, Gronwall’s lemma results with

sup
t∈�0�1�

νt�fδ�x�� ≤ �8+S0�1�ν��e8(2.10)

We can now let δ ↓ 0 to get by monotone convergence theorem that, if S�ν� ≤
M,

sup
t∈�0�1�

νt�x2� ≤ �8+M�e8

and hence conclude by Chebyshev’s inequality.
To establish (ii), note that (1.4) implies

�Ss�t�ν� f�� ≤
√
2S0�1�ν� � f�f�s�t

ν

and hence, if S0�1�ν� ≤M, that

�νt�f� − νs�f�� ≤
√
2M'∂xf'∞

√
�t− s� + 1

2'∂2xf'∞�t− s�

which is enough to conclude. ✷

2.3. Exponential tightness. Here, we shall prove that:

Theorem 2.1. For any integer number L, there exists a finite integer num-
ber N0 ∈ � and a compact set �L in � ��0�1��� ���� so that ∀N ≥N0,

��µ̂�N� ∈ � c
L� ≤ exp
−LN2�

In view of the previous description of the relatively compact subsets of � ��0�1��
� ����, we need to show that:

Lemma 2.5. (a) For every positive real numbersL andm, there is anN0 ∈ �
and a positive real number ML�m so that ∀N ≥N0,

�

(
sup
0≤t≤1

µ̂
�N�
t ��x� ≥ML�m� ≥

1
m

)
≤ exp�−LN2�

(b) For any f ∈ � 2
b ���, for any positive real numbers L and m, there exist

an N0 ∈ � and a positive real number δL�m�f such that ∀N ≥N0,

�

(
sup

�t−s�≤δL�m�f
�µ̂�N�

t �f� − µ̂
�N�
s �f�� ≥ 1

m

)
≤ exp�−LN2�
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Indeed, if �L is a compact set of type (2.6), (a) allows us to choose �� of
the form (2.7) such that

��µ̂�N� ∈ ��M�L��c� ≤ exp�−2LN2�(2.11)

whereas (b) shows that for any n ∈ � we can choose δn = δn�L� so that, with
the notations of (2.8),

��µ̂�N� ∈ ��n�c� ≤ exp�−2LN2n�
and thus

�

(
µ̂�N� ∈

(⋂
n

�n

)c)
≤ ∑

n∈�
�

(
µ̂�N� ∈ ��n�c

)
≤ exp�−2LN2�(2.12)

Inequalities (2.11) and (2.12) give Theorem 2.1.

Proof of Lemma 2.5. To prove (a), it is enough to find two real positive
numbers η and m so that

Ɛ

[
exp�ηN2 sup

0≤t≤1

∫
x2dµ̂

�N�
t �x��

]
≤ exp�mN2�(2.13)

Indeed, (2.13) and Chebyshev’s inequality yields

�

(
sup
0≤t≤1

µ̂
�N�
t ��x� ≥

√
ML�m� ≥

1
m

)
≤ �

(
sup
0≤t≤1

∫
x2dµ̂

�N�
t �x� ≥ ML�m

m

)
≤ exp�−LN2�

with L = η
ML�m

m
−m. To show (2.13), notice that

sup
0≤t≤1

∫
x2dµ̂

�N�
t �x� = sup

0≤t≤1

1
N

∑
i�j

�Hi�j
N �t��2 ≤ 1

N

N∑
i�j=1

sup
0≤t≤1

�Hi�j
N �t��2

By Désiré-André reflection principle, we get, for η < �1/2�,

Ɛ�exp�ηN2 sup
0≤t≤1

∫
x2dµ̂

�N�
t �x��� ≤ 2N

2�1− 2η�−N2
2 

We turn to the proof of (b). It is a consequence of Lemma 2.2. Indeed, for any
f ∈ � 2

b ��� and N large enough,

sup
�t−s�<δ

∣∣∣∫ f�x�dµ̂�N�
t �x� −

∫
f�x�dµ̂�N�

s �x�
∣∣∣

≤ sup
�t−s�<δ

∣∣∣Q�N�
f �t� −Q

�N�
f �s�

∣∣∣+ 1
2

∥∥∂2xf∥∥∞ �t− s�
(2.14)

Noticing that

sup
�t−s�<δ

∣∣∣Q�N�
f �t� −Q

�N�
f �s�

∣∣∣ ≤ 2 max
i∈��i≤�1/δ�

sup
t∈�δi�δ�i+2��

∣∣∣Q�N�
f �t� −Q

�N�
f �δi�

∣∣∣ �
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it is not hard to deduce (b) from (2.14) by Chebyshev’s inequality if we can
show that for any L ∈ �+, any s ∈ �0�1�, N large enough and δ ∈ �0�1 − s�
small enough,

Ɛ

[
exp

(
LN2 sup

t∈�s�s+δ�
�Q�N�

f �t� −Q
�N�
f �s��

)]
≤ eN

2
(2.15)

Since ex + e−x ≥ e�x�, it is enough to bound Ɛ
[
supt∈�s�s+δ�
exp�LN2�Q�N�

f �t� −
Q

�N�
f �s����] up to change f into −f. To this end, we use Doob’s inequality to

find a finite constant c so that

Ɛ

[
sup

t∈�s�s+δ�

{
exp

(
LN2

(
Q

�N�
f �t� −Q

�N�
f �s�

))}]

≤ Ɛ

[
sup

t∈�s�s+δ�

{
exp

(
LN2

(
Q

�N�
f �t� −Q

�N�
f �s�

)

− 1
2L

2N4
(〈
Q

�N�
f

〉
t
−

〈
Q

�N�
f

〉
s

))}2
] 1

2

×Ɛ

[
exp

(
L2N4�

〈
Q

�N�
f

〉
s+δ

−
〈
Q

�N�
f

〉
s
�
)] 1

2

≤ cƐ
[{

exp
(
LN2

(
Q

�N�
f �s+ δ� −Q

�N�
f �s�

)
− 1

2L
2N4

(〈
Q

�N�
f

〉
s+δ

−
〈
Q

�N�
f

〉
s

))}2
] 1

2

×Ɛ
[
exp

(
L2N4�(Q�N�

f )s+δ − (Q�N�
f )s�

)] 1
2


But the Cauchy-Schwarz inequality and super-martingales inequality yield

Ɛ

[{
exp

(
LN2

(
Q

�N�
f �s+ δ� −Q

�N�
f �s�

)
− 1

2L
2N4

(〈
Q

�N�
f

〉
s+δ

−
〈
Q

�N�
f

〉
s

))}2
]

≤ Ɛ

[
exp

(
6L2N4

(〈
Q

�N�
f

〉
s+δ

−
〈
Q

�N�
f

〉
s

))] 1
2

so that

Ɛ

[
sup

t∈�s�s+2δ�

{
exp

(
LN2

(
Q

�N�
f �t� −Q

�N�
f �s�

))}]

≤ cƐ

[
exp

(
6L2N4

(〈
Q

�N�
f

〉
s+δ

−
〈
Q

�N�
f

〉
s

))] 1
3



(2.16)
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Since 〈
Q

�N�
f

〉
s+δ

−
〈
Q

�N�
f

〉
s
= 1
N2

∫ s+δ

s

∫
�∂xf�x��2dµ̂�N�

u du ≤ 1
N2

δ'∂xf'2∞�

taking 2L2δ'∂xf'2∞ < 1 in (2.16) gives (2.15) and thus completes the proof. ✷

2.4. Weak large deviation upper bound. To achieve the proof of the up-
per bound in Theorem 1.1, and thanks to the exponential tightness result
of the previous section, it is enough (see [14], Theorem 4.1.11) to prove a
weak large deviation upper bound, that is that for every compact subset K of
� ��0�1��� ����,

lim sup
N→∞

1
N2

ln��µ̂�N� ∈K� ≤ − inf
ν∈K

S�ν�

This last result can easily be seen to be equivalent to

Theorem 2.2. For every process ν in � ��0�1��� ����, if Bδ�ν� denotes the
open ball with center ν and radius δ for the distance � , then

lim sup
δ↓0

lim sup
N→∞

1
N2

ln�
(
µ̂�N� ∈ Bδ�ν�

) ≤ −S�ν�

The end of this section is therefore dedicated to the proof of Theorem 2.2.

Proof. Note first that ��µ̂�N�
0 = δ0� = 1 so that

lim sup
δ↓0

lim sup
N→∞

1
N2

ln��µ̂�N� ∈ Bδ�ν�� = −∞

if ν0 �= δ0. Hence, we shall assume hereafter that ν0 = δ0. We shall follow
the ideas developed in [23]. To this end, we define a family of positives super-
martingales 
ζ�N�

f � f ∈ � 2�1
b ��× �0�1���, equal to 1 at t = 0, thanks to Lemma

2.3:

ζ
�N�
f �t� = exp

(
N2Q

�N�
f �t� − N4

2

〈
Q

�N�
f

〉
t

)
= exp

(
N2�S0�t�µ̂�N�� f� − 1

2
� f�f�0�t

µ̂�N� �
)

Let ν ∈ � ��0�1��� ���� and f ∈ � 2�1
b ��× �0�1��; then

�
(
µ̂�N� ∈ B�ν� δ�

)
= Ɛ

1µ̂�N�∈B�ν�δ�
ζ
�N�
f �1�
ζ
�N�
f �1�


≤ sup

ν′∈B�ν�δ�
exp

(
−N2

(
S0�1�ν′� f� − 1

2
� f�f�0�1

ν′

))

= exp
(
−N2 inf

ν′∈B�ν�δ�

(
S0�1�ν′� f� − 1

2
� f�f�0�1

ν′

))
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Notice that if f belongs to � 2�1
b ��× �0�1��, the function ν′ → S0�1�ν′� f� − 1

2 �
f�f�0�1

ν′ is continuous. Thus, for any function f ∈ � 2�1
b ��× �0�1��,

lim sup
δ↓0

lim sup
N→∞

1
N2

ln�
(
µ̂�N� ∈ B�ν� δ�

)
≤ −

(
S0�1�ν� f� − 1

2
� f�f�0�1

ν

)
We conclude by taking the supremum over f that

lim sup
δ↓0

lim sup
N→∞

1
N2

ln�
(
µ̂�N� ∈ B�ν� δ�

)
≤ − sup

f∈� 2�1
b ��×�0�1��

(
S0�1�ν� f� − 1

2
� f�f�0�1

ν

)
✷

2.5. Large deviation lower bound. In this section, we provide a large devi-
ation lower bound for the Hermitian Brownian motion which is unfortunately
not sharp since its rate function is shown to be equal to S only at nice pro-
cesses µ, even though we believe it is equal to S everywhere. In fact, large
deviation lower bounds are related to a uniqueness statement for the weak
solutions of

Ss�t�ν� f� =
∫ t

s

∫
∂xhu�x�∂xfu�x�dνu�x�du =� h�f�s�t

ν(2.17)

for f ∈ � 2�1
b �� × �0�1��, 0 ≤ s ≤ t ≤ 1 and for a large class of magnetic fields

h. Unfortunately, we have only been able to prove such a uniqueness property
for very smooth fields h.

Let us first recall the second part of Theorem 1.1, that is, if �∞��0�1��� ����
denotes the subset of � ��0�1��� ���� of weak solutions ν ∈ � ��0�1��� ����
satisfying

S0�1�ν� f� =
∫ 1

0

∫
∂xhu�x�∂xfu�x�dνu�x�du

for any f ∈ � 2�1
b ��× �0�1��, with h ∈ ��∞ ⊂ �∞�1

b ��× �0�1�� so that

��∞ =
{
h ∈ �∞�1

b ��× �0�1�� ∩ � ��0�1��L2�����

∃�C�ε� ∈ �0�∞�� sup
t∈�0�1�

�ĥt�λ�� ≤ Ce−ε�λ�
}

where ĥt stands for the Fourier transform of ht,

Property 2.1. The law of µ̂�N�
 satisfies a large deviation lower bound in

the scale N2 so that for any open subset O of � ��0�1��� ����,

lim inf
N→∞

1
N2

ln�
(
µ̂�N� ∈ O

)
≥ − inf

ν∈O∩�∞��0�1��� ����
S�ν�
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To prove Property 2.1, we shall first recall the general strategy to demonstrate
such a result and then study the uniqueness property of the solutions of (2.17)
to conclude.

One first begin with the observation that for any open subset O of � ��0�1��
� ����, for any ν ∈ O,

lim inf
N→∞

1
N2

ln�
(
µ̂�N� ∈ O

)
≥ lim inf

δ→0
lim inf
N→∞

1
N2

ln�
(
µ̂�N� ∈ B�ν� δ�

)
(2.18)

where B�ν� δ� stands for an open ball in the metric space � ��0�1��� ���� with
radius δ. Hence, the only point is to bound from below P�µ̂�N� ∈ B�ν� δ�� for
sufficiently small δ’s and ν ∈ � ��0�1��� ���� with finite entropy S. Since by
(1.4) any ν ∈ � ��0�1��� ���� with finite entropy S satisfies ν0 = δ0 and

S0�1�ν� f�2 ≤ 2S0�1�ν� � f�f�0�1
ν �

f→ S0�1�ν� f� is a bounded linear form in H0�1
ν , the closure of � 2�1

b ��× �0�1��
by the norm induced by the scalar product � �  �0�1

ν . Hence, there exists a
function h ∈ H0�1

ν such that ν is solution of (2.17) by Riesz’s theorem. In the
following, we shall restrict ourselves to magnetic fields h ∈ ��∞, that is to
measure-valued processes ν ∈ �∞��0�1��� ����.

The strategy to prove the lower bound is then to center our probability
measure � around ν via Girsanov’s theorem, namely, consider

ζ
�N�
h �1� = exp

(
N2

(
S0�1�µ̂�N�� h� − 1

2 � h�h�0�1
µ̂�N�

))
and �h�µ̂�N�

 ∈ � ≡ ��1µ̂�N�
 ∈ζ

�N�
h �1��. We have the following bound:

�
(
µ̂�N�
 ∈ B�ν� δ�

)
= �h

(
1µ̂�N�

 ∈B�ν�δ� exp
{
−N2�S0�1�µ̂�N�� h� − 1

2 � h�h�0�1
µ̂�N� �

})
≥ exp

{
−N2 sup

µ∈B�ν�δ�
�S0�1�µ�h� − 1

2 � h�h�0�1
µ �

}
�h�µ̂�N�

 ∈ B�ν� δ��
(2.19)

Since h ∈ ��∞, h belongs to � 2�1��× �0�1�� which results with

lim
δ↓0

sup
µ∈B�ν�δ�

(
S0�1�µ�h� − 1

2 � h�h�0�1
µ

) = S0�1�ν� h� − 1
2 � h�h�0�1

ν (2.20)

Further, under �h, it is not hard to check that, according to Girsanov’s formula,
for �i� j� ∈ 
1� �N�2, the canonical entries Xi�j satisfy

dX
i�j
t = 1√

N
dB

i�j
t + �∂xht�X��i�j dt

Following the lines of the two previous subsections, one can see that the law
of µ̂�N�

 under �h is exponentially tight (by exponential tightness under � and
a uniform bound on the Girsanov density) and that its limit points (again by
Itô’s calculus) satisfy the weak equation (2.17). Thus, if we can prove that this
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equation admits a unique solution, therefore equal to ν, we will have proved
that µ̂�N�

 converges under �h toward ν and in particular that for any δ > 0,

lim
N→∞

�h�µ̂�N�
 ∈ B�ν� δ�� = 1(2.21)

Equations (2.19)–(2.21) result, once one let N going to infinity and then δ
decreasing to zero, with

liminf
δ→0

liminf
N→∞

1
N2

ln�
(
µ̂�N� ∈B�ν�δ�

)
≥ −

(
S0�1�ν�h�− 1

2
�h�h�0�1

ν

)
= −S0�1�ν�

(2.22)

where the last equality follows from the definition of S0�1 and (2.17). Since
(2.22) is proved below only for ν ∈ �∞��0�1��� ����, taking the supremum
on ν ∈ �∞��0�1��� ���� ∩O provides the desired estimate of Property 2.1. To
complete our proof, we shall show the following:

Lemma 2.6. For any h ∈ ��∞, �217� admits a unique weak solution.

Proof. Note first that the existence is already clear since it can be con-
structed as the limit point of µ̂�N�

 under �h. Hence, we shall concentrate
on the uniqueness statement. To this end, we take f�x� = eiλx and denote
�t�λ� = ∫

eiλxdνt�x� the Fourier transform of νt. Note that by the inversion
theorem and the continuity of ht,

ht�x� =
∫
e−iλxĥt�λ�dλ =

∫
eiλxĥt�−λ�dλ

everywhere and, according to the tail of ĥt for h ∈ ��∞,

∂xht�x� = i
∫
e−iλxλĥt�−λ�dλ

Define mt�λ� = iλĥt�−λ� and note that it decreases exponentially fast to in-
finity, �mt�λ�� ≤ Ce−2ε�λ� for a positive ε and a positive finite constant C and
for any time t ∈ �0�1� when h ∈ ��∞. We then have

�t�λ� = 1− λ2

2

∫ t

0

∫ 1

0
�s�αλ��s��1− α�λ�dαds

+iλ
∫ t

0

∫
�s�λ+ λ′�ms�λ′�dλ′ds

(2.23)

Multiplying both sides of this equality by e−ε�λ� gives, with� ε
t �λ� = e−ε�λ��t�λ�,

� ε
t �λ� = e−ε�λ� − λ2

2

∫ t

0

∫ 1

0
� ε
s �αλ�� ε

s ��1− α�λ�dαds

+iλ
∫ t

0

∫
� ε
s �λ+ λ′�eε�λ+λ′ �−ε�λ�ms�λ′�dλ′ds

(2.24)

Note by the way here that � ε
t is the Fourier transform of Pε ∗ νt where Pε is

a Cauchy’s law and that the stability of the first term of our equation by the
multiplication by e−ε�λ� reflects the fact that our non-commutative derivation
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is stable by convolution by these laws; this is a non-trivial fact since the non-
commutative derivation involves a quadratic term. The convolution by Cauchy
laws is the only classical convolution for which such a property is satisfied.

Assume we have two solutions � ε and ˜� ε to equation (2.24) with exponen-
tially decreasing tails and denote Aεt �λ� = �� ε

t �λ� − ˜� ε
t �λ��. Then, we obtain

Aεt �λ� ≤ λ2
∫ t

0
sup
�z�≤�λ�

Aεs�z�
∫ 1

0
��� ε

s �αλ�� + � ˜� ε
s �αλ���dαds

+�λ�
∫ t

0

∫
Aεs�λ+ λ′��ms�λ′��eε�λ+λ′ �−ε�λ�dλ′ds

(2.25)

Since by definition �� ε
s �αλ�� and � ˜� ε

s �αλ�� are bounded by e−εα�λ�,∫ 1

0
��� ε

s �αλ�� + � ˜� ε
s �αλ���dα ≤ 2

ε�λ� (2.26)

Further, for any R ∈ �+,∫
Aεs�λ+ λ′��ms�λ′��eε�λ+λ′ �−ε�λ�dλ′

≤
(
sup
�z�≤R

Aεs�z� + 2e−εR
)∫

�ms�λ′��eε�λ+λ′ �−ε�λ�dλ′
(2.27)

where the last term in the right hand side of (2.27) is bounded, according to
our assumption, by∫

�mt�λ′��eε�λ+λ′ �−ε�λ�dλ′ ≤ C
∫
eε�λ+λ

′ �−ε�λ�−2ε�λ′ �dλ′ ≤ 2C
ε
(2.28)

Inequalities (2.25)–(2.28) result with, if we denote Āεs�R� = sup�z�≤R Aεs�z�,

Āεt �R� ≤ 2R
ε

�1+C�
∫ t

0
Āεs�R�ds+ 2tRe−εR

so that Gronwall’s lemma yields, for t ≤ 1,

Āεt �R� ≤ 2Re−εRe
2R
ε �1+C�t

As a consequence, for t < τ ≡ �ε2/2�1+C��, we can let R going to infinity and
conclude

Āεt �∞� = 0

Thus, �t is uniquely defined until time τ. Starting now at time �3τ/4� with two
solutions with same initial data at time �3τ/4�, we can proceed as before to
see that �t is uniquely defined until time �7/4�τ. Proceeding by induction, we
finally get that �t is uniquely defined on the interval �0�1�. Since the measure
valued-process ν is uniquely described by its Fourier transform, the proof of
the lemma is complete. ✷
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3. Generalizations to other matrices ensembles. In this section, we
follow the ideas of the previous part to develop large deviations upper bounds
for different matrices ensembles; first, we consider the symmetric Brownian
motion, then Wishart matrices and finally the unitary Brownian motion.

3.1. The symmetric Brownian motion. We consider the process defined on
the space 
N of symmetric real matrices and with Brownian entries. More
precisely, we can construct the entries 
Si�j

N �t�� t ≥ 0� �i� j� ∈ 
1�    �N�� via
independent real valued Brownian motions �βi�j�1≤i≤j≤n by

S
k�l
N =

√
1+ δk=l√
N

βk∧l�k∨l

We let �λ̃�N�
i �t��1 ≤ i ≤ N� be the eigenvalues of SN�t� and µ̃�N� be their

empirical process. We shall prove the following result:

Theorem 3.1. µ̃�N� satisfies a large deviation upper bound in the scale N2

with good rate function Ss = 1
2S with S as defined in Theorem 11 In other

words, for every closed subset F ∈ � ��0�1��� ����,

lim sup
N→∞

1
N2

ln��µ̃�N� ∈ F� ≤ − inf
ν∈F

Ss�ν�

Further, the following large deviations lower bounds holds; for any open subset
O of � ��0�1��� ����,

lim inf
N→∞

1
N2

ln��µ̃�N� ∈ O� ≥ − inf
ν∈O∩�∞��0�1��� ����

Ss�ν�

As a consequence, the law of µ̃�N� converges exponentially fast toward a Dirac
measure at the semi-circular process defined by (1.2). The strategy of the proof
of Theorem 3.1 follows that of the previous section; the main point is to prove
that Itô’s calculus can be developed for µ̃�N�

 . In fact, we can see that:

Lemma 3.1. Itô’s formula for SN� for every f ∈ � 1
b ��0�1��	�X��,

f�SN�t��t�

=f�SN�0��0�+
∫ t

0
D0f�SN�s��HN�s��s�9dSN�s�+

∫ t

0
∂sf�SN�s��s�ds

+
∫ t

0
�Id⊗trN�◦�L0f��SN�s��SN�s��s�ds+ 1

2N

∫ t

0
∂2xf�SN�s��s�ds

Furthermore, the martingale bracket for trN�∫ t0 D0f�SN�s�� SN�s�� s�9dSN�s��
is given by〈

trN

(∫ 

0
D0f�SN�s��SN�s��s�9dSN�s�

)〉
t

= 2
N2

∫ t

0

∫
�∂xf�2�x�s�dµ̃�N�

s �x�ds
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The proof is a direct consequence of multi-dimensional Itô’s formula and fol-
lows the proof of Lemma 2.1. The generalization to f ∈ � 2�1

b ��� �0�1�� is a copy
of the proof of Lemma 2.2. We leave it to the reader. The proof of Theorem 3.1
now follows exactly the scheme described in the proof of Theorem 1.1.

3.2. The Wishart process. We will here present the matrix-valued Wishart
process. The first results concerning the convergence of its marginals appeared
in the 1970’s ([31] and [24]). Large deviations for time marginals of this process
were obtained in [20]. It is defined by:

Definition 3.1. We will call Wishart process the matrix-valued process
�PN�M�t��t∈�+ , with value in �N, and defined by PN�M = GN�MG

∗
N�M where

�GN�M�t��t∈�+ is the �N×M-valued process with independent complex
Brownian entries which satisfy

E
[
G
i�j
N�M�t�Gk�l

N�M�s�
]
= 0 and E

[
G
i�j
N�M�t�Ḡk�l

N�M�s�
]
= t ∧ s

M
δki δ

l
j

Stochastic calculus can be developed as well for this process. To state it, let
us introduce a new operator given by, for any smooth complex function f,

Lαf = α�X⊗ 1+ 1⊗X�L0f�

that is,

Lαf�x�y�=α
x+y
x−y

(
∂xf�x�−

f�x�−f�y�
x−y

)
=α

∫ 1

0
u�x+y�∂2xf�ux+�1−u�y�du

Then:

Lemma 3.2.

1. dPN�M�t� = �GN�MdG
∗
N�M + dGN�MG

∗
N�M��t� + IdNdt

2. For every matrix A, B, C and D of MN�	�,
(AdPN�M�t�B�CdPN�M�t�D)

= N

M

(
ADtrN

(
BCPN�M�t�)+APN�M�t�DtrN

(
BC

))
dt

3. For every function f ∈ � 1
b ��0�1��	�X��,

f
(
PN�M�t�� t)
= f

(
PN�M�0��0)

+
∫ t

0
D0f�PN�M�s��PN�M�s�� s�9�GN�MdG

∗
N�M + dGN�MG

∗
N�M��s�

+
∫ t

0

(
∂sf

(
PN�M�s�� s)+ ∂xf

(
PN�M�s�� s))ds

+
∫ t

0
IdN ⊗ trN

[
LN

M
f
(
PN�M�s��PN�M�s�� s)]ds
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4. For every matrix A and B of MN�	�,

(trNAdGN�M�t�� trNBdG∗
N�M�t�) = 1

NM
trN�AB�dt

5. For every function f�g,

d
〈
trNf

(
PN�M�t�) � trNg (

PN�M�t�)〉
= 2
NM

trN
(
PN�M∂xf

(
PN�M

)
∂xg

(
PN�M

)) �t�dt
6. Let µ̂

�M�N�
t be the spectral measure of PN�M�t�; for every function f ∈

� 1
b ��0�1��	�X��, The process Q

�N�M�
f defined by

Q
�N�M�
f �t� = µ̂

�M�N�
t �f�x� t�� − µ̂

�M�N�
0 �f�x�0�� −

∫ t

0
µ̂

�M�N�
s �∂sf�x� s��ds

−
∫ t

0
µ̂

�M�N�
s �∂xf�x� s��ds−

∫ t

0
µ̂

�M�N�
s ⊗ µ̂

�M�N�
s �LN

M
f�x� s��ds

is a martingale with bracket〈
Q

�N�M�
f

〉
t
= 2
NM

∫ t

0
µ̂

�M�N�
s �x�∂xf�x� s��2�ds

The proof of this lemma for polynomial functions follows the ideas of Lemma
2.1. The generalization to smooth functions follows the proof of Lemma 2.2.

We can now state our large deviation result for µ̂�M�N�:

µ̂�M�N� � �+→ � ��+�
t → µ̂

�M�N�
t

considered as a measure-valued process of � ��0�1��� ��+�� when the ratio
�N/M� converges toward a constant α ∈ �+∗. Set, for any α ∈ �+∗, any
s� t ∈ �0�1�, any functions f and g of � 2�1

b �� × �0�1�� and every process
ν ∈ � ��0�1��� ��+��,

Ss�t�ν� f�α� =
∫
f�x� t�dνt�x� −

∫
f�x� s�dνs�x�

−
∫ t

s

∫ (
∂uf�x�u� + ∂xf�x�u�

)
dνu�x�du

−α
∫ t

s

∫ ∫ (x+ y

2

)(
∂xf�x�u� − ∂xf�y�u�

x− y

)
dνu�x�dνu�y�du�

� f�g �s�t
α�ν = 2α

∫ t

s

∫
x∂xf�x�u�∂xg�x�u�dνu�x�du�

Ss�t�ν�α� = sup
f∈�̃ 2�1

b ��×�0�1��

{
Ss�t�ν� f�α� − 1

2 � f�f�s�t
α�ν

}
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where �̃ 2�1
b ��+ × �0�1�� is the subset of � 2�1

b ��+ × �0�1�� of functions so that

sup
t∈�0�1�

sup
x∈�+

�x∂2xf�x� t�� <∞ and sup
x∈�+

�x�∂xf�x� t��2� <∞

Then:

Theorem 3.2. If N/M converges toward α ∈ �+∗ when N goes to infinity,
then the law µ̂�M�N�, as a probability measure on � ��0�1��� ��+��, satisfies a
large deviation upper bound in the scale N2, with good rate function S��α�
given by

S�ν�α� =
{∞� if ν0 �= δ0�
S0�1�ν�α�� otherwise.

The proof of this theorem follows the same steps as the proof of Theorem 1.1
once one notices that Lαf�x�y� and x�∂xf�x� t��2 are bounded continuous for
f ∈ �̃ 2�1

b ��+×�0�1��. The only point which should be noticed concerns the proof
of the exponential tightness; even though we can not control the exponential
moments of

∫
x2dµ̂

�M�N�
t �x� (which involves exponential moments of fourth

moments of Brownian motions), we can still control exponential moments of∫
xdµ̂

�M�N�
t �x� (which relies on the exponential moments of square Brownian

motion) which is enough because our eigenvalues are non-negative. In the
same lines, one can check that the level sets of S�ν�α� are relatively compact
by controlling supt∈�0�1�

∫
x�1 + ηx�−1dνt�x� on the level sets of S�ν�α� (note

that ft�x� ≡ x�1+ ηx�−1 ∈ �̃ 2�1
b ��× �0�1��) uniformly on the level sets of the

rate function and conclude by monotone convergence theorem.
We deduce the following corollary from Theorem 3.2.

Corollary 3.1. µ̂�M�N� converges almost surely toward the solution πα�t�
of the differential equation

πα�t��f� − πα�0��f� =
∫ t

0
πα�s��∂sf+ ∂xf�ds+

∫ t

0
πα�s� ⊗ πα�s��Lαf�ds

for every test function f. πα�t� is more explicitly given by the Pastur-Marchenko
law given if α ≤ 1 by

πα�t��dx� = π1
α�t��dx� = 1�t�√α−1�2�t�√α+1�2�

√
4αt2 − �x− t�1+ α��2

2παtx
dx

and πα�t��dx� = π1
α�t��dx� + �1− α�δ0�dx� if α ≥ 1.

Proof. Again, the only difficult point is to prove uniqueness for the above
differential equation. We generalize the strategy followed in [25] to prove this
point. Taking f�x� = �1/z− x� for z with non-zero imaginary part and letting

Gα
t �z� =

∫ 1
z− y

dπα�t��y�
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for a solution πα of this equation, we find

∂tG
α
t �z� = −∂zGα

t �z� + α�∂zGα
t �z� − 2zGα

t �z�∂zGα
t �z� −Gt�z�2�

The associated characteristic function satisfies

∂tz
α
t = 2αzαt G

α
t �zαt � + �1− α�(3.1)

If the imaginary part y0 of zα0 is large enough, and say its real part x0
belongs to �0�1�, there is a unique solution zα to (3.1) and it stays away
from the real axis. Indeed, since Gα is bounded Lipschitz away from the real
axis, uniqueness of such a solution is clear by a standard Gronwall’s argu-
ment. Hence, the only point is to prove existence of such a solution. Assume
y0 ≥ 0 to simplify the notations. Considering the sequence constructed by
∂tz

n+1
t = 2αznt Gα

t �znt �+�1−α�, zn+1
0 = zα0, z

0
t ≡ zα0, one finds that, if znt = xnt +iynt

and ρnt = �xnt /ynt �, since �+�G��z�� ≤ �2,�z��−1 and �,�G�z��� ≤ �,�z��−1,

1− α− α�ρnt � ≤ ∂tx
n+1
t ≤ α�ρnt � + 1+ α�

−2α�ρnt � − α ≤ ∂ty
n+1
t ≤ 2α�ρnt � + α

Letting ρn∗ = supt∈�0�1� �ρnt �, we see that for ρ0 small enough (i.e., y0 large
enough),

1− α+ x0 − αρn∗
y0 + 2αρn∗ + α

≤ ρn+1
∗ ≤ 1+ x0 − α− αρn∗

y0 − 2αρn∗ − α

so that ρn∗ remains in the interval �0� ρ∗� with

ρ∗ = 1
4α

(
−3α+ y0 −

√
�3α− y0�2 − 8α�1+ α+ x0�

)


As a consequence, ynt is bounded from below by y∗ = y0 − 2αρ∗ − α > 0.
Since Gα is bounded Lipschitz in this region, Gronwall’s lemma gives the
convergence of the sequence toward a solution of our characteristic function
living in 
z ∈ 	� Im�z� ≥ y∗�. Now, ut ≡ Gα

t �zαt � satisfies

∂tut = −αu2
t with u0 = �1/z0��

that is,

ut =
1

z0 + αt


Plugging this result in (3.1) gives

∂tz
α
t = 2α

zαt
z0 + αt

+ �1− α�(3.2)

and therefore

zαt =
(
1+ t

z0

)
�z0 + αt�(3.3)
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Hence, z0 is a root of the above second degree polynomial function such that
�z0/Im�zαt �� converges to one as Im�zαt � goes to infinity. We find

z0 = ft�zαt � = 1
2

(
−�1+ α�t+ zαt +

√
�−�1+ α�t+ zαt �2 − 4αt2

)


so that Gα
t �zαt � = �1/ft�zαt �+αt� is uniquely determined on the values taken by

zαt when z0 has a sufficiently large imaginary part. This set obviously contains
limit points. Since Gα is analytic on Im�z� > 0 (see Theorem 10.7 in [26]), it
is uniquely determined in Im�z� > 0 (see Theorem 10.18 in [26]). Similarly,
one can see that Gα

t is uniquely determined in Im�z� < 0. Finally, Stieljes
inversion formula shows that the uniqueness of Gα

t gives the uniqueness of
πα�t�. ✷

3.3. The unitary Brownian motion. As we have seen in the previous sec-
tions, our techniques extend to every case where we can obtain an Itô formula
for the spectral measure of the matrix-valued process under study. Here is a
last case where such formulae will be proven; the case of the Unitary Brownian
motion. It is defined by

Definition 3.2. We will call Unitary Brownian motion the matrix-valued
process �UN�t��t∈�+ , with value in the set of N×N unitary matrices �N, and
defined by the stochastic differential formula

dUN�t� = idHN�t�UN�t� − 1
2UN�t�dt

and U0 = I (see [5]).

Stochastic calculus can be developed as in Lemma 2.1 for this process and
one finds that:

Lemma 3.3. (i) For every adapted matrix-valued processes A�B�C and D,
we have 〈∫ 

0
A�s�dUN�s�B�s��

∫ 

0
C�s�dUN�s�D�s�

〉
t

= −
∫ t

0
trN�UN�t�B�t�C�t��A�s�UN�s�D�s�ds

(ii) For every polynomial function f, we have

df�UN�t�� = i �D0f�UN�t��UN�t�� × IdN ⊗UN�t�� 9dHN�t�
−�IdN ⊗ trN� �L0f�UN�t��UN�t�� ×UN�t� ⊗UN�t��dt
− 1

2UN�t�∂zf�UN�t��dt
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(iii) For every polynomial functions �f�g�, we have, if ḡ�z� = g�z̄� = g�1/z�
for �z� = 1,

d(trNf�UN����trNḡ�UN���ds)t = − 1
N2

trN
(
U2
N�t�∂zf�UN�t��∂zḡ�UN�t��)dt

= 1
N2

trN
(
∂zf�UN�t��∂zg�UN�t��)dt

Remark 3.1. Since U−1
N = U∗

N, the conclusions of Lemma 3.3 remains
valid for any polynomial functions f and g of �X−1�X�, that is any functions
�f�g� of the form

∑n
p=−n apx

p for a finite integer number n and real numbers
�ap�p∈
−n�n�.

Note that in fact, it is enough to consider real-valued test functions f on
s̄ = 
z = x + iy� x2 + y2 = 1� since any complex-valued function can be
decomposed into the sum of two real-valued such functions. In the following,
we shall denote � 2�1

b �s̄×�0�1���� the set of bounded twice space-continuously
differentiable and time-continuously differentiable real-valued functions on s̄.
Note that for any f ∈ � 2�1

b �s̄× �0�1����, f�UN�t�� ∈ �N.
We can extend the conclusions of Lemma 3.3 as follows:

Lemma 3.4. For any functions �f�g� ∈ � 2�1
b �s̄ × �0�1����, the conclusions

of Lemma 33 are valid.

The proof of this result is even easier than that of Lemma 2.2 (since the
random variables are uniformly bounded) and is left to the reader.

We can now define the rate function governing our large deviation upper
bound; for f ∈ � 2�1

b �s̄× �0�1���� and ν ∈ � ��0�1��� �s̄��, we set

Us�t�f� ν� =
∫
f�u� t�dνt�u� −

∫
f�u�0�dν0�u� −

∫ t

0

∫
∂sf�u� s�dνs�u�ds

+1
2

∫ t

0

∫ (
uv
∂zf�u� s� − ∂zf�v� s�

u− v

)
dνs�u�dνs�v�ds

+1
2

∫ t

0

∫
u∂zf�u� s�dνs�u�ds�

and set, if �∂zf�2 = ∂zf∂zf,

U0�1�ν� = sup
f∈� 2�1�s̄×�0�1��

{
U0�1�f� ν� − 1

2

∫ 1
0

∫ �∂zf�u� s��2dνs�u�du
}


Then, we can prove as in the previous sections that:

Theorem 3.3. The law of the empirical process ν̄�N�
 with values in � ��0�1��

� �s̄�� satisfies a large deviation upper bound with good rate function which is
infinite if ν0 �= δ1 and otherwise equal to U0�1�ν�.
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As a consequence:

Corollary 3.2. The empirical process ν̄�N�
 converges almost surely to the

unique solution in � ��0�1��� �s̄�� of∫
f�u� t�dνt�u� =

∫
f�u�0�dν0�u� +

∫ t

0

∫
∂sf�u� s�dνs�u�ds

− 1
2

∫ t

0

∫ (
uv
∂zf�u� s� − ∂zf�s� v�

u− v

)
dνs�u�dνs�v�dt(3.4)

− 1
2

∫ t

0

∫
u∂zf�u� s�dνs�u�ds�

for every test function f ∈ � 2�1
b �s̄× �0�1���� and with ν0 = δ1.

Proof. Again, the point is to show uniqueness of the solutions of this
equation. We here proceed as in Lemma 2.6; take f�u� = un with n ∈ �. We
find, if mt�n� =

∫
undνt�u� with a solution ν of (3.5), that it must satisfy

mt�n� = 1− 1
2n

n−1∑
l=1

∫ t

0
ms�l�ms�n− l�ds− 1

2n
∫ t

0
ms�n�ds(3.5)

Letting m̃t�n� = ∫
undν̃t�u� for another solution of (3.5) and denoting, for

n ∈ �,

At�n� ≡ sup
m≤n

�mt�m� − m̃t�m���

we find, since mt�n� and m̃t�n� are uniformly bounded by 1, that

At�n� ≤ �n2 + n�
∫ t

0
As�n�ds

so that Gronwall’s lemma shows that At�n� is identically null. Since the mo-
ments �mt�n��t∈�0�1� characterize the compactly supported measure ν, we con-
clude to the uniqueness of the solutions of (3.5). This unique solution ν was
already identified as the law of the free unitary Brownian motion in [5]. ✷

4. Large deviations for several matrices and Voiculescu’s non com-
mutative entropies. In this last part, our dynamical strategy will be the
key to understand large deviations and related entropies for non-commutative
random variables.

In the former part, we always consider only one matrix at a time, enabling
ourselves to diagonalize this matrix and therefore to overlook most of the
non-commutative framework of our matrices valued random variables.

Here, we shall consider several independent Hermitian Brownian motions
and establish a large deviation upper bound for the process of the law (in a
non-commutative sense) of the time marginals of these processes. One should
remark that, since the spectral measure of one matrix defines its non com-
mutative law, the previous large deviation results of Section 2 for the spectral
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measure can be seen as large deviations statements for the law (in the non-
commutative sense) of the time marginals of a single Hermitian Brownian
motion.

By the contraction principle, we get a large deviations upper bound for the
law of several independent Wigner’s matrices. The rate function for this large
deviation result defines a natural entropy for the non-commutative law of
several variables. We can compare this entropy with one of the two entropies
defined by D. Voiculescu in [28] and [29]. To be able to define such an entropy
and derive related large deviations results was the major object of our present
research.

It is important to notice that in such a framework, there is no way to use
any explicit formula for the law of the eigenvalues of each of the Hermitian
Brownian motions since they can not be diagonalized simultaneously. In par-
ticular, the strategy followed in [2] (see also [3] and [20]) to prove a large
deviation principle for the spectral measure of Wigner’s matrices is useless
when considering more than one matrix.

To motivate our readers, we shall first state our results somehow heuristi-
cally since they necessitate, to be properly set, the definition of a nice topol-
ogy (and related test functions) on the space of the laws of several non-
commutative variables. In fact, such a definition lacking in the actual non-
commutative field, we shall detail it in Subsections 4.2 and 4.3. We will finally
prove our results in Subsection 4.4.

4.1. Statement of a large deviation result for the process of the joint law
of the times marginals of several Hermitian Brownian motions and related
results. In the non-commutative formalism, the law µA of an operator A is
usually defined by its moments, that is by �τ�Ap��p∈� where τ is the trace
state of the underlying algebra. In other words, µA is the positive linear form
on 	�X� such that µA�xn� = τ�An� for every n ∈ �. From this point of view,
the law of the time marginals of the Hermitian Brownian motion HN is de-
scribed by the family �trNHp

N�t��p∈��t∈�0�1�. But the associated topology is not
the weak topology. To obtain results for the spectral measure in the weak
topology, we were driven in the previous part to consider instead the family
�trNf�HN�t���f∈�b����t∈�0�1�, that is to consider µ̂�N�

t , t ∈ �0�1�, as a positive
linear form on �b��� rather than on 	�X�.

Almost-surely,the non-commutative law of the time marginals of �Hk
N�1 ≤

k ≤ m� of m independent Hermitian Brownian motions is described by the
family

(
trNP

(
Hk

N�t��1 ≤ k ≤m
))

P∈� �Xk�1≤k≤m��t∈�0�1�

where � �Xk�1 ≤ k ≤ m� denotes the set of non-commutative polynomial
functions of m variables. Again, this is not the right topology for our purpose.
It is more appropriate to consider instead the topology generated by the non-
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commutative cylinder functions

F�Xk�1 ≤ k ≤m� =
→∏

1≤i≤n
fi�

m∑
k=1

αkiXk�(4.1)

where �fi�ni=1 belong to �b��� and �αki �1 ≤ k ≤m�ni=1 to ��m�n.
→∏

denotes the
non-commutative product. More precisely, we shall consider the non-commu-
tative functions belonging to the complex vector space ��st�	� generated by
the set ST�	� of non-commutative Stieljes transforms

F�Xk�1 ≤ k ≤m� =
→∏

1≤i≤n

1

zi −
∑m

k=1 α
k
iX

(4.2)

where �zi�1≤i≤n belong to 	\� and �αki �1 ≤ k ≤ m�ni=1 to ��m�n. ��st�	�, the
closure of ��st�	� with respect to the uniform operator norm (see (4.15)), is a
separable Banach space for this norm.

The non-commutative law ofm non-commutative variables �Xk�1 ≤ k ≤m�
will be defined as elements of the algebraic dual ��st�	�′ of ��st�	�, with
real-valued restriction to ��st���, the real vector space of Hermitian valued
functions of ��st�	� (henceforth isomorphic to ��st���′), satisfying properties
of positiveness, boundedness and total mass 1 which will be described in the
next sections. We will denote �

1
= this set.

The topology under study (called ��st���-topology) is such that a family
�τn�n∈� converges toward τ iff for every f ∈ ��st���,

lim
n→∞ τn�f� = τ�f�

�
=
1 , equipped with this topology, is a compact metric space, hence a Polish

space. This topology generalizes the usual topology inherited from compactly
supported functions. To recover the usual weak topology, we shall add a tight-
ness criterium under which our topology will be equivalent to that inherited
from the test functions of (4.1). For this strengthened topology, the relatively
compact subsets of �

=
1 will then be included in

� =
1 �A� = 
µ ∈ �

=
1 � max

1≤k≤m
µ�X2

k� ≤ A�

for some A > 0. We let � =
1 �∞� = ⋃

A∈� � =
1 �A�.

We denote ��st��×�0�1�� the space of continuously differentiable ��st���-
valued non-commutative functions and � ��0�1���=

1 � the set of continuous
�

=
1 -valued processes. The topology on the time variable remains the uniform

topology.
To describe the rate function of our large deviation principle, let us first

introduce the definitions of a few differential operators. For l ∈ 
1�    �m�, we
define the following extension DXl

from ��st�	� into ��st�	�⊗��st�	� of the
differential operator D0 defined in the previous section so that for any n ∈ �,
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any �zi�1≤i≤n ∈ �	\��n, any �αki �1 ≤ k ≤m�1≤i≤n ∈ ��m�n,

DXl

( →∏
1≤j≤n

1

zj −
∑m

i=1 α
i
jXi

)

=
n∑
i=1

αli

( →∏
1≤j≤i

1

zj −
∑m

i=1 α
i
jXi

)
⊗

( →∏
i≤j≤n

1

zj −
∑m

i=1 α
i
jXi

)
Further, if m∗ denotes the map from ��st�	� ⊗ ��st�	� into ��st�	� so that
for any �F�G� ∈ ���st�	��2, any �Xk�1 ≤ k ≤m� ∈ � m

N , N ∈ �,

m∗�F�Xk�1 ≤ k ≤m� ⊗G�Xk�1 ≤ k ≤m��
= G�Xk�1 ≤ k ≤m�F�Xk�1 ≤ k ≤m��

we set, for l ∈ 
1� �m�, �Xl
to be the cyclic derivative w.r.t Xl,

�Xl
=m∗ ◦DXl



If ∗ denotes the natural extension of the involution on ��N�N ∈ �� to � =⋃
N∈� �N, for any non-commutative Stieljes function F ∈ ST�	�, we let

� ∗
Xl

(
F�Xk�1 ≤ k ≤m�) = (

�Xl

(
F�Xk�1 ≤ k ≤m�))∗



We are now in position to define our rate function. For 0 ≤ s ≤ t ≤ 1,
F�G ∈ ��st��× �0�1��, ν ∈ � ��0�1���=

1 �, let

S
s�t�ν�F� = νt�Ft� − νs�Fs� −

∫ t

s
νu�∂uFu�du

− 1
2

∫ t

s
νu ⊗ νu

(
m∑
l=1

DXl
◦�Xl

Fu

)
du�

(((F�F)))s�tν =
m∑
l=1

∫ t

s
νu��Xl

Fu�
∗
Xl
Gu�du�

S
s�t�ν� = sup

F∈��st��×�0�1��

(
S
s�t�ν�F� − 1

2(((F�F)))s�tν
)


Let δGm0 be the non-commutative law such that δGm0 �F�Xk�1 ≤ k ≤ m�� =
tr1F�0�    �0� for every F ∈ ��st���. We set

S�ν� =
{
+∞� if ν0 �= δGm0 or ν �∈ � ��0�1���=

1 ��
S

0�1�ν�� otherwise.

Then, we shall prove:

Theorem 4.1. Let µ̂�N� be the continuous �
=
1 -valued process so that for

any F ∈ ��st���, we have µ̂
�N�
t �F� = trN�F�Hk

N�t��1 ≤ k ≤m��; the law µ̂�N�

satisfies a large deviation upper bound in the scale N2 with good rate function
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S. More precisely�
1. The level sets ofS are compact in � ��0�1���=

1 �.
2. For any M ∈ �+, there exists A ∈ �+ so that the level set EM ≡ 
µ ∈

� ��0�1���=
1 �� S̄�µ� ≤M� satisfies

EM ⊂ � ��0�1��� =
1 �A�� ≡ {

µ ∈ � ��0�1���=
1 �� µt ∈ � =

1 �A�� ∀t ∈ �0�1�}
Hence, {

µ ∈ �
(�0�1���=

1

)
� S̄�µ� <∞} ⊂ ⋃

A∈�
� ��0�1��� =

1 �A��

3. For any closed subset F of � ��0�1���=
1 �,

lim sup
N→∞

1
N2

ln�
(
µ̂�N� ∈ F

)
≤ − inf

ν∈F
S�ν�

If �� st��� is the set of non-commutative functions F mapping �N × �N

into �N for any N ∈ � and so that there exists a family �Fn�n∈� ∈ ��st���,
so that

�F−Fn��Xk�1 ≤ k ≤m� ≤ 1
n

(
m∑
k=1

X2
k + 1

)
where �F� = √

FF∗, ≤ is to be understood in the sense of quadratic forms,
then, Theorem 4.1 can be strengthened to the �� st���-topology as follows:

Corollary 4.1. (i) For any integer number n, any times �tj�nj=1 ∈ �0�1�n,
any family �Fj�nj=1 ∈ �� st��� , for any real constants �aj� bj� aj ≤ bj�nj=1,

lim sup
N→∞

1
N2

ln�

(
m⋂
j=1


trN
(
Fj�Hk

N�tj��1 ≤ k ≤ n�
)
∈ �aj� bj��

)
≤ − inf

{
S�ν� � νtj

(
Fj�Xk�1 ≤ k ≤m�) ∈ �aj� bj� ∀j ∈ 
1�    � n�

}
(ii) For any function F ∈ �� st���, the law µ̂

�N�
F of the spectral measure of

�F�Hk
N�t��1 ≤ k ≤m��t∈�0�1� ∈ � ��0�1��� ���� satisfies a large deviation upper

bound in the scale N2 with good rate function


F�ν� = inf
{
S�ν̃�� ν = ν̃ ◦F−1

}
where ν̃◦F−1 is the measure valued-process so that, for any function g ∈ �b���,
for any time t ∈ �0�1�,

ν̃t ◦F−1�g� ≡ ν̃t�g�F��

Proof. Corollary 4.1 is a consequence of the contraction principle; indeed,
by Property 4.2, Theorem 4.1 and Theorem 4.2.1 of [14], the spectral measure
µ̂

�N�
F of �F�Hk

N�t��1 ≤ k ≤ m��t∈�0�1� satisfies a large deviations upper bound
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with good rate function 
F for any F ∈ ��st���. Further, by Lemma 4.2, the
laws of �µ̂�N�

Fn
�n∈� are exponentially good approximations of the law of µ̂�N�

F

since for any δ > 0, if � is given by (1.5),

�
(
� �µ̂�N�

Fn
� µ̂

�N�
F � > δ

)
≤ �

(
sup
t∈�0�1�

trN� ∑
1≤k≤m

�Hk
N�t��2 + 1� ≥ nδ

)
so that (2.10) and Chebishev’s inequality result with

lim sup
n→∞

lim sup
N→∞

1
N2

log�
(
� �µ̂�N�

Fn
� µ̂

�N�
F � > δ

)
= −∞

for all δ > 0. Thus, Theorem 4.1 (2) and Theorem 4.2.23 of [14] show that the
law of µ̂�N�

F satisfies a large deviations upper bound with rate function 
F for
the weak topology. This completes the proof of the second point. For the first
point, we can proceed similarly by noticing first that if the functions Fj belong
to ��st���, the contraction principle immediately implies the result and that
the extension can be obtained by exponential approximations. ✷

Properties 1.3 and 1.1 are direct consequences of Corollary 4.1.
Here, we considered Hermitian Brownian motions. However, it is not hard

to generalize the results to symmetric Brownian motions, Wishart processes or
Unitary Brownian motions following Section 3. Also, viewing unitary matrices
as functions of Wigner’s matrices we can deduce a large deviation upper bound
for the non-commutative law of independent unitary matrices following Haar
measure on the unitary ensemble. More precisely, let �UN

1 �    �U
N
m� be mN×

N i.i.d matrices uniformly distributed on U�N�. �UN
1 �    �U

N
m� has the same

law as

F
(�HN

l �1��1≤l≤2m
)

= (�HN
2l−1�1� + iHN

2l�1��−1 (HN
2l−1�1� + iHN

2l�1�
))

1≤l≤m
(4.3)

with �HN
l �t��1 ≤ l ≤ 2m� t ∈ �0�1�� i.i.d Hermitian Brownian motions and

�HN
2l−1�1� + iHN

2l�1��

= (�HN
2l−1�1� + iHN

2l�1���HN
2l−1�1� + iHN

2l�1��∗
) 1

2

= (
HN

2l−1�1�2 +HN
2l�1�2 + i�HN

2l�1�HN
2l−1�1� −HN

2l−1�1�HN
2l�1��

) 1
2 

As a consequence, if we consider the joint law µ̄�N� of �UN
1 �    �U

N
m� as an

element of the topological dual � �Ul�1 ≤ l ≤m�∗ of the set � �Ul�1 ≤ l ≤m�
of non-commutative polynomial functions of m variables,

µ̄�N��P� = trNP�UN
1 �    �U

N
m�� P ∈ � �Ul�1 ≤ l ≤m��

furnished with the weak topology compatible with the distance

�̂ �µ� ν� = ∑
k∈�

1
2k

sup
σ �
1��k�→
1��m�k

∣∣∣∣∣µ
( →∏

1≤i≤k
Uσ�i�

)
− ν

( →∏
1≤i≤k

Uσ�i�

)∣∣∣∣∣ �
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Theorem 4.1 results with:

Corollary 4.2. There exists a good rate function �̄ on � �Ul�1 ≤ l ≤m�∗
so that for any closed subset F of � �Ul�1 ≤ l ≤m�∗,

lim sup
N→∞

1
N2

log�
(
µ̄�N� ∈ F

)
≤ − inf

F
�̄

If, for n ∈ �, we let

Fn�Xl�1 ≤ l ≤ 2m� =
((

�X2l−1 + iX2l�2 +
1
n

)− 1
2

�X2l−1 + iX2l�
)

1≤l≤m
�

�̄ is given by

�̄�µ� = lim inf
n→∞ inf

{
S�ν�� ν1 ◦F−1

n = µ
}


Here, ν◦F−1
n denotes the image byFn of the non commutative measure ν given,

for any polynomial functionP ofm non-commutative variables, by ν◦F−1
n �P� =

ν�P�Fn��. The proof of this corollary is provided in Subsection 4.5.
Another corollary of Theorem 4.1 gives the convergence of the non-commu-

tative law of �Hk
N�1 ≤ k ≤m�

Property 4.1. The non-commutative law of �Hk
N�1 ≤ k ≤ m� converges

almost surely toward the law of m free Brownian motions, unique solution in
� ��0�1��� =

1 �∞�� of the differential equation

νt�Ft� = νs�Fs� +
∫ t

s
νu�∂uFu�du+ 1

2

∫ t

s
νu ⊗ νu

(
m∑
l=1

DXl
◦�Xl

Fu

)
du

for any F ∈ ��st��× �0�1��, any 0 ≤ s ≤ t ≤ 1, with initial data δGm0 .

This property is proven in Section 4.6.
Another application of the contraction principle and of Theorem 4.1 is to ob-

tain large deviations estimates for the time marginals of our process. Namely:

Corollary 4.3. For any time t ∈ �0�1�, the law, in the non-commutative
sense, of �Hk

N�t��1 ≤ k ≤ m� satisfies a large deviation upper bound in the

scale N2 with good rate function given, for any ν ∈ �
=
1 by

St�ν� = inf
S�ν̃�� ν̃t = ν�

We shall define:

Definition 4.1. We shall call non-commutative entropy of order II the
function on �

=
1 given by

Ī�µ� = inf
ν∈� ��0�1��� =

1 �∞��

S�ν�� ν1 = µ�
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This entropy can in fact be compared with the second entropy defined by
Voiculescu (see [29]) up to a proper interpretation of our entropy in his formal-
ism. Let’s be given a non-commutative probability space �� � τ�, that is a von
Neumann algebra � endowed with a trace state τ, and a family �A1�    �Am�
of self-adjoint elements in � . The associated law µ is then defined as the
element of �=

1 such that

∀F ∈ ��st���� µ
(
F
) = τ �F�A1�    �Am�� 

The definition of the free information of µ given by Voiculescu is based on the
adjoints �� µ

Xl
�1 ≤ l ≤ m� in L2�µ� of DXl

, l ∈ 
1�    �m�, satisfying, if they
exist, for any non-commutative polynomial function F,

µ⊗ µ�DXl
F� = µ�F�

µ
Xl

�� 1 ≤ l ≤m

The free information is then infinite if �� µ
Xl
�1 ≤ l ≤ m� are not well-defined

and otherwise given by

0∗�A1�    �Am� =
m∑
l=1

µ��� µ
Xl

�2� ≡ 0∗�µ�

Replacing the polynomial functions with non-commutative functionals of
��st���, we have

0∗�µ� ≥ 2 sup
Fl∈��st���

{
µ⊗ µ

( m∑
l=1

DXl
Fl

)
− 1

2
µ

( m∑
l=1

F2
l

)}
and equality if we further assume that the �� µ

Xl
�1 ≤ l ≤ m� can be approxi-

mated by functions of ��st���. To define Voiculescu’s free entropy χ∗, we need
to introduce first the following map on �

=
1 ; for F ∈ ��st���, t ∈ �0�1�, we set

µbt
(
F
) = τ

(
F�tAl +

√
t�1− t�Sl�1 ≤ l ≤m�

)
where �Sl�1 ≤ l ≤ m� are free semicircular variables, free with �Al�1 ≤ l ≤
m�. �µbt �t∈�0�1� is the law of a m-dimensional free Brownian bridge between δGm0
and µ (that is a non commutative process with initial law δGm0 and law µ at
time one). Then, we let

χ∗�µ� = 1
2

∫ 1

0

(m
t

−0∗�µbt �
)
dt+ m

2
ln�2πe�

The reader can check that this corresponds to the more common definition
given by Voiculescu in [29]:

χ∗�µ� = 1
2

∫ ∞

0

(
m

1+ t
−0∗�X1 +

√
tS1�    �Xm +√

tSm�
)
dt+ m

2
ln�2πe�

by changing the time variable t = �1 + s�−1 and recalling that for any λ ∈ �,
0∗�λA1�    � λAm� = λ−20∗�A1�    �Am�.

In comparison, if we consider our entropy Ī, then, we first perform an infi-
mum over the processes with marginals δGm0 at time 0 and µ at time 1. Because
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it is natural that such an infimum should be taken at the free Brownian bridge,
we bound Ī by

Ī�µ� ≤ S̄�µb�(4.4)

One can check that µb verifies the differential equation

µbt �Ft� − µbs�Fs� =
∫ t

s
µbu�∂uFu�du

−1
2

∫ t

s
µbu ⊗ µbu

((
m∑
l=1

DXl
◦�Xl

)
Fu

)
du

+
∫ t

s
µbu

(
m∑
l=1

Xl

u
�Xl

Fu

)
du

(4.5)

for every test functions F ∈ ��st��× �0�1�� and µ0 = δGm0 , µ1 = µ. With (4.4),
we find

Ī�µ� ≤
∫ 1

0

J̄�µ̃bu�
u

du(4.6)

where µ̃bu is the image of µbu by the homothety of ratio �1/√u� and

J̄�µ�= sup
F∈��st���

{
µ⊗µ

( m∑
l=1

DXl
◦�Xl

F

)
−µ

( m∑
l=1

Xl�Xl
F

)
− 1

2

m∑
l=1

µ���Xl
�F�2�

}


J̄ stands for our definition of the free Wigner’s information. It is straightfor-
ward, by the translationF�Xl�1 ≤ l ≤m� → F�Xl�1 ≤ l ≤m�−�1/2�∑m

l=1X
2
l

[which is possible even though
∑m

l=1X
2
l are not bounded because µ�∑m

l=1X
2
l � =

τ�∑m
l=1A

2
l � is finite] that

J̄�µ� = sup
F∈��st���

{
µ⊗ µ

(
m∑
l=1

DXl
◦�Xl

F

)
− 1

2

m∑
l=1

µ���Xl
F�2�

}

+ 1
2µ

(
m∑
l=1

X2
l

)
− m

2
(4.7)

≤ 1
2�0∗�µ� −m� + 1

2

m∑
l=1

�µ�X2
l � − 1�

where the second term naturally shows up since we are considering the Gaus-
sian ensemble. Because, in view of [29], page 214, 0∗�µ̃bt � = t0∗�µbt �, we con-
clude that, up to a Gaussian term, our entropy is dominated by Voiculescu’s.
More precisely,

Ī�µ� ≤ −χ∗�µ� + 1
2

m∑
l=1

�µ�X2
l � − 1� + m

2
log�2πe�

Let us finally remark that we believe (4.6) to be an equality but that we have
not make our mind whether (4.7) should be an equality or not in general, which
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amounts to wonder if �� µ
Xl
�1 ≤ l ≤ m� can be approximated by functions of

the cyclic gradient space 
��Xl
F�1 ≤ l ≤ m��F ∈ ��st����. Two very recent

works suggest a positive answer; D. Voiculescu [30] has shown that the non-
commutative Hilbert transform �� µ

Xl
�1 ≤ l ≤m� is in the cyclic gradient space

as soon as it is polynomial and we could show [9] that any law µ with finite
χ∗ entropy can be approximated by laws µn with non-commutative Hilbert
transform in the cyclic gradient space. A more detailed study of the relations
between χ∗ and Ī is actually the subject of the work in progress [9].

4.2. Definitions and Itô’s formulæ. In this section, we introduce our sets of
Stieljes test functions and precise the definitions of the differential operators
introduced in the previous part. We then provide an Itô’s formula.

Let us first give a few definitions. We shall consider the following spaces

� = ⋃
N∈�

�N � = ⋃
N∈�

�N �×m = ⋃
N∈�

� m
N

� is furnished with the involution ∗, extension of the usual involution on each
�N, N ∈ �. The set of non-commutative functions � �	� is the subset of the
functions F � �×m → � such that for any N ∈ �, for any �Al�1 ≤ l ≤ m� ∈
�N, F�Al�1 ≤ l ≤m� belongs to the algebra generated by �Al�1 ≤ l ≤m�. In
particular, F�� m

N � ⊂ �N.

Remark 4.1. In fact, in view of the following, we could consider more
generally � �	� as functions on von Neumann algebras so that for any von
Neumann algebra M, any �Al�1 ≤ l ≤ m� ∈ Mm, F�Al�1 ≤ l ≤ m� belongs
to the algebra generated by �Al�1 ≤ l ≤ m�, and thus in particular to M.
Furnishing von Neumann algebras with an involution ∗ and an operator
norm �� ��∞, we can extend the rest of this article to this set up. This approach
is more common in free probability. However, we found that it might confuse
the reader unnecessarily in this paper.

We shall denote � ��� the subset of � �	� of Hermitian matrices-valued
functions. �Xl�1 ≤ l ≤ m� will denote the canonical coordinates in �×m and
�Al�1 ≤ l ≤m� some element of �×m.

Remarks 4.1.

1. If f is a real function, we can define the functions

Fl�Al�1 ≤ l ≤m� = f�Al�� 1 ≤ l ≤m

It is straightforward that Fl, 1 ≤ l ≤m, belong to � ���.
2. It is not hard to verify that � �	� is a non-commutative algebra, but that

� ��� is not an algebra.
3. There exists a partial order on � ���. If �F�G� ∈ � ���, F ≤ G iff ∀N ∈ ��

∀�Al�1≤l≤m ∈ � m
N �

G�Al�1 ≤ l ≤m� −F�Al�1 ≤ l ≤m� is a non negative matrix of �N
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4. Remark that any function F ∈ � �	� can be decomposed into the sum F1+
iF2 of two functions �F1�F2� ∈ � ���withF1 = 1

2�F+F∗� andF2 = 1
2�−iF+

iF∗�. Here, F∗ is defined by F∗�Al�1 ≤ l ≤ m� = �F�Al�1 ≤ l ≤m��∗ for
any �Al�1 ≤ l ≤m� ∈ � m

N , N ∈ �.

For any integer number n ∈ �, any real numbers α = �αp�1≤p≤n ∈ ��m�n,
and any complex numbers z = �zk�1≤p≤n with non zero imaginary part, we
introduce the non commutative Stieljes function

0α�z�Xl�1 ≤ l ≤m� ≡
→∏

1≤p≤n

1
zp −∑m

l=1 α
l
pXl

and let

ST�	� ≡ 
0α�z� �α� z� ∈ ��m × �	\���n� n ∈ �� ⊂ � �	�
be the non-commutative Stieljes basis. We let ��st�	� be the complex vector
space generated by ST�	�;

��st�	� ≡
{

p∑
i=1

tjFj� �tj�1≤j≤p ∈ 	p� �Fj�1≤j≤p ∈ ST�	�p�p ∈ �

}


��st�	� contains the identity.
To extend the definitions of the differential operators encountered in the

previous section to ��st�	�, we first describe the notion of non-commutative
Stieljes bi-functions. Note first that for any �F�G� ∈ � �	�, F ⊗ G is well-
defined as the function on �×m so that for any N ∈ �, any �Al�1 ≤ l ≤ m� ∈
� m
N ,

F⊗G�Al�1 ≤ l ≤m� = F�Al�1 ≤ l ≤m� ⊗G�Al�1 ≤ l ≤m�
where F�Al�1 ≤ l ≤ m� ⊗ G�Al�1 ≤ l ≤ m� stands for the standard tensor
product in �N ⊗�N. We can therefore set

ST⊗ST�	� ≡
{
0α�z ⊗0α̃�z̃� �α� z� ∈ ��m × �	\���n�

�α̃� z̃� ∈ ��m × �	\���ñ� �n� ñ� ∈ �

}


We denote ��st⊗��st�	� the complex vector space generated by ST⊗ST�	�.
We can now describe the following extensions of the derivations appearing in
the previous section; we set DXl

, l ∈ 
1�    �m� to be the linear operator on
��st�	� satisfying for every F�G ∈ ST�	� and f�x� = �1/z − x�, z ∈ 	\�,
�αk�1 ≤ k ≤m� ∈ �m, any �Ak�1 ≤ k ≤m� ∈ �×m by

DXl
�FG� = DXl

�F�1⊗G+F⊗1DXl
�G��

DXl

(
f

(
m∑
k=1

αkXk

))
�Ak�1≤k≤m� = αl�D0f�

(
m∑
k=1

αkAk�
m∑
k=1

αkAk

)
(4.8)
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where D0 was defined in Section 2. More explicitly,

DXl

(
f

(
m∑
k=1

αkXk

))
�Ak�1≤k≤m�

=αl
1

z−∑m
k=1αkAk

⊗ 1
z−∑m

k=1αkAk



(4.9)

From (4.8) and (4.9), it is straightforward that for any n∈�, any �α�z�∈��m×
�	\���n,

DXl
0α�z�Ak�1≤k≤m�

=
n∑
j=1

αlj0αj�zj
�Ak�1≤k≤m�0αj�zj

�Ak�1≤k≤m�(4.10)

⊗0αj�zj
�Ak�1≤k≤m�0αj�zj�Ak�1≤k≤m�

with �αj�zj�=�αk�zk�k<j (resp. �αj�zj�=�αk�zk�k>j). In particular, for any
l∈
1��m�, DXl

���st�	��⊂��st⊗��st�	�. Further, if m∗ denotes the linear
map from ��st�	�⊗��st�	� into ��st�	� so that for any �F�G�∈�ST�	��2,
any �Ak�1≤k≤m�∈�×m,

m∗�F⊗G��Ak�1≤k≤m�=G�Ak�1≤k≤m�F�Ak�1≤k≤m��
we let the cyclic derivative �Xl

, l∈
1��m�, be the linear operator from
��st�	� into ��st�	� given by

�Xl
≡m∗ ◦DXl

(4.11)

More precisely, for any n∈�, �α�z�∈��m��	\���n, (4.11) yields

�Xl
0α�z�Ak�1≤k≤m�=

n∑
j=1

αlj0α�j��z�j��A�B�(4.12)

with �α�j��z�j��∈��m��	\���n+1 given by

�α�j��z�j��p = �αj+p−1�zj+p−1� p∈�1�n−j+1�
= �αp−n+j−1�zp−n+j−1� p∈�n−j+2�n+1�

In the sequel, we shall denote �α�j��z�j��l=�α�z�σj�l� for a map σj from

1��n� into 
1��n+1�, n∈�, defined by the above formulae. Note that
(4.12) implies the stability property �Xl

���st�	��⊂��st�	�� 1≤l≤m We
finally define, for l∈
1��m�, the linear second order operator LXl

from
��st�	� into ��st⊗��st�	� by

LXl
≡ 1

2DXl
◦�Xl

(4.13)

LXl
can also be defined as

LXl
= 1

2m̃
∗(�1⊗DXl

+DXl
⊗1�◦DXl

)
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if m̃∗ is the linear map from ��st�	�⊗3 into ��st�	�⊗2 so that for any �F�G�H�
∈�st�	�3,

m̃∗�F⊗G⊗H�=G⊗�HF�
We also have the more explicit formula for any integer number n∈�, any
�α�z�∈��m��	\���n, any �Ak�1≤k≤m�∈�×m,

LXl
0α�z�Ak�1≤k≤m�

=
n∑
j=1

n+1∑
l=1

αljασj�l�0�ασj �l��zσj �l0ασj�l��zσj�l�
�Ak�1≤k≤m�(4.14)

⊗0ασj�l��zσj�l�
0�ασj �l��zσj �l�Ak�1≤k≤m�

We can define the adjoint of �Xl
so that for any F∈��st�	� and any �Ak�1≤

k≤m�∈�×m,

� ∗
Xl
F�Ak�1≤k≤m�≡��Xl

F�Ak�1≤k≤m��∗
We shall note, for any F∈��st�	�, l∈
1��m�,

��Xl
F�2≡�Xl

F� ∗
Xl
F

Note for further purpose that ��Xl
���st�	���2⊂��st�	�.

If ��st��×�0�1�� denotes the space of continuously differentiable functions
from �0�1� into ��st���=��st�	�∩� ���, we can state the following:

Theorem 4.2. Itô’s formula: let F∈��st��×�0�1��; then the process on
�0�1� given by

Q
�N�
F �t� ≡ trNF�Hk

N�t��1≤k≤m�t�−δGm0 �F��0��
−
∫ t

0
trN∂sF�Hk

N�s��1≤k≤m�s�ds

−
∫ t

0
trN⊗trN

(( m∑
l=1

LXl

)
�F��Hk

N�s��1≤k≤m�s�
)
ds

is a real-valued local martingale for the canonical filtration of �Hk
N�1≤k≤m�

with martingale bracket〈
Q

�N�
F �Q

�N�
F

〉
t
= 1
N2

∫ t

0
trN

( m∑
l=1

��Xl
F�2�Hk

N�s��1≤k≤m�s�
)
ds

Proof. The proof of the formula is analogue to that of Lemma 2.1 and
can be seen to be a consequence of Itô’s formula. Q�N�

F �t� can be seen to be
real-valued since, as F∈��st��×�0�1��, for any time t∈�0�1�,

trNF�Hk
N�t��1≤k≤m�t� = trNF

∗�Hk
N�t��1≤k≤m�t�

= trNF�Hk
N�t��1≤k≤m�t�

and hence Q�N�
F �t�=Q�N�

F∗ �t�=Q�N�
F �t� .✷
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So far, we have exhibited a vector space ��st��� generated by a family
ST�	� of test functions which is stable under the diverse differential operators
showing up when we perform Itô’s calculus. In the next section, we shall endow
this set with a uniform topology and study the associated topology inherited
on the space of non-commutative probability measures by duality.

4.3. Topology. We can endow the space of non-commutative functions � �	�
with the following norm ��·��∞�∞. For any F∈� �	�, any N∈�, set

'F'∞�N=sup
'F�Ak�1≤k≤m�'∞ ��Ak�1≤k≤m�∈� m
N �

with '·'∞ the operator norm given, for any A∈�N, any N∈�,

��A��∞= sup
��u��N=1

(u�A∗Au)
1
2
N

if <u�v>N=∑N
i=1uiv̄i and �� ��N the associated norm. Note that if A is Her-

mitian, ��A��∞ is the spectral radius of A but that it is greater in general.
Then, we define, for any F∈� �	�,

'F'∞�∞=sup
N≥1

'F'∞�N(4.15)

Remark 4.2. This norm generalizes the usual supremum norm on � since,
if F�Ak�1≤k≤m�=f�Al� for f∈�b���, we have 'F'∞�∞='f'∞

Let ��st�	� (resp. ��st���) be the closure of ��st�	� (resp. ��st���) for the
norm �� ��∞�∞. ��st�	� and ��st��� are separable Banach spaces. Note that:

Lemma 4.1. (a) For any F∈��st�	�, ��F��∞�∞<∞.

(b) For any F∈��st���, any f∈�b���, f◦F∈��st���.

Proof. The first point boils down to show that any F∈ST��� has finite
norm. Note that for any N∈�, any A�B∈�N×�N, ��AB��∞≤��A��∞��B��∞, so
that for any F�G∈ST�	�,

��FG��∞�∞≤��F��∞�∞��G��∞�∞

Hence, it is enough to bound the norm of �z−∑m
l=1αlXl�−1 for z∈	\� and αk∈

� to conclude, or equivalently that for any z∈	\�, any A∈� , �z−A�−1�z̄−
A�−1 has a spectral radius bounded independently of A. Diagonalizing the
matrix A, it amounts to notice that for any x∈�, �z−x�−1 is bounded by the
inverse of the absolute value of the imaginary part ,�z� of z.

For the second point, recall first that for any �Ak�1≤k≤m�∈� m
N , any

N∈�, if U is a N×N unitary matrix such that F�Ak�1≤k≤m�=U∗DU for
a diagonal matrix D∈�N, f�F��Ak�1≤k≤m�=U∗f�D�U Further, one can
use Runge’s Theorem 13.7 in [26] to approximate f uniformly by polynomial
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functions fn on �−��F��∞�∞���F��∞�∞�. Since the elements of D are uniformly
bounded by ��F��∞�∞, we conclude that

��f�F��Ak�1≤k≤m�−U∗fn�D�U��∞≤ sup
x∈�−��F��∞�∞���F��∞�∞�

�f−fn��x�≡εn

and hence, taking the supremum over �Ak�1≤k≤m�∈� m
N andN∈�, ��f�F�−

fn�F���∞�∞≤εn. Since for any F∈�� st���, any n∈�, �F�n∈�� st���, fn�F�∈
�� st��� for any n∈� and the claim follows. ✷

Remark 4.3. As a consequence of Stone-Weierstrass theorem, if one con-
siders the cylinder functions going to zero at infinity

��0�	� =
 M∑
j=1

→∏
1≤i≤kj

f
j
i

(
m∑
k=1

α
j
i �k�Xk

)
�M∈���kj�1≤j≤M∈�M�f

j
i ∈�0����

�αji �l��1≤l≤m�∈�m�1≤j≤M�1≤i≤kj
}
�

the closure of ��0�	� by �� ��∞�∞ is ��st�	�.

We can now define the set of non-commutative probability measures; let
�� st�	�′ be the algebraic dual of �� st�	�, that is the set of linear function-
als on �� st�	�. � is the subset of �� st�	�′ of linear maps with real-valued
restriction to the real vector space �� st���. Any µ∈� can be decomposed as
µ=ν+iν, ν∈�� st���′ since for any F∈�� st�	�,

µ�F�=µ
(
F+F∗

2

)
+iµ

(
F−F∗

2i

)
with 2−1�F+F∗���2i�−1�F−F∗�∈�� st���. Hence � is isomorphic to �� st���′.
We furnish � with the weak topology induced by �� st���, denoted �� st���-
topology. It is the analogue of the topology on the space of measures on �
inherited from the set of test functions going to zero at infinity according to
the last remark.

We shall now introduce the analogue of the set of probability measures (i.e.,
the notions of boundedness, positiveness and mass 1).

For any positive real number a, we denote by � a the subset of � of linear
forms µ such that

∀F∈�� st�	�� �µ�F��≤a'F'∞�∞(4.16)

Remark that, for any a>0, � a can be seen as a subset of the algebraic dual of
�� st�	� and that the �� st���-topology is equivalent to the �� st���-topology
on � a. Hereafter, we shall always consider � a as such.

We shall say that a linear form µ∈� a, a>0, is positive iff

∀F∈��st���� F≥0.⇒µ�F�≥0

where the first inequality was defined in remark 4.1.
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µ will be said to be tracial if

∀F�G∈��st�	�� µ�GF�=µ�FG�

Remark 4.4. If a linear form µ is tracial and positive:
0. ∀F�G∈��st�	�, [

µ

(
FG∗+GF∗

2

)]2

≤µ�FF∗�µ�GG∗�

1. ∀F∈��st���� G∈��st���, F≥0,

µ�GF�≤'G'∞�∞µ�F�
2. ∀F∈��st���,

µ�F�≤µ��F��
3. ∀F∈��st���, f∈� 1���, f′ ≥0, any F�G∈��st���, F≤G,

µ�f�F��≤µ�f�G��
4. For any F�G∈��st���, any Lipschitz function f on �,∣∣µ�f�F��−µ�f�G��∣∣≤�f�� µ��F−G��
with

�f�� = sup
x�y∈�

�f�x�−f�y��
�x−y� 

Point 0 can be easily demonstrated as a standard Cauchy-Schwarz formula.
For point 1, notice that writing F=F 1

2F
1
2 [with F

1
2 ∈��st��� according to

Lemma 4.1] and noticing that F
1
2 �G−'G'∞�∞1�F 1

2 ≤0, one sees that

µ�GF�−'G'∞�∞µ�F�=µ
(
F

1
2 �G−'G'∞�∞1�F 1

2

)
≤0

For the second point, we simply know that �F�≥F so that positiveness of µ
gives the estimate. For point 3, note that

µ�f�F��−µ�f�G��=µ
(
�F−G�

∫ 1

0
f′�αF+�1−α�G�dα

)
(4.17)

and hence, if F≤G we can proceed as for point (1) to see that, if f′ ≥0,

µ�f�F��−µ�f�G��≤0

For the last point, first assume that f is continuously differentiable and note
that by (4.17) and point 2,

�µ�f�F��−µ�f�G���≤µ���F−G�
∫ 1

0
f′�αF+�1−α�G�dα��(4.18)
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Now,

�F−G��
(∫ 1

0
f′�αF+�1−α�G�dα

)2

�F−G�≤��f′��2∞�F−G�2

and applying (3) with g�x�=√
x, we deduce

�µ�f�F��−µ�f�G���≤��f′��∞µ��F−G��
Since F and G∈��st��� are uniformly bounded and � 1

b ��� is dense in the set
of Lipschitz functions for � �� on compact sets, the result follows for Lipschitz
functions.

Let �
+
a be the subset of � a of positive tracial linear forms. We can define

the notion of total mass for any linear form µ of �
+
a by

mµ=sup
{
µ�F�� F∈��st���� 'F'∞�∞≤1

}= inf
{
λ∈�+� µ∈�

+
λ

}
The analogue of the commutative set of probability measures will be the subset
�

=
1 of �

+
1 of linear form with total mass mµ exactly equal to one. Note that

mµ=µ�1� since, as µ is positive, for any F∈��st���,
µ�F�=µ�F1�≤'F'∞�∞µ�1�

so that

mµ≤µ�1�
and moreover that 1∈�� st��� implies µ�1�≤mµ and the desired equality.

By a standard diagonalization procedure, it is not hard to check as in the
commutative setting that �

=
1 is compact for the ��st���- topology since

��st��� is separable. The ��st���- topology is compatible on �
=
1 with the

distance

d̄�µ�ν�=���µ−ν���≡ ∑
p∈�

1
2p

�µ�Fp�−ν�Fp��

where �Fp�p∈� is a basis of uniformly bounded functions of ST�	� (or ST���)
such as 
0α�z��α�z�∈��m×�i+���n�n∈��. Hence, �

=
1 is a compact metric

space, thus Polish.
Notice here that it is not clear whether the elements of �

=
1 satisfy a count-

ably additive property (and how it should be stated), characterizing standard
measures. However, the marginals of �

=
1 are standard probability measures,

namely:

Property 4.2. Let F∈��st���. Then, the linear functional µF on �b���
given by

µF�f�=µ�f◦F�
is a compactly supported probability measure on �. Further, the map µ→µF
from �

=
1 , furnished with the ��st���-topology, into � ���, furnished with the

weak topology, is continuous.
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Proof. First recall that, according to Lemma 4.1, f◦F∈��st��� so that
µF is well-defined as a linear map on 	b���. Further, µF is bounded since by
(4.16), for any f∈�b���,

µF�f�≤��f◦F��∞�∞≤��f��∞
Moreover, F being uniformly bounded, µF can be seen as a linear map on
�c���. Finally, µF is positive. Thus, by Riesz’s representation Theorem 2.14 in
[26], there exists a unique positive measure (hence countably additive), also
denoted µF, so that for every f∈�c���,

µF�f�=
∫
f�x�dµF�x�

Moreover, µF is compactly supported [since F∈��st��� is uniformly bounded]
so that it has finite mass. This mass is necessarily smaller than 1 since µ∈�

=
1 ,

and can be seen to be exactly equal to one by taking the constant function
equal to the unity. Hence, µF is a probability measure on �−��F��∞�∞���F��∞�∞�.
Further, if we take a sequence µn∈�

=
1 converging toward µ for the ��st���-

topology, for any f∈�b���, µnF�f� converges toward µF�f� as n goes to infinity
since f◦F∈��st���. Therefore, µ→µF is continuous. ✷

It can be useful to consider as well the marginal law of unbounded functions,
to begin with the laws of the canonical coordinates. This requires an extra
tightness property, which will be expressed as a second moment condition.
Let � be the set of Stieljes functions 
�z−x�−1�z∈	\��.

Let us consider the marginals µXl
, l∈
1��m�, of µ∈�

=
1 defined by

∀f∈� µXl
�f�=µ�f�Xl��� 1≤l≤m

Since the complex vector space generated by � is dense in �c��� by Runge’s
theorem, we can follow the arguments of the proof of Property 4.2, to see µXl

,
l∈
1��m�, as positive linear maps on �c��� and therefore defined classi-
cally as probability measures on �. In particular, they are countably additive
and the monotone convergence theorem holds ((1.26), [26]). Hence, we can set
µ�∑m

l=1X
2
l �=

∑m
l=1µXl

�x2�. Let, forA∈�+, � =
1 �A� be the closed subset of �

=
1 ,

� =
1 �A�≡

{
µ∈�

=
1 � max

l∈
1��m�
µXl

�x2�≤A
}

and

� =
1 �∞�≡ ⋃

A∈�
� =

1 �A�=
{
µ∈�

=
1 � max

l∈
1��m�
µXl

�x2�<∞
}


Further, consider

�� st��� ≡
{
F∈� ����∃�Fn�n∈�∈��st�����

�F−Fn��Xk�1≤k≤m�≤ 1
n

(
m∑
l=1

X2
l +1

)}
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�� st��� contains the bounded continuous functions and the linear combina-
tion

∑m
l=1αlXl of the canonical coordinates [approximate

∑m
l=1αlXl by∑m

l=1αlXl�1+�1/n�X2
l �−1∈��st��� for some z∈C/R as close as needed of one].

We can then extend, for any A∈�+, � =
1 �A� as a set isomorphic to a subset

of �� st���′ as follows:

Lemma 4.2. Let F∈�� st��� and µ∈� =
1 �A� for some A∈�+. Then, we can

define

µF�f�= lim
n→∞µFn

�f� ∀f∈�b���� �f�� <∞(4.19)

and, more precisely, if d is the Wasserstein’s distance �14��
lim
n→∞ sup

µ∈� =
1 �A�

d�µF�µFn
�≤ sup

µ∈� =
1 �A�

sup
�f�� ≤1

�µF�f�−µFn
�f��=0(4.20)

µF is a probability measure on �. Moreover, the map µ→µF is continuous
from � =

1 �A� into � ��� for any A∈�+. Finally, µ→µ�F� is continuous from
� =

1 �A� into � for any A∈�+.

Proof. We first check that µF is well-defined, that is that (4.19) indeed
converges. Indeed, for any �n�p�∈�, n≤p, any Lipschitz function f, Remark
4.4 implies that

�µFp
�f�−µFn

�f��≤�f�� µ��Fp−Fn��≤
1
n
�f�� �2A+1�

Thus,

d�µFp
�µFn

�≤ sup
µ∈� =

1 �A�
sup

�f�� ≤1
�µF�f�−µFn

�f��≤ 1
n
�2A+1�

so that �µFp
�p∈� is Cauchy in the complete metric space � ���. Hence it con-

verges as p goes to infinity and its limit µF∈� ��� satisfies (4.20).
Further, if µn is a sequence in � =

1 �A� converging to µ, µ∈� =
1 �A� as

� =
1 �A� is closed for the ��st���-topology. It is then not hard to verify that

d�µnF�µF� goes to zero as n goes to infinity in view of the uniform approxi-
mation on � =

1 �A� obtained in (4.20) and Lemma 4.2. Hence, µ→µF is con-
tinuous. Finally, taking f�x�=x in the right hand side of (4.20) shows that
µ→µ�F� is also continuous, which achieves the proof of the lemma. ✷

Remark. Note by the way that for any A∈�+, the ��st���-topology is
equivalent on � =

1 �A� to the topology inherited from the set of test functions
given by

��b�	�=
{ M∑
j=1

→∏
1≤i≤kj

f
j
i

( m∑
l=1

α
j
i �l�Xl

)
�M∈���kj�1≤j≤M∈�M�f

j
i ∈�b����

�αji �l��1≤l≤m�∈�m�1≤j≤M�1≤i≤kj
}
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Indeed, the functions of ��b�	� can be approximated, if for every η>0, we set
h�η��x�= h�x�

1+ηx2 ∈�0���, by replacing the bounded continuous functions fji by

�fji ��η�. We then obtain elements of ��0�	�=��st�	�. Any µ∈� =
1 �A� can be

extended to ��b�	� by controlling uniformly the difference of these functions
and their approximations as in the last proof. Hence, ��b�	� (or its restriction
to � ���) generates the same topology that ��st��� on � =

1 �A�.

Remark. The choice of the function X2 is only suitable for our purpose;
we could in fact have taken any positive function going to infinity as X goes
to infinity.

In the sequel, we shall restrict ourselves to � =
1 �∞�-valued non-commuta-

tive measures and furnish � =
1 �∞� with the �� st���-topology. Hence, since

�
=
1 is compact for the ��st���-topology, a subset � of � =

1 �∞� is relatively

compact if it is included in some � =
1 �A� for some finite A>0. The �� st���-

topology will enable ourselves to get tightness for marginals of possibly un-
bounded functionals.

Let us finally introduce the topology on � =
1 �∞�-valued processes; it is gen-

erated by the uniform topology on the time variable and the previous �� st���-
topology on the marginals. It is compatible on � ��0�1��� =

1 �A��, A>0, with
the distance

� �µ�ν�= sup
t∈�0�1�

d̄�µt�νt�

4.4. Proof of the large deviations upper bound. To obtain the large devi-
ation upper bound of Theorem 4.1 is easy once we have defined the right
topology and notice that for every N∈�,

��µ̂�N�
t ∈� ��0�1��� =

1 �∞���=1

so that we can consider µ̂�N� as a � =
1 �∞�-valued process.

The proof of the large deviation upper bound for the process of the time
marginals of the non-commutative law of m Hermitian Brownian motions fol-
lows now the usual scheme; first we shall check thatS is a good rate function,
then that the law of our � =

1 �∞�- valued processes are exponentially tight and
then use Itô’s calculus to get a weak large deviation upper bound.

4.4.1. S is a good rate function. It is straightforward to see thatS is non
negative as in (1.4) [note that for F∈�� st��0�1����, S0�1�F�µ� and (((F�F)))0�1µ
are real valued]. Further, for any F∈�� st���, S0�1��F� is continuous for the
��st���-topology since we noticed that, for any l∈
1��m�, LXl

�F�∈��st�	�
and ��Xl

F�2∈��st�	�. Hence, S0�1, as a supremum of continuous functions,
is lower semi-continuous for the ��st���-topology. To prove that the level sets
EM are in fact compact in � ��0�1��� =

1 �∞��, note that the relatively compact
subsets of � ��0�1��� =

1 �∞�� can be included, following [13], Lemma 5.4, in
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subsets of the form

� =� ′
M

⋂( ⋂
n∈�

� ′
n

)
with

� ′
M = 
ν∈� ��0�1��� =

1 �∞��/νu∈K′
M ∀u∈�0�1���

� ′
n = 
ν∈� ��0�1��� =

1 �∞��/ the function �u→νu�Fn�� belongs to K′
n�

with K′
M a compact subset of � =

1 �∞�, �K′
n�n∈� a sequence of compact subsets

of � ��0�1���� and �Fn�n∈� a basis of ��st��� (recall that on K′
M, the ��st���-

topology is equivalent to the weak topology). In view of the description we
gave of the relatively compact subsets of � =

1 �∞� and Arzéla-Ascoli theorem,
we can follow the proof given in Subsection 2.2 to see that we need to show
that:

1. There exists LM>0 so that

∀ν∈EM sup
u∈�0�1�

νu

(
m∑
l=1

X2
l

)
≤LM

2. For every F∈�� st���, and every m>0, there exists δMm �F� so that

∀ν∈EM sup
�t−s�≤δMm �F�

�νt�F�−νs�F��≤ 1
m


Proof. For the first point, note that for any M∈�, there exists a finite
integer number A so that

EM ≡ 
S≤M�⊂
{
ν∈� ��0�1��� =

1 �∞���max
1≤l≤m

sup
t∈�0�1�

νt�X2
l �t≤A�

}
⊂{

ν∈� ��0�1��� =
1 �∞���νt∈� =

1 �A��∀t∈�0�1�}(4.21)

In fact, this is clear since, if ν0=δGm0 , taking

Fl
δ�Xl�1≤k≤m�=fδ�Xl�=

X2
l

1+δ2X2
l

= Xl

i+δXl

Xl

−i+δXl

∈��st���

for some δ’s as small as we wish, we find as in (2.10) that supt∈�0�1�νt�Fl
δ�Xk�1

≤k≤m��≤�8+M�e8 and hence by monotone convergence theorem

max
1≤l≤m

sup
t∈�0�1�

νt�X2
l �≤�8+M�e8

so that the proof of the first point is complete.
For the second point, we follow the same strategy as the one developed in

Lemma 2.4. Since by definition we have ∀F∈�� st���� ∀ν∈EM,

�Ss�t�ν�F��2≤2S
0�1�ν�(((F�F)))s�tν ≤2M(((F�F)))s�tν
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we deduce

�νt�F�−νs�F�� ≤ 1
2

∣∣∣∣∣∫ t

s
νu⊗νu

(
m∑
l=1

DXl
◦�Xl

F

)
du

∣∣∣∣∣
+
√√√√2M

∫ t

s
νu

(
m∑
l=1

��Xl
F�2

)
du

By definition of �� st���, all the functions appearing in the above right hand
side are uniformly bounded for �� ��∞�∞ so that we conclude that there exists
a finite constant AM�F� so that

�νt�F�−νs�F��≤AM�F�
√
�t−s� ✷

4.4.2. Exponential tightness. We have the following lemma.

Lemma 4.3. There exist relatively compact subsets ��L�L∈� of � ��0�1��
� =

1 �∞�� so that

limsup
N→∞

1
N2

ln��µ̂�N� ∈�L�≤−L

We shall not go into the details of the proof since, in view of the previous
description of the relatively compact subsets of � ��0�1��� =

1 �∞�� and by our
Itô’s formula of Theorem 4.2, we can proceed exactly as in Subsection 2.3.

4.4.3. Weak large deviation upper bound. We here state the following
bound:

Theorem 4.3. For every process ν in � ��0�1��� =
1 �∞��, if Bδ�ν� denotes the

open ball with center ν and radius δ for the distance� , then

limsup
δ↓0

limsup
N→∞

1
N2

ln�
(
µ̂�N� ∈Bδ�ν�

)≤−S�ν�

Proof. Thanks to Theorem 4.2, we can proceed exactly as in subsection
4.4. The only two points to notice is first that �� st����0�1�� was chosen so
that for any F∈�� st����0�1��, F�Hl

N�t��1≤k≤m�t� is an Hermitian matri-
ces, and therefore has real valued eigenvalues and second that all the functions
appearing in Itô’s formula belong to ��st���. Hence, the analogue exponential
super-martingales of ζ�N�

f are real valued with continuous exponents for the
��st���-topology so that we can apply our strategy. ✷
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4.5. Proof of Corollary 42 To prove Corollary 4.2, note first that the func-
tions Fn belong to

(
��st���+i��st���

)m for any n∈�. Indeed, it can first be
approximated by

Fε
n�Xl�1≤l≤2m�=Fn

(
Xl

1+εX2
l

�1≤l≤2m

)
up to an error

max
1≤k≤m

�Fε
n�Xl�1≤l≤2m�k−Fn�Xl�1≤l≤2m�k�≤

√
nε max

1≤k≤2m
X2

k

Then, by Runge’s theorem, for any ε>0, for any k∈
1��m�, Fε
n�Xl�1≤l≤

2m�k can be approximated uniformly by polynomial functions of(
X2k−1

1+εX2
2k−1

�
X2k

1+εX2
2k

)

and therefore belongs to ��st�	� Hence, we can proceed as in the proof of 4.1
to see that µ∈�

=
1 →µ◦F−1

n ∈� �Ul�1≤l≤m�∗ is continuous on � =
1 �A�, A>0

and that Theorem 4.1 implies that µ̄�N�
n = µ̂�N�

1 ◦F−1
n satisfies a large deviation

upper bound with good rate function

�̄n�µ�= inf
{
S�ν��ν1◦F−1

n =µ}
To get Corollary 4.2, we need to verify that µ̄�N�

n is an exponentially good
approximation of the non-commutative law µ̄�N� of �U1

N��U
m
N� according

to Theorem 4.2.23 of [14]. According to (4.3), µ̄�N� and µ̂
�N�
1 ◦F−1

∞ have the
same law. Hence, constructing µ̄�N� = µ̂�N�

1 ◦F−1
∞ and µ̄

�N�
n = µ̂�N�

1 ◦F−1
n on the

space generated by the same 2m independent Hermitian Brownian motions
�Hk

N�1≤k≤2m� with non-commutative law �µ̂�N�
t �t∈�0�1��, we find

�̂ �µ̄�N�
n �µ̄�N�� ≤ 2 max

1≤k≤m
trN

(
n−1

H2k−1
N �1�2+H2k

N �1�2+n−1

)

≤ 2 max
1≤k≤m

trN

(
2n−1

�H2k−1
N �1�+H2k

N �1��2+2n−1

)(4.22)

so that µ̄�N�
n is an exponentially good approximation of µ̄�N� as soon as we can

prove that for any ε>0,

limsup
n→∞

limsup
N→∞

�

(
max
1≤k≤m

trN

(
2n−1

�H2k−1
N �1�+H2k

N �1��2+2n−1

)
≥ε

)
=−∞

(4.23)

m being finite, we need only to prove this result for m=1, up to replace ε by
�ε/m�. Since H1

N�1�+H2
N�1� is a standard Wigner’s matrix, and for any n∈�,
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Aε
n=
µ∈� ����∫ 2n−1

x2+2n−1dµ�x�≥ε� is a closed set for the weak topology, we can
use the full large deviation principle obtained in [2] to get for any n∈�,

limsup
N→∞

�

(
trN

(
2n−1

�H1
N�1�+H2

N�1��2+2n−1

)
≥ε

)
≤−inf
I2�µ��µ∈Aε

n�
(4.24)

with

I2�µ�= 1
4

∫
x2dµ�x�−

∫
log �x−y�dµ�x�dµ�y�− 3

4 + 1
2 log�2�

It was noticed in [2] that g�x�y�=�1/8��x2+y2�−log �x−y� is bounded from
below so that there exists a constant C>−∞ so that for any δ∈�0�1�,

I2�µ� ≥ −
∫
�x�≤δ��y�≤δ

log �x−y�dµ�x�dµ�y�+C

≥ log�2δ�−1µ��x�≤δ�2+C
(4.25)

Writing ∫ 2n−1

x2+2n−1
dµ�x�=

∫ ∞

0

2n−1

�y+2n−1�2µ��x�≤
√
y�dy

gives with (4.25)∫ 2n−1

x2+2n−1
dµ�x� ≤

∫ 1

0

2n−1

�y+2n−1�2
(

I2�µ�−C
log�2√y�−1

) 1
2

dy+2n−1

0 n→∞C
′
(
I2�µ�−C
log�√n�

) 1
2 ∫ ∞

0
�1+y�−2dy

for a finite constantC′>0. Thus, for n large, we have found two finite constants
c>0 and c′ so that for µ∈Aε

n,

I2�µ�≥c��logn�ε2+c′�(4.26)

Since I2 is a good rate function and Aε
n is closed, I2 achieves its minimum

value on Aε
n and (4.26) results with

inf
I2�µ��µ∈Aε
n�≥c��logn�ε2+c′�(4.27)

Inequalities (4.24) and (4.27) give (4.23). As a conclusion, µ̄�N� satisfies a large
deviation upper bound with the rate function

�̄�µ�= liminf
n→∞ �̄n�µ�= liminf

n→∞ inf
{
S�ν��ν1◦F−1

n =µ
}


Remark. In view of Theorem 4.2.23 of [14],

�̄�µ�= inf
{
S�ν��ν1◦F−1

∞ =µ
}
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if we can prove that for any M∈�,

lim
n→∞ sup

µ∈
S≤M�
�̂

(
µ1◦F−1�µ1◦F−1

n

)=0

Following the above strategy, we see that it is enough to prove, if φ�Xl�1≤l≤
2m�=X1−X2, that

lim
n→∞ sup

µ∈
S≤M�

∫ 2n−1

x2+2n−1
dµ◦φ−1�x�=0

which by the above computation is verified if we can show that inf
S�ν��ν1◦
φ−1=µ�≥I2�µ�. We believe it to be true, and refer the reader to [8] for similar
computations. However, such identification will be the subject of a separate
paper.

4.6. Study of the minimizers of S. The minimizers of S̄ are elements of
� ��0�1��� =

1 �∞�� with initial data δGm0 so that

S̄s�t�µ�F�=0(4.28)

for any 0≤s≤t≤1 and any F∈�� st��×�0�1��. We shall prove:

Lemma 4.4. There exists a unique µ∈� ��0�1��� =
1 �∞�� with initial data

δGm0 satisfying �428�

Proof. Existence of the solutions of (4.28) is trivial since it is obtained as
the limit of the non-commutative law of �Hk

N�t��1≤k≤m�t∈�0�1�. Let µ be any
solution. First notice that, by linearity, (4.28) can be extended to functions F
with values in �� st�	�. Second, note that we can show that the marginals
�µXl

�1≤l≤m� are the semicircular processes defined in Section 2 (see the
proof in [25] of the uniqueness of the solutions of (1.2)) and, since they are
compactly supported, deduce that there exists a finite constant C so that for
any n∈�,

max
1≤l≤m

sup
t∈�0�1�

µt�X2n
l �≤C2n(4.29)

As a consequence, we can approximate the non-commutative polynomial func-
tions

Pn�Xl�1≤l≤m�=
→∏

1≤i≤M
X

ni
li
� ni�M∈��li∈
1��m�

by functions of �� st�	� and see that (4.28) is still valid when F is such a
polynomial function. Note then that LXl

, l∈
1��m�, map 	k�Xl�1≤l≤m�,
the set of non-commutative monomial functions Pn of degree

∑M
i=1ni less or

equal to k into 	k−1�Xl�1≤l≤m�⊗	k�Xl�1≤l≤m�. In particular, if µ and ν
are two solutions of (4.28) and if we denote

Ak�t�= sup
Pn∈	k�Xl�1≤l≤m�

�µt�Pn�−νt�Pn���



1260 T. CABANAL DUVILLARD AND A. GUIONNET

then we find a finite constant ck for any k∈� so that

Ak�t�≤ck
∫ t

0
Ak�s�ds

Gronwall’s lemma then implies that Ak�t�≡0 for all k∈�. With (4.29), this
is enough to characterize uniquely µ∈� ��0�1��� =

1 �∞��. Indeed µ�0α�z� is
uniquely determined for any �α�z�∈⋃

n∈���m×	\��n so that for all i∈�, �zi�>
�∑m

k=1 �αki ��C (just expend the ratio). Since z→µ�0α�z� is analytic in �	\��n,
this is enough to characterize µ�0α�z� in ��m×	\��n for all n∈�. ✷
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