
The Annals of Probability
2001, Vol. 29, No. 2, 820–861

A CYCLICALLY CATALYTIC
SUPER-BROWNIAN MOTION1

By Klaus Fleischmann and Jie Xiong

Weierstrass Institute and University of Tennessee

In generalization of the mutually catalytic super-Brownian motion in R
of Dawson and Perkins and Mytnik, a function-valued cyclically catalytic
model X is constructed as a strong Markov solution to a martingale prob-
lem. Starting with a finite population X0 , each pair of neighboring types
will globally segregate in the long-term limit (noncoexistence of neighbor-
ing types). Also finer extinction–survival properties depending on X0 are
studied in the spirit of Mueller and Perkins. In fact, X0 can be chosen in
such a way that all types survive for all finite times. On the other hand,
sufficient conditions on X0 are stated for the following situation: given a
type k and a positive time t� the kth subpopulationXk dies by time t with
a large probability, provided that its initial valueXk

0 was sufficiently small.
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1. Introduction.

1.1. Background and motivation. Recently Dawson and Perkins [11] and
Mytnik [27] introduced and studied a mutually catalytic super-Brownian
motion in R. This is a function-valued diffusion of two types of materials
(species) where the small portions of mass (“particles”) move chaotically in R
but additionally branch (split or die) with a locally and temporally given rate
proportional to the density of mass of the other type. Thus, each type serves as
a catalyst for the other type’s branching. This true interaction of types destroys
the usual independence assumption in branching theory; in particular, this
model is not a superprocess in its standard definition (for superprocesses, see,
for instance, [14]). For a recent survey on catalytic and mutually catalytic
branching models, we refer to [8, 9].
It is a natural desire to extend the mutually catalytic model to K ≥ 2

types A0� 
 
 
 �AK−1 of materials (as a rule, we write the index referring to the
type as an upper index: please do not misunderstand the index as a power).
We restrict to a cyclic situation, as often met in epidemics (see, for instance,
[25]), networks of neurons (see, e.g., [17]), or biological competition models
(see, e.g., [13]),

Ak +Ak+1 −→ Ak� k ∈ K�(1)

where K = 
0� 
 
 
 �K− 1� denotes the cyclic group of size K ≥ 2 (the additive
group modulo K).
For treatments of cyclic reactions in terms of interacting particle systems,

see [2], and [12]. Related to noise-induced transport phenomena, see [16], and
in terms of deterministic equations, see [1, 22, 24, 30] (for instance).

1.2. Rough description of the model. A bit more precisely, we consider the
following stochastic equation:

dXk
t �a� =

σ2

2
�Xk

t �a�dt+
√
γkXk

t �a�Xk+1
t �a�dWk

t �a��(2)

t > 0� �k� a� ∈ K × R. Here the one-dimensional Laplacian � acts on the real-
valued variable a� and �σ2/2�� reflects the chaotic motion of particles with
diffusion constant σ > 0. Moreover, the constants γk > 0 are the interaction
rates, and dW denotes a standard white noise on R+ × K × R.
The quantity Xk

t �a� can be interpreted as the density of mass of type k at
time t at site a. Intuitively, the subpopulation Xk of X of type k evolves as
a super-Brownian motion in R but with branching rate γkXk+1

t �a� changing
with time t and site a. Hence, the subpopulationXk+1 serves as a catalyst for
the branching ofXk, for each k ∈ K. Recall again that by this cyclic interaction
over all the types, the basic independence assumption in branching theory is
violated, so that X is not a superprocess according to the usual definition.
Of course, in the special caseK = 2 we get the mutually catalytic branching

model in R of [11] and [27]. (For further results on mutually catalytic models,
see also [3–7, 10, 26].)
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Intuitively, a solution to (2) should be a (time-homogeneous) Markov
process X. The first purpose of the paper is to establish that a weak solu-
tion X to (2) exists which is a strong Markov process (see Theorem 3 below).
Unfortunately, uniqueness of solutions remains open at this stage. The main
obstacle for this is that as opposed to the mutually catalytic model, forK ≥ 3 a
self-duality [27] does not hold, and we also have not been able to find any other
dual (or approximate dual) process for X. Nevertheless, each strong Markov
solutionX to (2) we call a cyclically catalytic super-Brownian motion (SBM) in
K×R (see also Definition 2 below). Besides the construction, we start the inves-
tigation of the survival–extinction behavior of cyclically catalytic SBMs in the
case of finite populations (Theorems 4 and 5).
One expects that also a strong Markov Zd-version of the cyclically cat-

alytic model exists just as in the mutually catalytic case of [11]. The long-time
results presented for the present cyclically catalytic SBMs in R should hold
also for cyclically catalytic simple super-random walks in Zd (for Theorem 4:
restrict to d ≤ 2). The existence of a R2-version, however, remains open at
this stage (note that for K ≥ 3, moment dual processes or moment equations
for εZ2-approximations are much more complicated compared with the K = 2
case, so that it is not clear how methods from [6, 7] could be extended).

2. Results.

2.1. Preliminaries: notations. With c we always denote a positive constant
which might vary from place to place. A c with some additional mark (as c̄ or
c1� will, however, denote a specific constant. A constant of the form c�#� means,
this constant first occurred related to formula line �#�.
For λ ∈ R, introduce the reference function φλ,

φλ�a� �= e−λ�a�� a ∈ R(3)

(as usual, the colon attached to an equality sign “=” refers to the side of the
introduced notation). For f� K × R → R� put

�f�λ �= sup
k∈K� a∈R

�fk�a��/φλ�a�� λ ∈ R
(4)

(Note that compared with [11] we reversed the sign in the definition of φλ
but we kept it in the definition of �·�λ, and, concerning this, we use the same
conventions as in [31].)
At some places we will need also a smoothed version φ̃λ of φλ. For this

purpose, introduce the mollifier

ρ�a� �= c�5�1
�a�<1� exp�−1/�1− a2��� a ∈ R�(5)

with c�5� the normalizing constant such that
∫
daρ�a� = 1. For λ ∈ R, set

φ̃λ�a� �=
∫
dbφλ�b�ρ�b− a�� a ∈ R
(6)
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Note that to each λ ∈ R and m ≥ 0 there are positive constants cλ�m and c̄λ�m
such that

cλ�mφλ�a� ≤
∣∣∣ dm
dam

φ̃λ�a�
∣∣∣ ≤ c̄λ�mφλ�a�� a ∈ R(7)

(cf. [23], (2.1)).
Forλ ∈ R, let �λ = �λ�K × R� denote the set of all continuous (real-valued)

functions f on K × R such that �f�λ is finite, and such that fk�a�/φλ�a� has a
finite limit as �a� ↑ ∞, for each k ∈ K. Introduce the spaces

�tem = �tem�K × R� �= ⋂
λ>0

�−λ� �rap = �rap�K × R� �= ⋂
λ>0

�λ(8)

of tempered and rapidly decreasing functions, respectively. (Roughly speaking,
the functions in �tem are allowed to have a subexponential growth, whereas
the ones in �rap decay faster than exponentially.) Write �

�m�
rap = �

�m�
rap �K × R�

if we additionally require that all partial derivatives ∂m/∂am up to the order
m ≥ 1 belong to �rap.
For each λ ∈ R� the linear space �λ equipped with the norm �·�λ is a separable

Banach space. The spaces �tem and �rap are topologized by the metrics

dtem�f�g� �=
∞∑
n=1

2−n
(
�f− g�−1/n ∧ 1

)
� f�g ∈ �tem�(9)

drap�f�g� �=
∞∑
n=1

2−n
(
�f− g�1/n ∧ 1

)
� f�g ∈ �rap�(10)

making them Polish spaces. Similarly, we also define in �
�m�
rap , m ≥ 1, metrics

in the obvious way to make them Polish.
Write  �= � �R+��

+
tem� for the set of all continuous paths t �→ ωt ∈ �tem.

Equipped with the metric

d �ω�ω′� �=
∞∑
n=1

2−n
(
sup
0≤t≤n

dtem
(
ωt�ω

′
t

) ∧ 1)� ω�ω′ ∈  �(11)

 is a Polish space. The σ-field of all Borel subsets of  is denoted by � .
If E is a topological space, a measure on E is meant to be a measure defined

on the σ-field of all Borel subsets of E.
Let � denote the set of all probability measures on  . Endowed with the

Prohorov metric d� � we get a Polish space ([15], Theorem 3.1.7). Write com�� �
for the collection of all compact subsets of � , equipped with the metric

dcom�K1�K2� �= inf
{
ε > 0� K1 ⊆Kε

2 and K2 ⊆Kε
1

}
� K1�K2 ∈ com�� ��

where Kε is the ε-neighborhood of K (based on d� �. Then the metric space
�com�� �� dcom� is separable ([32], Lemma 12.1.1).
As a rule, the processes X = 
Xt� t ≥ 0� considered in this paper are �+

tem-
valued, continuous and presented in their canonical form. That is, we identify
each process X with a probability law P on  = � �R+��

+
tem�, in other words,
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with the probability space � �� �P�
 More precisely, we always
consider � �� �P� as a filtered probability space, using the usual filtration

�t� t ≥ 0�. Write � r for the sub-σ-field of � generated by the coordinate
maps ω �→ ωt, for t ≥ r.
Let dk denote the counting measure (Haar measure) on the cyclic group K

[that is,
∫

K dkf�k� = ∑
k∈K f�k� for all functions f� K → R+�
 For functions

f�g on K×R or R� we write �f�g� for the integral of f ·g with respect to dkda
or da, respectively (if the integral makes sense). As opposed to the notation �·�λ
introduced in (4), for functions f ≥ 0 on K × R or R we define

�f�λ �= 〈f · φ̃−λ�1
〉
� λ ∈ R(12)

[with the smoothed reference function φ̃−λ from (6)]. Set �f� �= �f�0 for the
“total mass” of the (density) function f.
Let p denote the heat kernel in R related to �σ2/2��,

pt�a� �= �2πσ2t�−1/2 exp
[
− �a�2
2σ2t

]
� t > 0� a ∈ R(13)

and 
St� t ≥ 0� the corresponding heat flow semigroup. Write ξ = �ξ�'a� for
the related Brownian motion in R, with 'a denoting the law of ξ if ξ0 = a ∈ R.
The (usually upper) index + on a set of real-valued functions will refer to

the collection of all nonnegative members of this set, similarly to our notation
R+ = �0�∞�. The Kronecker symbol is denoted by δk� l.

2.2. Existence of X and basic properties of all solutions. A more precise
formulation of the stochastic equation (2) can be given in terms of the following
martingale problem MPx. Recall that K ≥ 2, σ > 0, and γk > 0, k ∈ K.

Definition 1 (Martingale problem MPx). Fix x ∈ �+
tem = �+

tem�K × R�.
We say a stochastic process X = 
Xt� t ≥ 0� with law Px on  = � �R+��

+
tem�

is a solution to the martingale problem MPx if Px�X0 = x� = 1 and, for test
functions ϕ ∈ �

�2�
rap = �

�2�
rap�K × R�, setting

Mk
t �ϕk� �=

〈
Xk
t � ϕ

k
〉− 〈xk�ϕk〉− ∫ t

0
ds
〈
Xk
s �
σ2

2
�ϕk

〉
�(14)

t ≥ 0� k ∈ K, one has orthogonal continuous square-integrable martingales
Mk�ϕk�, k ∈ K, starting fromMk

0�ϕk� ≡ 0� and with square functions〈〈
Mk�ϕk�〉〉

t
= γk

∫ t
0
ds
∫

R
daXk

s �a�Xk+1
s �a�[ϕk�a�]2�(15)

t ≥ 0� k ∈ K.

Now the definition of our basic object of interest follows.

Definition 2 (Cyclically catalytic SBM X). If �X�Px� x ∈ �+
tem� is a

(time-homogeneous) strong Markov process such that �X�Px� is a solution
to the martingale problem MPx of Definition 1, for each x ∈ �+

tem, then it
is called a cyclically catalytic super-Brownian motion �SBM� in K × R with
diffusion constant σ and interaction rate γ = �γk�k∈K .
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Here is our first result.

Theorem 3 (Cyclically catalytic SBM X).

(a) (Existence of X). To each K ≥ 2� σ > 0 and vector γ > 0, there exists
a cyclically catalytic super-Brownian motion �X�Px� x ∈ �+

tem� in K × R with
diffusion constant σ and interaction rate γ according to Definition 2.
(b) (Finite moments). Each cyclically catalytic SBM X has finite moments

of all orders: for fixed c0�T� q > 0 and λ′� λ ∈ R with qλ′ < λ,

sup
x∈�+

tem� �x�−λ′ ≤c0
Px sup

0≤t≤T

∑
k∈K

��Xk
t �q�φλ� <∞


The expectation of X is given by

PxX
k
t �a� = Stxk�a�� x ∈ �+

tem� �t� k� a� ∈ R+ × K × R�

and the covariance by

Covx
(
X
k1
t1
�a1��Xk2

t2
�a2�

)
= γk1δk1� k2

∫ t1∧t2
0

ds
∫

R
dbSsx

k1�b�Ssxk1+1�b�

×pt1−s�a1 − b�pt2−s�a2 − b��
x ∈ �+

tem� t1� t2 ≥ 0, k1� k2 ∈ K, a1� a2 ∈ R.

Note that the covariance vanishes only if x = 0, k1 �= k2, or t1 ∧ t2 = 0
 In
particular, the process X is nondegenerate.
Recall that the novelty of this theorem concerns the caseK ≥ 3, sinceK = 2

is due to [11], and that uniqueness remains unsolved if K ≥ 3

The proof of Theorem 3 will be provided in Section 3 below. There we will

start from an approximating system of processes where on small time intervals
we consider K conditionally independent catalytic super-Brownian motions
with frozen, smoothed and truncated branching rate functions (catalyst). Then
tightness will be shown by an adoption of a method used in [11] which was
based on [31]. This then yields the existence of solutions to the martingale
problemMPx of Definition 1. Note that the existence of a weak solution to the
stochastic equation (2) (on an enlarged probability space) then follows from
the standard martingale representation theorem [35]. We mention also that
the convolution form of (2) is given in (57) below.
Since uniqueness in the martingale problem is not established, some more

efforts are needed to construct a Markov solution to the martingale problem.
Moreover, since the topic of continuous dependence on the initial data of con-
structed solutions is also a delicate unsolved problem in the present model, we
could not follow the usual route to deduce the strong Markov property from a
Feller property. Nevertheless, by an adoption of methods developed in [32] for
finite-dimensional diffusions, we succeeded in selecting a time-homogeneous
strong Markov process from the set of all solutions of the family of martingale
problems.
Part (a) of Theorem 3 is implied by Theorem 23 below, whereas (b) follows

from Corollary 16.
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2.3. Global segregation of neighboring types. Now we restrict our attention
to any cyclically catalytic SBM X as introduced in Definition 2 (which exists
by Theorem 3), and fix its initial state X0.
In the mutually catalytic model (in R�, the self-duality is a powerful tool

not only for establishing the uniqueness in the martingale problem, but also
to get results on the long-term behavior [11]. In fact, the total mass process
t �→ ��X0

t �� �X1
t �� in the case of finite initial masses �X0� =X0

0�R�+X1
0�R� is a

nonnegative martingale, and its a.s. limit ��X0
∞�� �X1

∞��, say, can be identified
in relatively simple terms. Indeed, it coincides in law with the state Bτ of
a Brownian motion B in R2+ in its first hitting time τ of the boundary ∂R2+
of R2+, if B was started from B0 = ��X0

0�� �X1
0�� (see the proof of Theorem

1.2(a) in [11]). In particular, the limit population is nondegenerate and has
full expectation (persistence).
Of course, the present cyclically catalytic model also has that convergence

property,

lim
t↑∞

(
�X0

t �� 
 
 
 � �XK−1
t �

)
=�
(
�X0

∞�� 
 
 
 � �XK−1
∞ �

)
exists a.s.(16)

provided that �X0� <∞. But we have not been able to identify the limit (16).
An obstacle is that the random time-change argument of [11] is not as power-
ful, since it leads to K Brownian motions which run with different clocks, as
opposed to the K = 2 case. In other words, in the terminology of Swart [33],
the K ≥ 3 case is an anisotropic situation, which is much more delicate than
the isotropic K = 2 case. Nevertheless, we are able to verify the following
“global segregation” (noncoexistence) of neighboring types in the limit, which
in theK = 2 case is a simple consequence of a property of the hitting state Bτ,
namely that B0τB

1
τ = 0
 Recall that K ≥ 2.

Theorem 4 (Global segregation of neighboring types). Start any cyclically
catalytic super-Brownian motion X with a finite initial mass �X0�
 Then, for
each k ∈ K�

lim
t↑∞

�Xk
t � · �Xk+1

t � = 0 a.s.(17)

Consequently, for each pair of neighboring types, only one of them has the
chance to survive in the limit.
The proof of Theorem 4 will be given in Section 4. It will be based on

a modification of arguments of [11], adapted to the aforementioned case of
different clocks if K ≥ 3. The strategy of proof is as follows. Set

Zt �=
∑
k∈K

γk�Xk
t � · �Xk+1

t �� t ≥ 0
(18)

Assuming now that

inf
t≥0
Zt > 0 with positive probability,(19)
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our task is to construct stopping times T1�T2� 
 
 
 such that ZTn → 0 as n ↑ ∞
on the event in (19). But this is an obvious contradiction. Then the almost sure
convergence of the martingales t �→ �Xk

t �, k ∈ K, will yield the claim (17).
As opposed to the mutually catalytic case, Theorem 4 in particular leaves

open whether for K ≥ 3 the limit ��X0
∞�� 
 
 
 � �XK−1

∞ �� in (16) is nondegener-
ate, and whether it has full expectation (persistence).

2.4. Finite time survival–extinction. For the mutually catalytic model in Zd

(also established and investigated in [11]), a recent paper [26] addresses the
following questions: Is it possible that, depending on the finite initial state,
both types survive all finite times a.s., or that one of the types dies in a given
finite time with high probability? The following results on our cyclic model are
in that spirit. Recall the reference function φλ introduced in (3).

Theorem 5 (Finite time behavior). Fix again any cyclically catalytic SBM
X with X0 ∈ �+

tem satisfying �X0� <∞


(a) (Finite time survival of all types). Assume that
∏
k∈K �Xk

0� > 0� and that
there is a T > 0 such that

max
k∈K

lim inf
�a�↑∞

St
[
Xk
0

]2�a�St[Xk+1
0

]2�a�[
StX

k
0�a�

]4 = 0� t ≥ T
(20)

Then ∏
k∈K

�Xk
t � > 0 for all t > 0 a.s.(21)

(b) (Finite time extinction of a type with high probability). Fix a type k0 ∈
K
 For i = 0�1�2� consider positive constants ci � λi � and c

′
1� λ

′
1 with

λ0 > λ
′
1 > λ1� 2λ′1 < λ1 + λ2 and c′1 ≤ c1
(22)

Then the following statement holds. For ε ∈ �0�1� and T > 0 fixed, c0 can be
chosen so small that if the initial state X0 = x ∈ �+

tem is such that

xk0 ≤ c0φλ0(23)

as well as

�x�λ1 ≤ c1� xk0+2 ≤ c2φλ2 and xk0+1 ≥ c′1φλ′1�(24)

then

Px

(
X
k0
t = 0 for t ≥ T

)
≥ 1− ε
(25)

The proof of Theorem 5 in Section 5 below uses ideas of [26]. Of course, the
condition (20) in Theorem 5(a) looks a bit complicated, so we have to discuss it.
Roughly speaking, it is, for instance, satisfied if the initial states of each pair
of neighboring types are separated in different half axes and have sufficiently
large mass tails. This will now be made more precise in the following example.
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Example 6 (Starting from separated neighbors with large tails). Assume
K ≥ 2 is even and that

X2k
0 �= φ11R\R+ and X2k+1

0 �= φ11R+� k ∈ K(26)

[with the reference function φ1 from (3)], ignoring the discontinuity at 0 ∈ R,
which can simply be overcome by a smoothing procedure, for instance using
the mollifier ρ from (5). Then the simultaneous finite time survival as claimed
in (21) holds. In fact,

StX
2k
0 �a� = �

(−a− t√
t

)
ea+t/2�(27a)

St
[
X2k
0

]2�a� = �

(−a− 2t√
t

)
e2a+2t�(27b)

St
[
X2k+1
0

]2�a� = �

(
a− 2t√

t

)
e−2a+2t�(27c)

with � denoting the distribution function of the standard normal law on R.
As a ↓ −∞� the � -expressions in (27a) and (27b) tend to 1, for fixed t > 0.
Therefore, the ratio in assumption (20) with k replaced by 2k is of order
� �a/√t�/e4a as a ↓ −∞, hence converges to zero by l’Hôpital’s rule. On the
other hand, if we shift the type by one, then we get the same order of decay if
a ↑ ∞ instead. Altogether, assumption (20) is fulfilled, hence (21) holds.

The philosophy behind the proof of Theorem 5(b) is as follows. Since 0 is
an absorbing state for the subprocess t �→ X

k0
t , it suffices to consider X on

a possibly smaller time interval �0�T�. Moreover, because initially the cat-
alyst Xk0+2 for Xk0+1 is not too large by assumption, Xk0+1 should not be
very small on �0�T�, and since Xk0+1 serves as the catalyst for Xk0 , the latter
should have some chance to die by time T. Actually, we want to bound �Xk0

T �λ
from above (for an appropriate λ and on a suitable new time scale) by a super-
critical Feller’s branching diffusion, which of course dies by a given time with
a positive probability. Making then its initial state �xk0�λ sufficiently small,
this extinction probability can be forced to be sufficiently close to one.

Remark 7 (Property of all solutions). As can be seen from the proof in
Section 5, Theorem 5 actually applies for any family 
�X�Px�� x ∈ �+

tem� of
processes such that Px solves MPx, x ∈ �+

tem, that is, without requiring the
Markov property.

Unfortunately, we do not have results on the long-time behavior of X for
infinite initial populations (for K ≥ 3�. Note that the study of the long-term
behavior of the mutually catalytic model in the case of infinite initial popula-
tions (see [3, 4, 5, 7, 11]) also relies heavily on the self-duality of the model. In
fact, via self-duality, it is based on the long-term behavior of the finite mass
system.
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3. Construction (proof of Theorem 3). We will start with proving the
existence of a solutionX to the martingale problemMPx of Definition 1. Then
a time-homogeneous strong Markov solution will be selected from the set of
all solutions to the family of martingale problems MPx, x ∈ �+

tem, as needed
for Theorem 3.

3.1. Construction of a solution to the martingale problem. In this subsec-
tion, we want to verify that the martingale problemMPx of Definition 1 has a
solution. To this aim, we will start from some approximations (Definition 10),
and will verify some properties of them (Lemmas 11–13), which turn out to
be owned also by all solutions of the martingale problem MPx (see Lemma 14
in Section 3.2).
To prepare for the selection of a strong Markov solution, a time-

inhomogeneous point of view will be convenient to use: we start the process
at times r ≥ 0 (the model will still be time-homogeneous). On the other hand,
for the sake of working with a single path space, we formally extend the paths
backward by assuming that they are constant in the interval �0� r�.
Definition 8 (Martingale problem MPr� x). Fix �r� x� ∈ R+ × �+

tem. We say
a stochastic process X = 
Xt� t ≥ 0� with law Pr�x on  = � �R+��

+
tem� is

a solution to the martingale problem MPr� x if the following three conditions
hold:

(i) Pr�x�Xt = x for all t ≤ r� = 1


(ii) For test functions ϕ ∈ �
�2�
rap, setting

Mk
r� t�ϕk� �=

〈
Xk
t � ϕ

k
〉
− �xk�ϕk� −

∫ t
r
ds
〈
Xk
s �
σ2

2
�ϕk

〉
�

t ≥ r� k ∈ K, one has orthogonal continuous square-integrable martingales
t �→Mk

r� t�ϕk�, k ∈ K� (after time r) starting fromMk
r�r�ϕk� ≡ 0


(iii) The square functions satisfy

��Mk
r� ·�ϕk���t = γk

∫ t
r
ds
∫

R
daXk

s �a�Xk+1
s �a��ϕk�a��2�

t ≥ r� k ∈ K.

Proposition 9 (Existence of a solution to the martingale problem MPr� x).
For each �r� x� ∈ R+ × �+

tem, there exists a solution �X�Pr�x� to the martingale
problem MPr� x of Definition 8.

For the verification of this proposition, we partly borrow ideas from the
proof of Theorem 6.1 in [11] (starting from page 1133), which are in part
based on [31], Appendix. So first we will introduce in Definition 10 below an
approximating sequence 
 nX� n ≥ 1� of continuous �+

tem-valued processes.
nX

has the property that on small time periods �i/n� �i+1�/n�, i ≥ 0, given nXi/n

the single subpopulations nXk behave as independent continuous catalytic
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super-Brownian motions in R with frozen, smoothed and bounded branching
rate function (catalyst) given by γk�S1/n nXk+1

i/n ∧ n� (see [11]). (The additional
smoothing with S1/n—recall that S denotes the heat flow semigroup—will help
us to make working a Gronwall’s inequality argument in the proof of Lemma
12 below.). Then we pass to a pointwise stochastic equation (Lemma 11) and
use it to derive some moment estimates (Lemmas 12 and 13). After these
preparations, Proposition 9 then easily follows by an application of [31],
Lemma 6.3(ii).
We start with introducing the system 
 nX� n ≥ 1� of approximating �+

tem-
valued processes.

Definition 10 (Martingale problem MPnr� x). For n ≥ 1, �r� x� ∈ R+ × �+
tem,

let � nX�Pnr�x� denote the unique �in law� process with the following two prop-
erties. First, nXt ≡ x for t ≤ r. On the other hand, for ϕ ∈ �

�2�
rap, setting

nMk
r� t�ϕk� �=

〈
nXk

t � ϕ
k
〉
−
〈
xk�ϕk

〉
−
∫ t
r
ds

〈
nXk

s �
σ2

2
�ϕk

〉
(28)

t ≥ r, k ∈ K, one has orthogonal continuous square-integrable martingales
t �→ nMk

r� t�ϕk�, k ∈ K, starting from nMk
r� r�ϕk� = 0 and with square functions〈〈

nMk
r� ·�ϕk�

〉〉
t
= γk

∫ t
r
ds
∫

R
db nXk

s �b�
(
S1/n

nXk+1
�ns�/n�b� ∧ n

)[
ϕk�b�]2�(29)

t ≥ r� k ∈ K.

Note that the uniqueness in law can be proved via log-Laplace representa-
tions of this system of “piecewise independent superprocesses.”
The family (28) of martingales extends [35] to orthogonal square-integrable

martingale measures nMk
r = nMk

r�d�s� b�� and to the usual class of predictable
integrands. Moreover, for t ≥ r and ϕ ∈ �rap, as well as k ∈ K fixed, the function
�s� a� �→ St−sϕk�a� on �r� t� × R can be included as integrand of the stochastic
integrals. Then nX can be shown to satisfy the following stochastic equation:〈

nXk
t � ϕ

k
〉 = 〈xk�St−rϕk〉+ ∫�r� t�×R

nMk
r

(
d�s� b�)St−sϕk�b��(30)

Pnr�x-a.s., for t ≥ r� k ∈ K, ϕ ∈ �rap. This, in particular, immediately implies
the following moment formulas:

Pnr�x
nXk

t �a� = St−rxk�a��(31)

Pnr�x
nXk

t �a� nXl
t�a� = St−rxk�a�St−rxl�a��(32)

for all t ≥ r, a ∈ R, and k �= l. Moreover, replacing ϕk by pε�· − a� in (30),
where 0 < ε ≤ 1, and a ∈ R are fixed, gives

Sε
nXk

t �a� = Sε+t−rxk�a� +
∫
�r� t�×R

nMk
r�d�s� b��pε+t−s�b− a��(33)

Pnr�x-a.s. We want to let ε ↓ 0.
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Lemma 11 (Pointwise equation for nX). For n ≥ 1, �r� x� ∈ R+ × �+
tem� t ≥ r

and �k� a� ∈ K × R fixed,

nXk
t �a� = St−rxk�a� +

∫
�r� t�×R

nMk
r�d�s� b��pt−s�b− a�� Pnr�x -a.s.(34)

�reading the integral term as 0 if t = r�.

Proof. Fix n� r� x� t� k� a as in the lemma. To check that the stochastic
integrals in (33) converge in L2 as ε ↓ 0 to the one in (34), consider

Pnr�x

( ∫
�r� t�×R

nMk
r

(
d�s� b�)[pε+t−s�b− a� − pt−s�b− a�])2

= γkPnr�x
∫ t
r
ds
∫

R
db nXk

s �b�
(
S1/n

nXk+1
�ns�/n�b� ∧ n

)
× [pε+t−s�b− a� − pt−s�b− a�]2

(35)

(which holds by the well-known isometry properties of stochastic integration).
By the mixed moment formula (32) we may continue with

≤ c
∫ t
r
ds
∫

R
dbSs−rx

k�b�S�1+ns�/n−rx
k+1�b�

× [pε+t−s�b− a� − pt−s�b− a�]2
(36)

By definition, for fixed x ∈ �+
tem and λ > 0,

xk ≤ cφ−λ 
(37)

On the other hand, for fixed T > 0 and λ ∈ R there are constants c and c̄ such
that

cφλ ≤ Ssφλ ≤ c̄φλ� 0 ≤ s ≤ T�(38)

(cf. [31], Lemma 6.2(ii)). Hence, by Cauchy–Schwarz, the estimate (36) can be
continued with

≤ c
( ∫ t

0
ds
∫

R
db
[
pε+t−s�b− a� − pt−s�b− a�

]2)1/2
×
( ∫ t

0
ds
∫

R
db
[
p2ε+t−s�b− a� + p2t−s�b− a�

]
φ−4λ�b�

)1/2



(39)

But the first term can be bounded by cε1/4 (cf. [31], Lemma 6.2(i)), whereas
for the second term we use again (38) to get the bound

cφ−2λ�a�
( ∫ t

0
ds
[
�ε+ t− s�−1/2 + �t− s�−1/2

])1/2
≤ cφ−2λ�a�
(40)

Altogether, (35) tends to zero as ε ↓ 0, for fixed k� r� t� a and x, uniformly in n.
Thus (33) implies (34), completing the proof of the lemma. ✷
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Since for the later selection of a strong Markov solution we will need some
measurable dependence on the initial data �r� x�, in the construction we will
already allow that the nX additionally depend on some varying initial data
�rm� xm�, and we will write m�nX instead of nX

To be more precise, consider �rm� xm� ∈ R+×�+

tem, m ≥ 1. Fix now m�n ≥ 1,
hence �rm� xm� ∈ R+×�+

tem for the moment. By definition, �m�nX�Pnrm�xm� is the
unique solution to the martingale problem MPnrm�xm of Definition 10, and for
the related martingale measures we write now m�nMk

rm
instead of nMk

r . Recall
the notation �·�λ from (4).

Lemma 12 (Uniformly bounded moments for m�nX). For fixed c0�T� q > 0
and λ′� λ ∈ R with 2qλ′ < λ,

sup
m�n≥1� rm� t∈�0�T�

xm∈�+
tem� �xm �−λ′ ≤c0

∑
k∈K

Pnrm�xm

〈
�m�nXk

t �2q�φλ
〉
<∞
(41)

Proof. Fix c0�T� q� λ′� λ as in the lemma, where without loss of generality
we may assume that q > 5. We may also restrict our attention to rm ≤ t. In
order to handle later the imposed time-partitioning in a Gronwall’s inequality
argument, we include now the approximating equation (33) in our consider-
ation. Let 0 ≤ ε ≤ 1. Using equations (33) and (34) as well as Burkholder–
Davis–Gundy’s inequality applied to the martingale,

t �→
∫
�rm� t�×R

m�nMk
rm

(
d�s� b�)pε+t′−s�b− a�� rm ≤ t ≤ t′(42)

gives the inequality

Pnrm�xm
(
Sε

m�nXk
t �a�

)2q ≤ c(Sε+t−rmxkm�a�)2q + cPnrm�xm
×
( ∫ t

rm

ds
∫

R
dbp2ε+t−s�b− a�m�nXk

s �b�

×
(
S1/n

m�nXk+1
�ns�/n�b� ∧ n

))q



(43)

Using the presupposed bound c0φ−λ′ for xm, and the heat flow estimate (38),
the first term at the right-hand side of (43) has the bound cφ−2qλ′ �a�, which
paired with φλ leads to a finite expression within (41), independent of m, n,
k, rm, t, xm.
Hence it remains to deal with the remaining second term at the right-hand

side of (43). First of all, in the integrand of the double integral we may addi-
tionally introduce φ−λ/q�b�φλ/q�b� ≡ 1. Moreover, we decompose the square
term by using 2 = �2 − 2

q
� + 2

q
. Then by Hölder’s inequality with p such that

1
p
+ 1

q
= 1, the qth power of the double integral in (43) can be estimated from
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above by ( ∫ t
rm

ds
∫

R
dbp2ε+t−s�b− a�φ−λp/q�b�

)q/p
(44a)

×
∫ t
rm

ds
∫

R
dbp2ε+t−s�b− a�φλ�b�

×
(
m�nXk

s �b�
(
S1/n

m�nXk+1
�ns�/n�b� ∧ n

))q
�

(44b)

where we used that �2− 2
q
�p = 2. In the double integral in (44a), we estimate

one of the p-factors by c�t− s�−1/2, and apply (38) in order to get for the q
p
th

power of that integral the bound

cφ−λ�a�
( ∫ t

0
ds�t− s�−1/2

)q/p
≤ cφ−λ�a�(45)

with c again independent ofm�n�k� rm� t� xm, which cancels the φλ�a� in (41).
On the other hand, in the double integral in (44b) we split p2 as before, but
use this time that the remaining p can be paired with 1 in (41). Altogether
we found ∫

R
daφλ�a�Pnrm�xm

(
Sε

m�nXk
t �a�

)2q
≤ c+ c

∫ t
rm

ds�ε+ t− s�−1/2
∫

R
dbφλ�b�

×Pnrm�xm
(
m�nXk

s �b�S1/nm�nXk+1
�ns�/n�b�

)q(46)

with the constants c independent of m�n�k� rm� t� xm. The latter term can
further be estimated by using the elementary inequality

�uv�q ≤ u2q + v2q� u� v ≥ 0� q > 0
(47)

Also, we may sum these inequalities over k ∈ K. Setting (for fixedm�n� rm� xm)

fε�t� �=
∑
k∈K

∫
R
daφλ�a�Pnrm�xm

(
Sε

m�nXk
t �a�

)2q
�(48)

0 ≤ ε ≤ 1� rm ≤ t ≤ T, we thus obtained the following two estimates:
f0�t� ≤ c+ c

∫ t
rm

ds�t− s�−1/2 [f0�s� + f1/n(�ns�/n)]�
f1/n

(�nt�/n) ≤ c+ c ∫ �nt�/n

rm

ds
(
1/n+ �nt�/n− s)−1/2[f0�s� + f1/n(�ns�/n)]�

with the constant c independent of m�n� rm� t� xm. Using in the latter inte-
gral first 1/n + �nt�/n ≥ t and then �nt�/n ≤ t, we see that g�t� �= f0�t� +
f1/n��nt�/n� satisfies

g�t� ≤ c+ c
∫ t
rm

ds�t− s�−1/2g�s�� rm ≤ t ≤ T�(49)

with c independent of m�n� rm� t� xm. Then Gronwall’s inequality implies
g�t� ≤ c, 0 ≤ rm ≤ t ≤ T, with c independent of m�n� rm� t� xm (see [20],
page 138). Hence f0�t� ≤ g�t� gives the claim (41), completing the proof. ✷
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Next we want to deal with moments of time increments of the integral part

m�nYkt �a� �=
∫
�rm� t�×R

m�nMk
rm
�d�s� b��pt−s�b− a�� t ≥ rm� k ∈ K� a ∈ R

in (34).

Lemma 13 (Moments of increments). For constants c0�T�p� q > 0 with
1
p
+

1
q
= 1 and q > 5, and λ′� λ ∈ R with 2qλ′ < λ, we have

sup
m�n≥1� rm∈�0�T�

xm∈�+
tem� �xm �−λ′ ≤c0

∑
k∈K

Pnrm�xm

∣∣∣m�nYkt′ �a′� − m�nYkt �a�
∣∣∣2q

≤ c
(
�t′ − t�1/2 + �a′ − a�

)q/p
φ−λ�a��

(50)

whenever t� t′ ∈ �0�T�� a� a′ ∈ R, and �a− a′� ≤ 1.

Proof. We may assume that rm ≤ t ≤ t′. Let

Nr �=
∫
�rm� r�×R

m�nMk
rm

(
d�s� b�)(pt′−s�b− a′� − pt−s�b− a�)� rm ≤ r ≤ t′


Then r �→Nr is a martingale with square function

�N�r =
∫ r
rm

ds
∫

R
db �pt′−s�b− a′� − pt−s�b− a��2 m�nXk

s �b�S1/nm�nXk+1
�ns�/n�b�


Note that

m�nYkt′ �a′� − m�nYkt �a� =Nt′�(51)

where we used the convention

ps �= 0 if s < 0
(52)

Again by Burkholder–Davis–Gundy’s inequality, we will deal with

Pnrm�xm

( ∫ t′
rm

ds
∫

R
db
[
pt′−s�b− a′� − pt−s�b− a�

]2
×m�nXk

s �b�S1/nm�nXk+1
�ns�/n�b�

)q



As we derived (44a) and (44b), we get the bound

c

( ∫ t′
0
ds
∫

R
db
[
pt′−s�b− a′� − pt−s�b− a�

]2)q/p
×
∫ t′
rm

ds
∫

R
db
[
p2t′−s�b− a′� + p2t−s�b− a�

]
×Pnrm�xm

(
m�nXk

s �b�S1/nm�nXk+1
�ns�/n�b�

)q
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By [31], Lemma 6.2 (i),∫ t′
0
ds
∫

R
db
[
pt′−s�b− a′� − pt−s�b− a�

]2 ≤ c(∣∣t′ − t∣∣1/2 + ∣∣a′ − a∣∣)q/p�(53)

t� t′ ≥ 0� a� a′ ∈ R. Therefore, the first double integral leads to the desired
right-hand side in (50), except for the φ−λ�a�. So it remains to show that the
second double integral can uniformly be bounded by cφ−λ�a�. For this pur-
pose we may assume that t′ = t [recall the convention (52)]. In the integrand
we additionally introduce φ−λ�b�φλ�b� ≡ 1, and apply the Cauchy–Schwarz
inequality to the db-integral. This gives the bound

2
( ∫

R
dbp4t−s�b− a�φ−2λ�b�

)1/2
(54a)

×
( ∫

R
dbφ2λ�b�Pnrm�xm

(
m�nXk

s �b�S1/nm�nXk+1
�ns�/n�b�

)2q)1/2
(54b)

for the db-integral. The factor in (54b) is uniformly bounded. In fact, use once
more (47) and (38), to get expressions of the type as in Lemma 12 with q� λ
replaced by 2q�2λ. On the other hand, in the factor in (54a) we split p4 = pp3,
and use p3t−s�b − a� ≤ c�t − s�−3/2 which, after taking the 1/2 power, has a
bounded ds-integral. In fact, the db-integral of the remaining quantities gives
φ−λ�a� by (38), uniformly in �t− s� and rm� xm. Thus the proof of Lemma 13
is complete. ✷

Completion of the proof of Proposition 9. Fix �rm� xm� converging in R+ ×
�+
tem to �r� x� asm ↑ ∞, as well as p�q > 0 as in Lemma 13, implying q/p > 4.
Since T�λ′� λ in Lemma 13 are arbitrary, from (50) and Lemma 6.3(ii) in [31],
we see that the sequence of the laws of m�nY with respect to Pnrm�xm is tight
in � . [Note that at the right-hand side of the condition (6.5) in [31] the factor
eλ�x� has to be added, and that the laws of the initial states nX0 ∈ �tem, n ≥ 1,
in Lemma 6.3(ii) should be tight by assumption.] So is that of the laws of m�nX
[recall the definition of m�nY before Lemma 13, and (34)]. Let X denote any
limit point (in law) of the m�nX as m ↑ ∞ and n ↑ ∞. Since m�nX satisfies the
martingale problem MPnrm�xm of Definition 8, for each �m�n�, it follows from a
standard limiting argument that X satisfies the martingale problem MPr� x.
This finishes the proof of Proposition 9. ✷

3.2. Some properties of all martingale problem solutions �X�Pr�x�. After
we have constructed a solution to our basic martingale problem, we now want
to collect some properties of all the solutions (that is, not only of the con-
structed ones).
For this purpose, we redefine �m�nX�Pnrm�xm� introduced before Lemma 12

as any solutions to the martingale problemMPrm� xm of Definition 8 (instead of
MPnrm�xm� for each n ≥ 1. In particular, in the case �rm� xm� ≡ �r1� x1� =� �r� x�,
we have a whole sequence 
1� nX =� nX� n ≥ 1� of solutions to MPr� x.
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With that system 
�m�nX�Pnrm�xm�� m�n ≥ 1� we now repeat all the
constructions in Section 3.1. Then, in particular, analogs of Lemmas 11–13
are true, and once more by tightness, any limit point �X�Pr�x� of that new
system again satisfies the martingale problem MPr� x of Definition 8.

Lemma 14 (Properties of all martingale problem solutions). For m�n ≥ 1,
take �rm� xm� ∈ R+ × �+

tem and let �m�nX�Pnrm�xm� denote any solution to the
martingale problem MPrm� xm of Definition 8. Then the following statements
hold:

(a) (Pointwise equation). For t ≥ rm, and �k� a� ∈ K×R fixed, Pnrm�xm-almost
surely,

m�nXk
t �a� = St−rmxkm�a� +

∫
�rm� t�×R

m�nMk
rm

(
d�s� b�)pt−s�b− a�

�with m�nMk
rm
denoting the related martingale measure�.

(b) (Uniformly bounded moments). For fixed c0�T� q > 0 and λ′� λ ∈ R with
2qλ′ < λ,

sup
m�n≥1� rm� t∈�0�T�
xm∈�+

tem� �xm �−λ′ ≤c0

∑
k∈K

Pnrm�xm
〈�m�nXk

t �2q�φλ
〉
<∞


(c) (Moments of increments). For constants c0�T�p� q > 0 with 1
p
+ 1

q
= 1

and q > 5� and λ′� λ ∈ R with 2qλ′ < λ, we have �with the notation m�nY
introduced before Lemma 22)

sup
m�n≥1� rm∈�0�T�

xm∈�+
tem� �xm �−λ′ ≤c0

∑
k∈K

Pnrm�xm

∣∣m�nYkt′ �a′� − m�nYkt �a�
∣∣2q

≤ c(∣∣t′ − t∣∣1/2 + ∣∣a′ − a∣∣)q/pφ−λ�a��
whenever t� t′ ∈ �0�T�� a� a′ ∈ R, and �a− a′� ≤ 1.
(d) (Limit points). Assume that �rm� xm� converges in R+ × �+

tem to �r� x�
as m ↑ ∞. Then any limit point �X�Pr�x� of 
�m�nX�Pnrm�xm�� m�n ≥ 1� as
m ↑ ∞ and n ↑ ∞ satisfies the martingale problem MPr� x of Definition 8.

We also need the following property.

Corollary 15 (Uniformly bounded moments for each solution X). Fix c0�
T� q > 0 and λ′� λ in R with 2qλ′ < λ
 Let �X�Pr�x� be any solution to the
martingale problem MPr� x of Definition 8
 Then,

sup
r∈�0�T�� x∈�+

tem
�x�−λ′ ≤c0

Pr�x sup
0≤t≤T

∑
k∈K

〈�Xk
t �2q�φλ

〉
<∞
(55)

Proof. We specialize in Lemma 14(c) to m�nX ≡ 1�1X =� X. Using the
Banach space L2q�R� φλ�a�da� with q sufficiently large, from the proof of
Theorem 1.2.1 in [28], and Lemma 14(c) we get (55) with X replaced by
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Y ≡ m�nY. But by Lemma 14(a) and the heat flow estimate (38), claim (55)
also holds for X. Finally, (55) is then true for all q > 0, completing the proof.
✷

The special case m�nX ≡X also gives the following result.

Corollary 16 (Pointwise equation for each solution). For each solution
�X�Pr�x� to the martingale problem MPr� x of Definition 8� the family of mar-
tingales extends to orthogonal square-integrable martingale measures Mk

r =
Mk

r�d�s� b�� such that, for the usual predictable functions f� �r�∞�×K×R× →
R in their domain,〈〈 ∫

�r� ·�×R
Mk

r

(
d�s� b�

)
fks �b�

〉〉
t

= γk
∫ t
r
ds
∫

R
daXk

s �a�Xk+1
s �a� [fks �b�]2� t ≥ r� k ∈ K


(56)

Moreover, for t ≥ r and �k� a� ∈ K × R fixed,

Xk
t �a� = St−rxk�a� +

∫
�r� t�×R

Mk
r

(
d�s� b�)pt−s�b− a�� Pr�x-a.s.(57)

In particular, the expectation formula

Pr�xX
k
t �a� = St−rxk�a�� t ≥ r� k ∈ K� a ∈ R�(58)

and the covariance formula

Covr� x
(
X
k1
t1
�a1��Xk2

t2
�a2�

)
= γk1δk1� k2

∫ t1∧t2
r

ds
∫

R
dbSs−rx

k1�b�Ss−r
×xk1+1�b�pt1−s�a1 − b�pt2−s�a2 − b��

(59)

t1� t2 ≥ r� k1� k2 ∈ K� a1� a2 ∈ R� are valid.

Note that (55), (58) and (59) yield already the moment formulas in
Theorem 3(b).

3.3. The mapping �r� x� �→ �r� x. For �r� x� ∈ R+ × �+
tem� let �r� x ⊆

� denote the set of all solutions Pr�x to the martingale problem MPr� x of
Definition 8. Note that �r� x �= $ by Proposition 9. Recall the metric space
�com�� �� dcom� introduced in Section 2.1.
Lemma 17 (Set of all solutions). �r� x� �→ �r� x �= $ is a measurable map-

ping of R+ × �+
tem into com�� �.

Proof. From the special case �rm� xm� ≡ �r� x�, that is m�nX ≡ 1� nX, in
Lemma 14(d) we see that the set �r� x of all solutions to the martingale prob-
lem MPr� x of Definition 8 is compact. On the other hand, the special case
m�nX ≡ m�1X shows that the map �r� x� �→ �r� x is measurable (see [32],
Lemma 12.1.8). This completes the proof. ✷
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We continue with a time-homogeneity property of the family{
�r� x� �r� x� ∈ R+ × �+

tem

}
(60)

of all solutions to the martingale problems of Definition 8. For this purpose,
for r ≥ 0, we introduce the shift operator 8r on  = � �R+��

+
tem� by(

8rω
)
t
�= ω�t−r�∨0� ω ∈  � t ≥ 0�(61)

(producing a constant initial piece).

Lemma18 (Timehomogeneity). Themap �r� x� �→ �r� x is time-homogeneous,
that is,

�r� x = �0� x ◦8−1
r � �r� x� ∈ R+ × �+

tem�(62)

(with the obvious notation).

Proof. The proof is quite elementary and shows that there is a one-to-one
correspondence between the solution to the martingale problems MPr� x and
MP0� x (compare with [32], Lemma 6.5.1). Fix �r� x� ∈ R+ × �+

tem and P ∈ � .

Step 1◦ (Constancy). By the notation (61),{(
8rX

)
t
= x� t ≤ r} = {X0 = x

}

(63)

Hence, the process with law P ◦ 8−1
r equals constantly x up to time r if and

only if P�X0 = x� = 1.

Step 2◦ (Martingale property). For ϕ ∈ �
�2�
rap� t ≥ r, and k ∈ K, again by

definition of the shift operator,〈(
8rX�kt � ϕk

〉
− 〈xk�ϕk〉− ∫ t

r
ds

〈(
8rX

)k
s
�
σ2

2
�ϕk

〉
=
〈
Xk
t−r � ϕ

k
〉
− 〈xk�ϕk〉− ∫ t−r

0
ds

〈
Xk
s �
σ2

2
�ϕk

〉
=Mk

0� t−r�ϕk�


(64)

Thus, by the martingale problemMPr� x of Definition 8, the map t �→Mk
r� t�ϕk�

with respect to the law P ◦8−1
r is a martingale after time r starting from 0 if

and only if t �→Mk
0� t−r�ϕk� with respect to P is a martingale after 0 starting

from 0.

Step 3◦ (Square function). Similarly, by Definition 8(iii),

t �→
[
Mk

r� t�ϕk�
]2

− γk
∫ t
r
ds
∫

R
daXk

s �a�Xk+1
s �a�

[
ϕk�a�

]2
=�Nk

r� t�ϕk�(65)

with respect to P ◦8−1
r is a martingale after time r if and only if the same is

true for r = 0.
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Step 4◦ (Conclusion). Putting Steps 1◦–3◦ together, the claim in the lemma
follows. ✷

We finish this section with an optional stopping argument which we need
later for an integrability statement in the proof of selection of a strong Markov
solution. By (7), for fixed λ ∈ R, there is a constant c�66� such that for the
smoothed reference function φ̃λ,∣∣∣σ2

2
�φ̃λ

∣∣∣ ≤ c�66�φ̃λ
(66)

Recall also the notation �·�λ introduced in (12).
Lemma 19 (A conditional moment estimate). Let the law Pr�x belong to

�r� x, for �r� x� ∈ R+ × �+
tem. Consider T ≥ r and �r�T�-valued stopping times

η ≤ ϑ. Then
Pr�x

{�Xk
ϑ�n−λ

∣∣�η} ≤ enc�66��T−η��Xk
η�n−λ <∞� Pr�x-a.s.(67)

for all k ∈ K� n ≥ 1� λ > 0.

Proof. Fix Pr�x� k� n, and λ. From the martingale problem MPr� x and
Itô’s formula for t ≥ r,

d
(
e−nc�66�t�Xk

t �n−λ
)
=ne−nc�66�t�Xk

t �n−1−λ �
〈
Xk
t �
(σ2
2
�− c�66�

)
φ̃λ

〉
dt

+ne−nc�66�t�Xk
t �n−1−λ dM

k
r� t�φ̃λ�


(68)

Hence, by the definition (66) of c�66�, the process t �→ e−nc�66�t�Xk
t �n−λ is a

Pr�x–supermartingale after time r. Then the claim (67) immediately follows
from [19], Theorem 1.1.39. ✷

3.4. Selection of a strong Markov solution. We now want to select a time-
homogeneous strong Markov version �r� x� �→ Pr�x from �r� x� �→ �r� x. The
idea behind this is an optimization procedure as in [32], which goes back
to [21] and which uses an extremal property which is well behaved under
conditioning and weak convergence.
To make this precise, we first recall some notation taken from [32]. We

stress the fact that all those results we quote from [32] are valid also in our
present case of the set  = � �R+��

+
tem� of paths in an infinite-dimensional

space. Recall that � r denotes the σ–field generated by the coordinate process
at times t ≥ r.
Notation 20 (Composition I). For fixed ω ∈  , r ≥ 0, and a law P on

� �� r� with the property that P�Xr = ωr� = 1, let δω⊗rP denote the unique
law on  satisfying

δω ⊗r P
(
Xt = ωt for t ≤ r

) = 1 and δω ⊗r P = P on � r(69)
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(see [32], Lemma 6.1.1). Roughly speaking, the irrelevant history of the process
�X�P� up to time r is replaced by the one of ω yielding the process �X�δω⊗r
P�. For fixed x ∈ �+

tem, let the notation δx ⊗r P, however, refer to the special
case ωt = x for t ≤ r (constant initial piece).
We also need the following notation.

Notation 21 (Composition II). Consider a probability measure P on  , a
stopping time τ on  , and a mapping ω �→ Qω of  into � satisfying the
following two conditions:

(a) ω �→ Qω is �τ-measurable.
(b) Qω�Xτ�ω� = ωτ�ω�� = 1 for all ω ∈  .

Then let P ⊗τ Q denote the unique probability measure on  which has the
following two properties:
(c) P⊗τ Q equals P on �τ.
(d) ω �→ δω⊗τ�ω�Qω (recall Notation 20) is a regular conditional probability

distribution of P⊗τ Q given �τ (see [32], Theorem 6.1.2).

Roughly speaking, the process �X�P⊗τ Q� has the law P until the random
time τ, and its conditional law after time τ is given by the family Q.

Definition 22 (Strong Markov solution). 
Pr�x� �r� x� ∈ R+ ×�+
tem� ⊆ � is

said to be a time-homogeneous strong Markov solution to the family

MP �=
{
MPr� x� �r� x� ∈ R+ × �+

tem

}
(70)

of martingale problems of Definition 8, if �r� x� �→ Pr�x is a measurable map
of R+ × �+

tem into � , and if for each �r� x� ∈ R+ × �+
tem:

(a) Pr�x ∈ �r� x.
(b) Pr�x = P0� x ◦8−1

r (time homogeneity).
(c) For each stopping time τ ≥ r on  and each regular conditional prob-

ability distribution ω �→ Pω of Pr�x given �τ, there is a Pr�x-null set N ∈ �τ
such that

Pω = δω ⊗τ�ω� Pτ�ω��ωτ�ω�� ω /∈ N�

(recall Notation 20).

In other words, solutions Pr�x of MPr� x are selected in such a way that(
X�Pr�x� �r� x� ∈ R+ × �+

tem

)
(71)

is a time-homogeneous strong Markov process.
The existence statement on a cyclically catalytic SBM as claimed in

Theorem 3(a) can now be restated as follows.

Theorem 23 (Existence of a strong Markov solution). There exists a time-
homogeneous strong Markov solution to the martingale problemMP according
to Definition 22
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The verification of this theorem (in the end of this subsection) needs some
further preparation. Recall the second part of Notation 20 and Notation 21.

Lemma 24 (Compositions). Fix x ∈ �+
tem� P ∈ �0� x� and a finite stopping

time τ on  = � �R+��
+
tem�


(a) (Composition I). If ω �→ Pω is a regular conditional probability distri-
bution of P given �τ� then there is a P-null set N ∈ �τ such that

δωτ�ω� ⊗τ�ω� Pω ∈ �τ�ω��ωτ�ω�� ω /∈ N


(b) (Composition II). If ω �→ Qω is an �τ-measurable map of  into � such
that

δωτ�ω� ⊗τ�ω� Qω ∈ �τ�ω��ωτ�ω�� ω ∈  �
then P⊗τ Q belongs to �0� x


Proof. Fix x�P� τ as in the lemma.

(a) Let ω �→ Pω be a regular conditional probability distribution of P
given �τ. Denote by � a countable dense subset of �

�2�
rap. Fix ϕ ∈ � and

k ∈ K for a while. First note that by Definition 8(ii),

Mk
τ�ω�� t�ϕk� =Mk

0� t�ϕk� −Mk
0� τ�ω��ϕk�� t ≥ τ�ω�
(72)

Hence, by the last part of Theorem 1.2.10 in [32] (applied to θ�t� =Mk
0� t�ϕk�

and s = 0), there exists a P-null set Nϕ ∈ �τ such that for all ω /∈ Nϕ,

t �→Mk
τ�ω�� t�ϕk� is a Pω-martingale after time τ�ω�
(73)

Recalling the notation Nk
r� t�ϕk� introduced in (65), by Definition 8(iii) the

following identity holds:

Nk
τ�ω�� t�ϕk� =Nk

0� t�ϕk� −Nk
0� τ�ω��ϕk� − 2Mk

τ�ω�� t�ϕk�Mk
0� τ�ω��ϕk�
(74)

Appealing again to the same theorem in [32] and combining with (73), we may
redefine the P-null set Nϕ ∈ �τ such that for ω /∈ Nϕ additionally,

t �→Nk
τ�ω�� t�ϕk� is a Pω-martingale after time τ�ω�
(75)

Introduce the P-null set N �= ⋂
ϕ∈� Nϕ ∈ �τ
 We may additionally assume

that N is independent of k ∈ K. To ϕ ∈ �
�2�
rap we now choose ϕn ∈ � converging

in �
�2�
rap to ϕ. Then, from (73) and (75) we conclude that for ω /∈ N,

Mk
τ�ω�� · �ϕk� and Nk

τ�ω�� · �ϕk� are Pω-martingales after time τ�ω�
(76)

Since k and ϕ are arbitrary, and N does not depend on them, claim (a) is true.
(b) Let ω �→ Qω be an �τ-measurable map as presupposed in (b). First of

all, P⊗τ Q makes sense, according to Notation 21. Trivially, P⊗τ Q has the
right initial state,

P⊗τ Q�X0 = x� = P�X0 = x� = x
(77)
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Fix ϕ ∈ �
�2�
rap and k ∈ K. Next we want to show that{

Mk
0� t�ϕk�� t ≥ 0

}
is a P⊗τ Q-martingale.(78)

By the last part of Theorem 6.1.2 in [32] [again with θ�t� = Mk
0� t�ϕk� and

s = 0] it suffices to show that

Mk
0� t�ϕk� is P⊗τ Q-integrable� t ≥ 0�(79)

that {
Mk

0� t∧τ�ϕk�� t ≥ 0
}

is a P-martingale(80)

and that{
Mk

0� t�ϕk� −Mk
0� t∧τ�ω��ϕk�� t ≥ 0

}
is a Qω-martingale� ω ∈  
(81)

In order to check the integrability statement (79), we fix T ≥ t ∨ 1 and
λ > 0, as well as a constant c�82� > 0 such that∣∣∣ϕk∣∣∣+ σ2

2

∣∣∣�ϕk∣∣∣ ≤ c�82�φ̃λ(82)

[recall (7)]. Then by the martingale definition (14),

P⊗τ Q
∣∣Mk

0� t�ϕk�
∣∣ ≤ 2c�82�T sup

s≤T
P⊗τ Q�Xk

s �−λ(83)

[recall notation (12)]. Conditioning on �τ in the latter expectation expression,
by Notation 21 we get

P⊗τ Q�Xk
s �−λ =

∫
 
P�dω�δω ⊗τ�ω� Qω�Xk

s �−λ
(84)

First we restrict in the latter integral additionally to τ�ω� > s
 Then con-
cerning the internal expectation, �Xk

s �−λ equals the deterministic value
�ωks �−λ, just by notation (69). Hence, for the considered first part of (84) we
found the bound ∫

 
P�dω��ωks �−λ = P�Xk

s �−λ ≤ ec�66�T�xk�−λ�(85)

where we used Lemma 19.
Under the restriction τ�ω� ≤ s, however, again by notation (69),

δω ⊗τ�ω� Qω = Qω = δωτ�ω� ⊗τ�ω� Qω on � τ�ω�
(86)

Sincebyassumption,δωτ�ω� ⊗τ�ω�Qω satisfies themartingaleproblemMPτ�ω��ωτ�ω�
(except for ω in the null set Nτ�, we may apply Lemma 19 to get

δωτ�ω� ⊗τ�ω� Qω�Xk
s �−λ ≤ ec�66�T�ωkτ�ω��−λ
(87)

Thus, for the part of (84) under consideration, we got the bound

ec�66�T
∫
 
P�dω��ωkτ�ω��−λ = ec�66�TP�Xk

τ�−λ ≤ e2c�66�T�xk�−λ�(88)
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where in the last step we exploited once more our conditional moment estimate
in Lemma 19.
Altogether we obtained

sup
s≤T

P⊗τ Q�Xk
s �−λ ≤ 2e2c�66�T�xk�−λ <∞
(89)

Thus, by (83), the integrability claim (79) is verified.
Statement (80) is immediately clear, and we turn to (81). Fix ω ∈  . Since

δωτ�ω� ⊗τ�ω� Qω ∈ �τ�ω��ωτ�ω� by assumption,

t �→Mk
τ�ω�� t�ϕk� is a δωτ�ω� ⊗τ�ω� Qω-martingale after time τ�ω��(90)

by definition. ButMk
τ�ω�� t�ϕk� is � τ�ω�-measurable; thus in (90) we may replace

δωτ�ω� ⊗τ�ω� Qω by Qω. Hence, by the martingale identity (72),

t �→Mk
0� t�ϕk� −Mk

0� τ�ω��ϕk� is a Qω-martingale after time τ�ω��(91)

and (81) follows.
Exploiting again [32], Theorem 6.1.2, analogously to (78) it can be shown

that {
Nk
0� t�ϕk�� t ≥ 0

}
is a P⊗τ Q-martingale
(92)

Together with (78), the claim follows, completing the proof of Lemma 24. ✷

Now it will be convenient for us to consider the map �r� x� �→ �r� x intro-
duced in the beginning of Section 3.3 also from a more general point of view.

Definition 25 (Nice family). A family
{
�r� x �= $� �r� x� ∈ R+ × �+

tem

}
of

subsets of the set � of all probability laws on  = � �R+��
+
tem� is said to

be nice, if it is measurable of R+ × �+
tem into com�� � as in Lemma 17, time-

homogeneous as in Lemma 18, and if it has the composition properties as in
Lemma 24.

Now we are ready to verify the existence Theorem 23.

Proof of Theorem 23. By the Lemmas 17, 18 and 24, we already know
that our family �r� x� �→ �r� x of all solutions to the martingale problem MP
in (70) is nice according to the previous definition. By a successive optimization
procedure, we would like to shrink down the sets �r� x to single point sets{
Pr�x

}
.

Let �1��2, and �3 denote countable dense subsets of �0�∞�, �0 and �rap,
respectively, where �0 �= �0�R� is the separable Banach space of all functions
f� R → R vanishing at infinity, equipped with the supremum norm of uniform
convergence. Let 
�θn� fn� ϕn�� n ≥ 1

}
denote an enumeration of �1×�2×�3.

Fix �r� x� ∈ R+ × �+
tem for the moment. For P ∈ �r� x, set

Lnr�x�P� �=
∫ ∞

0
dt e−θntPfn

(〈
Xr+t� ϕn

〉)
� n ≥ 1
(93)
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Define inductively

� n+1
r� x �=

{
P ∈ � n

r� x� Lnr�x�P� = sup
P′∈� n

r� x

Lnr� x�P′�
}
� n ≥ 1�(94)

where � 1
r� x �= �r� x. Then, by [32], Lemma 12.2.2,

� n �= {� n
r� x� �r� x� ∈ R+ × �+

tem

}
(95)

is again a nice family, for each n ≥ 1. Moreover, as in the proof of
Theorem 12.2.3 in [32], also the monotone limits

�∞
r� x �= ⋂

n≥1
� n
r� x� �r� x� ∈ R+ × �+

tem�(96)

form a nice family.
Fix again �r� x� ∈ R+ × �+

tem, and consider P�P
′ ∈ �∞

r� x
 In order to finish
the proof of the theorem, it remains to show that P = P′. By construction,∫ ∞

0
dt e−θtPf

(〈
Xr+t� ϕ

〉) = ∫ ∞

0
dt e−θtP′f

(〈
Xr+t� ϕ

〉)
�(97)

for all �θ� f�ϕ� ∈ �1 × �2 × �3. Since �1 is dense in �0�∞� by assumption,
by the uniqueness theorem of Laplace transforms and by the integrands’ con-
tinuity in t, we get

Pf
(〈
Xr+t� ϕ

〉) = P′f
(〈
Xr+t� ϕ

〉)
� t ≥ 0� �f�ϕ� ∈ �2 ×�3
(98)

But also �2 and �3 are dense in �0 and �rap, respectively, and we con-
clude that the martingale problem solutions �X�P� and (X�P′) have the
same one-dimensional distributions. Thus the laws P and P′ coincide (cf. [15],
Theorem 4.4.2), completing the proof of Theorem 23. ✷

4. Global segregation of neighboring types (Proof of Theorem 4).
Fix X0 = x ∈ �+

tem and suppose it has a finite total mass �x�. In accordance
with (18), set

ZT = ZT�x� �=
∑
k∈K

γk�Xk
T� · �Xk+1

T �
(99)

The strategy of the following proof of Theorem 4 is to construct a contradiction
by assuming that

Px

(
inf
T≥0

ZT > 0
)
> 0
(100)

Then ZT → 0 Px-a.s. will follow [and therefore the claim (17)], since 0 is an
absorbing state for the process Z� and since for the continuous nonnegative
martingales T �→ �Xk

T� we have that
lim
T↑∞

�Xk
T� =� �Xk

∞� exists in R+� k ∈ K
(101)

The contradiction will arise when under the event in (100) we construct finite
stopping times Tn ↑ ∞ such that ZTn → 0. This construction requires some
preparation.
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Step 1◦. First, for T ≥ 0, we introduce the “global clock”

AT �=
∫ T
0
dt
∑
k∈K

γk
∫

R
daXk

t �a�Xk+1
t �a� ↗

T↑∞
some A∞ <∞
(102)

Indeed, A∞ is finite Px-a.s., since by (15) and orthogonality, A is the square
function of the nonnegative (hence convergent) martingale T �→ �XT�. We
want to decompose AT by using the pointwise equation (57) (with r = 0). For
this purpose, put

0AT �=
∫ T
0
dt
∑
k∈K

γk
∫

R
daStx

k�a�Stxk+1�a��(103a)

1NT�T� �=
∫ T
0
dt
∑
k∈K

γk
∫

R
daStx

k�a�Nk+1
t �t� a��(103b)

2NT�T� �=
∫ T
0
dt
∑
k∈K

γk
∫

R
daNk

t �t� a�Stxk+1�a��(103c)

3NT�T� �=
∫ T
0
dt
∑
k∈K

γk
∫

R
daNk

t �t� a�Nk+1
t �t� a��(103d)

where, for a ∈ R,

Nk
r�t� a� �=

∫
�0�r�×R

Mk
(
d�s� b�)pt−s�b− a�� 0 < r ≤ t�(104)

with the martingale measures Mk �= Mk
0 from Corollary 16. Note that all

quantities make sense by the uniform moment estimates Corollary 15. Then,
by our equation (57) (recall that there we have continuity in t� a), we get the
decomposition

AT = 0AT + 1NT�T� + 2NT�T� + 3NT�T� =� 0AT +NT�T�
(105)

Step 2◦. In analyzing the fluctuating part NT�T� of AT, a little care has
to be taken since T �→ NT�T� [or the single terms T �→ iNT�T�� are not
martingales.
Interchanging the order of integration in (103b) gives

1NT�T� =
∑
k

γk
∫
�0�T�×R

Mk+1(d�s� b�) ∫ T
s
dtS2t−sx

k�b�
(106)

We generalize now the notation T �→ 1NT�T� by putting

1Nr�T� �=
∑
k

γk
∫
�0�r�×R

Mk+1(d�s�b�)∫ T
s
dt S2t−sx

k�b�� 0≤r≤T
(107)

As opposed to T �→ 1NT�T�, for fixed T > 0, the process r �→ 1Nr�T�, r ∈
�0�T�, is a martingale. Analogously, we can define the martingale r �→ 2Nr�T�.
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Integrating by parts in the third fluctuation term (103d) gives

3NT�T� =
∫ T
0
dt
∑
k

γk
∫

R
da

[ ∫
�0�t�×R

Mk
(
d�s� b�)pt−s�b− a�Nk+1

s �t� a�

+
∫
�0�t�×R

Mk+1(d�s� b�)pt−s�b− a�Nk
s �t� a�

]
�

which we write as 31NT�T� + 32NT�T� in the obvious correspondence. Inter-
changing the order of integration yields

31NT�T� =
∑
k

γk
∫
�0�T�×R

Mk
(
d�s� b�)

×
∫ T
s
dt
∫

R
da pt−s�b− a�Nk+1

s �t� a�

(108)

Put

31Nr�T� �=
∑
k

γk
∫
�0� r�×R

Mk
(
d�s� b�)

×
∫ T
s
dt
∫

R
da pt−s�b− a�Nk+1

s �t� a��
(109)

0 ≤ r ≤ T, getting again a martingale t �→ 31Nr�T�. Similarly, we define the
martingale r �→ 32Nr�T�.
Altogether, in generalization of the notations (103b)–(103d) and (105), for

T > 0 fixed, we defined the martingales iN·�T�, i ∈ 
1�2�31�32�� and
r �→Nr�T� �= 1Nr�T� + 2Nr�T� + 31Nr�T� + 32Nr�T�� 0 ≤ r ≤ T
(110)

Step 3◦. Let us next mention the idea behind the following construction of
a contradiction. It is relatively easy to see that for the deterministic part 0A
of A in the decomposition (105) we have

0AT ≥ cZ0 for large T(111)

[see (127) below]. On the other hand, the martingale

r �→Nr�T� from (110) has a square function bounded by AT(112)

[see (123) below]. Since Bt ≈ √
t for Brownian motion in R, the martingale

representation theorem “yields”∣∣NT�T�
∣∣ ≤ sup

0≤r≤T

∣∣Nr�T�
∣∣ ≤ c√AT�(113)

hence

NT�T� ≥ −c
√
AT for large T
(114)

Combining with the decomposition (105) and the estimate (111) gives

AT + c
√
AT ≥ cZ0 for a large T1
(115)
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Hence, there is a continuous function h with h�0� = 0 such that h�AT1� ≥ Z0.
By our assumption (100), ZT1 is different from 0 with positive probability.
Starting at time T1 anew, we will find T2 > T1 such that h�AT2 −AT1� ≥ ZT1 ,
as so on. But ATn+1 − ATn → 0 as n ↑ ∞ by (102) [provided that Tn ↑ ∞�;
therefore ZTn → 0, which contradicts (100), as desired.

Step 4◦. In order to make precise the previous ideas, we will control the
random expressions iNT�T� in terms of AT, as needed for (112). By orthogo-
nality, for the square function of the martingale 1N�T� as defined in (107) we
get

〈〈1N�T�〉〉
r
=∑

k

γk
∫ r
0
ds
∫

R
dbγk+1Xk+1

s �b�Xk+2
s �b�

[ ∫ T
s
dt S2t−sx

k�b�
]2



Setting

qt�a� �=
∫ t
0
ds ps�a�� t ≥ 0� a ∈ R�(116)

for each constant 0 ≤ θ ≤ 1 we obtain∫ T
s
dt S2t−s−θsX

k
θs�b� ≤ 1

2q2T�0�maxk∈K�0≤s≤T �Xk
s �
(117)

Applying this for θ = 0, and denoting by γ̄ the maximum of the γk, we find〈〈1N�T�〉〉
r
≤ 1

4 γ̄q
2
2T�0� max

k∈K�0≤s≤T
�Xk

s �2AT� 0 ≤ r ≤ T
(118)

The same estimate is true for
〈〈
2N�T�〉〉

r
.

The square function value
〈〈
31N�T�〉〉

r
of the martingale 31N�T� of (109)

equals ∑
k

γk
∫ r
0
ds
∫

R
db γkXk

s �b�Xk+1
s �b�

×
[ ∫ T

s
dt
∫

R
da pt−s�b− a�Nk+1

s �t� a�
]2



(119)

But

Nk+1
s �t� a� = St−sNk+1

s �s� ·��a�� 0 ≤ s ≤ t�(120)

hence, by (57), ∣∣Nk+1
s �t� a�∣∣ ≤ St−sXk+1

s �a� +StXk+1
0 �a�
(121)

Thus, the expression under the square brackets in (119) can in absolute value
be bounded from above by∫ T

s
dt
[
S2�t−s�X

k+1
s �b� +S2t−sXk+1

0 �b�] ≤ q2T�0� max
k∈K�0≤s≤T

�Xk
s ��(122)
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where in the last step we used (117) (for θ = 1 and θ = 0�. Hence, for
��31N�T���r we get the same bound as in (118), except for the factor 1

4 . More-
over, for ��32N�T���r we get the same bound as for ��31N�T���r.
Altogether, by the Kunita–Watanabe inequality, for the martingaleN�T� as

defined in (110) we get, as announced in (112), the square function estimate〈〈
N�T�〉〉

r
≤ c�123�γ̄q22T�0�AT max

k∈K�0≤s≤T
�Xk

s �2� 0 ≤ r ≤ T�(123)

where c�123� is a (universal) constant.

Step 5◦. Now we want to derive a lower estimate for the deterministic
term 0AT from (103a), as announced in (111). For this purpose, for the fixed
initial state x, choose a constant L = L�x� ≥ 1 such that〈

xk�1�−L/2�L/2�
〉 ≥ 1

2�xk�� k ∈ K
(124)

Also, there is a (universal) constant c�125� such that

q2T�L� ≥ c�125�q2T�0�� T ≥ L2 =� T1�x� ≥ 1
(125)

Then in the identity

0AT = 1
2

∑
k

γk
∫

R
da
∫

R
dbxk�a�xk+1�b�q2T�b− a��(126)

we first restrict the integration domains in order to use (125), getting

0AT ≥ c�125�
2

∑
k

γk
∫ L/2
−L/2

da
∫ L/2
−L/2

dbxk�a�xk+1�b�q2T�0�� T ≥ T1�x�


Then (124) yields the estimate

0AT ≥ c�125�
8
q2T�0�

∑
k

γk�xk� · �xk+1� = c�125�
8
q2T�0�Z0(127)

for T ≥ T1�x�, with Z0 = Z0�x� from (99).
Now we modify our definition of T1�x� from (125): ifZ0 = 0, we set T1�x� �=

∞. Otherwise we may enlarge T1�x� from the former definition (125) to a finite
value by requiring that additionally,

c�125�
8
q2T�0�Z0 ≥ 2� T ≥ T1�x�
(128)

Assume T ∈ [T1�x��∞) for a while. From (127) and (128) we already know
that

0AT ≥ c�125�
8
q2T�0�Z0 ≥ 2
(129)
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Step 6◦. Next we want to bound below the probability Px
(
AT ≥ 1

)
. Recall

that T1�x� ≤ T < ∞. If we assume for the moment that AT < 1, then (129)
and (105) imply that

NT�T� ≤ −c�125�
16

q2T�0�Z0
(130)

Consequently,

Px
(
AT < 1

) = Px(AT < 1�NT�T� ≤ −c�125�
16

q2T�0�Z0

)

(131)

Let

R = R�x� ≥ max
k∈K

�xk�
(132)

Distinguishing between

max
{�Xk

t �� k ∈ K�0 ≤ t ≤ T} > 2R(133)

and the opposite, identity (131) can be continued with

≤∑
k

Px

(
AT ≤ 1� max

0≤t≤T
�Xk

t � ≥ 2R
)

+Px
(
AT ≤ 1�NT�T� ≤ −c�125�

16
q2T�0�Z0� max

k∈K
0≤t≤T

�Xk
t � ≤ 2R

)



(134)

For the first term in (134) we use that by (57) the process t �→ �Xk
t � − �xk�

equals in law to a one-dimensional standard Brownian motion
(
B�'0

)
(start-

ing from 0) running with a clock bounded by t �→ At. Hence, for the first term
in (134) we get the bound∑

k

'0

(
�xk� + max

0≤t≤1
Bt ≥ 2R

)
≤K'0

(
max
0≤t≤1

Bt ≥ R
)
�(135)

where in the last step we used the definition (132) of R. By the reflection
principle of Brownian motion, and an elementary estimate for the normal
law,

'0

(
max
0≤t≤1

Bt ≥ R
)
≤ 2'0

(
B1 ≥ R

)
≤ 2
R
e−R

2/2
(136)

Consequently, for the first term in (134) we got the bound �2K/R�e−R2/2.
For the second term in (134) we use the square function estimate (123) to

obtain the bound

Px

(
NT�T� ≤ −c�125�

16
q2T�0�Z0�

〈〈
N�T�〉〉

T
≤ 4c�123�γ̄q

2
2T�0�R2

)

(137)

But the law of r �→ Nr�T� coincides with the distribution of B running with
the clock r �→ 〈〈

N�T�〉〉
r
(for a finite time). Hence, (137) is bounded from above
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by

'0

(
min

{
Bt� 0 ≤ t ≤ 4c�123�γ̄q

2
2T�0�R2} ≤ −c�125�

16
q2T�0�Z0

)
= '0

(
min

{
Bt� 0 ≤ t ≤ 1

} ≤ − c�125�Z0

32√c�123�γ̄R
)
�

(138)

where in the last step we used Brownian scaling. Changing from B to −B,
again by the first part of (136) we may continue with

≤ 1−'0
(∣∣B1∣∣ ≤ c�125�Z0

32
√
c�123�γ̄R

)
≤ 1− c�139�Z0

R
�(139)

where the constant c�139� does not depend on x and T.
Altogether

Px
(
AT ≥ 1

) ≥ − 2K
R�x�e

−R2�x�/2 + c�139�Z0�x�
R�x� =� f�x��(140)

provided that T ∈ �T1�x��∞�.

Step 7◦. Now we will make more precise our choice of R�x� in (132). In
fact, for the x considered in this proof, set

R�x� �=


√
2 log 2K ∨maxk∈K �xk�� if c�139�Z0�x� ≥ 2�√
2 log

4K
c�139�Z0�x�

∨maxk∈K �xk�� otherwise.
(141)

Note that then

f�x� ≥ c�139�Z0�x�
2R�x� ≥ 0
(142)

Moreover, setting

Vδ�C �= {x� Z0�x� ≥ δ�max
k∈K

�xk� ≤ C}� 0 < δ < C <∞�(143)

our choice (141) of R yields

R
(
Vδ�C

)
is a relatively compact subset of �0�∞�� 0 < δ < C <∞
(144)

Step 8◦. Setting T0 �= 0, and recalling the definition of T1 around (128),
define inductively the stopping times

Tn+1 �=
{
Tn +T1

(
XTn

)
� if Tn <∞,

∞� otherwise,
(145)

n ≥ 1. Note that Tn ≥ n for all n. Recalling that almost surely,
0 = A0 ≤ At ↑ A∞ <∞ as t ↑ ∞�(146)
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by the strong Markov property we have

Px
{
ATn+1 −ATn ≥ 1

∣∣�Tn}=1{
Tn<∞

}PXTn

(
AT1 ≥ 1

)
≥ 1{

Tn<∞
}f(XTn

)



(147)

Hence, by the conditional version of Borel–Cantelli (see [36], 12.15),{
ATn+1 −ATn ≥ 1 infinitely often

} ⊇ { ∞∑
n=1

1{
Tn<∞

}f(XTn

) = ∞
}
�(148)

Px-a.s. But by (146), the left-hand side of (148) must be a null set. Hence,
∞∑
n=1

1{
Tn<∞

}f(XTn

)
<∞� Px-a.s.(149)

Since f ≥ 0, on the set
{
Tn <∞� n ≥ 1

}
we have (Px-a.s.)

lim
n↑∞

f
(
XTn

) = 0 hence lim
n↑∞

ZTn
R�XTn

� = 0�(150)

the latter by (142).

Step 9◦. Suppose now that (100) is valid, and we want to derive a contra-
diction. By (100), there exist constants δ > 0 and ε ∈ (0� 12) such that for our
fixed x,

Px

(
inf
T≥0

ZT ≥ δ
)
≥ 2ε
(151)

On the other hand, from the martingale convergence (101) we conclude for the
existence of a constant C > δ such that

Px

(
sup

k∈K�T≥0
�Xk

T� ≤ C
)
≥ 1− ε
(152)

Introduce the event

 δ�C �=
{
ω� inf

T≥0
ZT ≥ δ� sup

k∈K�T≥0
�Xk

T� ≤ C
}

(153)

Then from (151) and (152),

Px
(
 δ�C

) ≥ ε
(154)

Note that for ω ∈  δ�C we have Tn <∞ for all n, hence, by (150),

Px

(
ω ∈  δ�C� lim

n↑∞
ZTn

R�XTn
� = 0

)
≥ ε > 0
(155)

But XTn
∈ Vδ�C for each n on the event  δ�C, implying ZTn → 0 as n ↑ ∞ by

the relative compactness in (144), which contradicts infT≥0 ZT ≥ δ > 0 in the
definition of  δ�C. Therefore the statement (100) cannot be true, and the claim
in Theorem 4 follows as already explained in the beginning of this subsection.
This completes the proof of Theorem 4. ✷
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5. Finite time behavior (Proof of Theorem 5). Finally, the finite time
behavior Theorem 5 will be proved in the following two subsections.

5.1. Finite time survival of all types [proof of (a)]. As a preparation for the
proof, for convenience we give the following variance estimate.

Lemma 26 (Variance estimate). For x ∈ �+
tem and �t� k� a� ∈ R+ × K × R,

VarxX
k
t �a� ≤ γk

√
2t
π

√
St�xk�2�a�St�xk+1�2�a�
(156)

Proof. By the covariance formula in Theorem 3(b), Xk
t �a� has the follow-

ing variance:

VarxX
k
t �a� = γk

∫ t
0
ds
∫

R
dbSsx

k�b�Ssxk+1�b�p2t−s�a− b�
(157)

Estimate one of the p-factors by pt−s�0� = 1/
√
2π�t− s� and use Cauchy–

Schwarz to get the upper bound

γk
∫ t
0
ds

1√
2π�t− s�

1∏
i=0

( ∫
R
dbpt−s�a− b�[Ssxk+i�b�]2)1/2
(158)

By Jensen’s inequality,
[
Ssx

k�b�]2 ≤ Ss�xk�2�b�, and altogether we get the
desired variance estimate (156). ✷

Completion of the proof of Theorem 5(a). Fix X0 = x, and t ≥ T > 0
as in the theorem, and let Px be any solution to the martingale problem MPx
(that is, the Markov property is not needed for this proof). Let k ∈ K and ε > 0.
Then by our assumption (20), there is an a ∈ R such that

4γk
√
2t√
π

√
St�xk�2�a�St�xk+1�2�a�[

Stx
k�a�]2 < ε
(159)

Fix this a. By the continuity of states, �Xk
t � = 0 implies that Xk

t �a� = 0.
Hence,

Px
(�Xk

t � = 0
) ≤ Px(∣∣Stxk�a� −Xk

t �a�
∣∣ ≥ 1

2Stx
k�a�

)

(160)

By the expectation formula in Theorem 3(b), Chebyshev’s inequality, and the
variance estimate in Lemma 26,

Px
(�Xk

t � = 0
) ≤ 4γk

√
2t√
π

√
St�xk�2�a�St�xk+1�2�a�[

Stx
k�a�]2 < ε�(161)

the latter by our choice (159) of a. Since ε is arbitrary, we arrive at

Px
(�Xk

t � = 0
) = 0� t ≥ T
(162)
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Denote by τ ≤ ∞ the hitting time of 0 of the nonnegative continuous
martingale t �→ �Xk

t �. Assume for the moment that Px�τ < ∞� > 0 is true.
Then also Px�τ < t� > 0 holds for some t ≥ T. But the state 0 is a trap
of that martingale, and we get Px

(�Xk
t � = 0

)
> 0 for that t, which contra-

dicts (162). Hence, Px�τ < ∞� = 0, and since k is arbitrary, the claim (21)
follows, finishing the proof of Theorem 5(a). ✷

5.2. Finite time extinction of a type [proof of (b)]. Recall that k0 ∈ K is
fixed, where we may assume without loss of generality that k0 = 0. Recall also
that we have positive constants ci and λi, 0 ≤ i ≤ 2, as well as c′1� λ

′
1 which

are related by assumption (22). Additionally, fix positive constants α�β′� β� γ
such that

λ0 > α > λ
′
1� λ1 > β� λ2 > γ and 2λ′1 < 2β

′ < β+ γ
(163)

Once and for all, fix ε ∈ �0�1�, and a constant p > 9. Without loss of generality,
we may consider a terminal time T ∈ �0�1�.
Let Ic0 denote the set of all initial states x ∈ �+

tem with �x� <∞ and which
satisfy (23) and (24). We may assume that c0 ≤ 1, implying Ic0 ⊆ I1.
Fix for the moment c0 and x ∈ Ic0 . Let Px be any solution to the martingale

problem MPx (that is, the Markov property will again not be used).
Recall the smooth reference functions φ̃λ introduced in (6) and the related

notation �·�λ from (12). Introduce the stopping times

τ
k�p� λ
L �= inf

{
t ≥ 0� ∥∥�Xk

t �p
∥∥
λ
≥ L}� L > 0� λ > 0(164)

and

τL�t� �= t ∧ τ1�4p�4pβL ∧ τ2�4p�4pγL � t ≤ T
(165)

Recall the martingales r �→Nk
r�t� a�, r ≤ t, from (104), for each �k� a� ∈ K × R.

Set

Nk
t �a� �=Nk

t �t� a�
(166)

Since the claim of Theorem 5(b) highly depends on the interplay of “sizes”
of the different types, some efforts are needed to control them. Here is our
first result in this direction.

Lemma 27 (A moment estimate for some fluctuation increments). For 0 ≤
t′ ≤ t ≤ T, a� a′ ∈ R, and L > 0, there is a constant c�167� such that

sup
x∈I1

Px
∣∣N1

t �a� −N1
t′ �a′�

∣∣2p1{t ≤ τ1�4p�4pβL ∧ τ2�4p�4pγL

}
≤ c�167�

√
L
(�a− a′� + �t− t′�1/2)p−1T1/4(φp�β+γ��a′� +φp�β+γ��a�)
(167)
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Proof. By definition (104) ofNk
r�t� a�, the moment expression in (167) can

be written as

Px

∣∣∣∣∫�0�t�×R
M1(d�s�b�)[pt−s�b−a�−pt′−s�b−a′�]1{t≤τ1�4p�4pβL ∧τ2�4p�4pγL

}∣∣∣∣2p

Under the restriction as in the indicator, for the upper integration bound
we may use that t = τL�t�, by definition (165). Hence, the latter moment
expression can be estimated from above by

Px

∣∣∣∣ ∫[0� τL�t�]×R
M1(d�s� b�)[pt−s�b− a� − pt′−s�b− a′�]∣∣∣∣2p
(168)

By virtue of the Burkholder–Davis–Gundy inequality, this can be further
bounded by

cPx

∣∣∣∣ ∫ τL�t�0
ds
∫

R
db
[
pt−s�b− a� − pt′−s�b− a′�

]2
X1
s�b�X2

s�b�
∣∣∣∣p
(169)

Writing 2 = �2− 2
p
� + 2

p
, by Hölder’s inequality the latter double integral can

be estimated from above by∣∣∣∣ ∫ τL�t�0
ds
∫

R
db
[
pt−s�b− a� − pt′−s�b− a′�

]2∣∣∣∣p−1(170a)

×
∫ τL�t�
0

ds
∫

R
db
[
pt−s�b− a� − pt′−s�b− a′�

]2[
X1
s�b�

]p[
X2
s�b�

]p

(170b)

For the first factor (170a) we use τL�t� ≤ t and then the heat kernel esti-
mate (53) to get the bound

c
(∣∣a− a′∣∣+ �t− t′�1/2)p−1
(171)

On the other hand, in the second factor (170b) we introduce φ̃p�β+γ��b�×
φ̃−p�β+γ��b� [which is bounded away from 0, recall (7)], and use Cauchy–
Schwarz to get for the internal integral in (170b) the bound∣∣∣∣ ∫R db[pt−s�b− a� + pt′−s�b− a′�]4φ̃2p�β+γ��b�

∣∣∣∣1/2(172a)

×
∣∣∣∣ ∫R db[X1

s�b�
]2p[

X2
s�b�

]2p
φ̃−2p�β+γ��b�

∣∣∣∣1/2
(172b)

In the new first factor (172a), estimate three of the p-factor pairs by 2pt′−s�0�,
and use the heat kernel estimate (38) to get the bound

cp
3/2
t′−s�0�

[
φp�β+γ��a� +φp�β+γ��a′�

]
(173)
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for (172a). In the second new factor (172b) apply once more Cauchy–Schwarz
to get

≤ 〈[X1
s

]4p
�φ1−4pβ

〉1/4〈[
X2
s

]4p
� φ̃−4pγ

〉1/4 ≤ √
L�(174)

where in the last step we used s ≤ τL�t� ≤ τ1�4p�4pβL ∧ τ2�4p�4pγL [recall (165)].
Consequently, for (172a) and (172b) we have the bound

cp
3/2
t′−s�0�

[
φp�β+γ��a� +φp�β+γ��a′�

]√
L
(175)

Inserting (171) and (175) into (170a) and 170b) gives the bound

c
√
L
(∣∣a− a′∣∣+ �t− t′�1/2)p−1[φp�β+γ��a� +φp�β+γ��a′�] ∫ t

0
dsp

3/2
t′−s�0��(176)

since τL�t� ≤ t. This is clearly bounded by the right-hand side of (167), com-
pleting the proof of Lemma 27. ✷

We continue with the proof of Theorem 5(b). For the purpose of establishing
a further control of the states of our process, for each n ≥ 1, we consider the
equidistant grid,

Gn �= {�tn� i� an�j�� tn� i �= i2−nT� an�j �= j2−n� 0 ≤ i ≤ 2n� j ∈ Z
}

(177)

partitioning �0�T� × R.
The idea is now to show that X1

t �a� is “not too small.” As
X1
t �a� = Stx1�a� +N1

t �a�(178)

[recall (57), (104) and (166)], we first will show that for the fluctuation part
N1 with a large probability,∣∣N1

t �a�
∣∣ ≤ 1

2Stx
1�a�� 0 ≤ t ≤ T� a ∈ R�(179)

[see (192) below]. In fact, using Lemma 27, we can estimate the increments of
N1
t �a� for �t� a� in the union G = ∪nGn of grids with a large probability. Thus,

for any �t� a� ∈ �0�T� ×R, we can approximate N1
t �a� by the sum of the afore-

mentioned increments towards the boundary 
0� × R in order to obtain (179).
Then by (178),

X1
t �a� ≥ 1

2Stx
1�a�� 0 ≤ t ≤ T� a ∈ R(180)

with a large probability [see (193)].
Here are the details. Let n ≥ 1. Two points g = �t� b� and g′ = �t′� b′� in

the grid Gn are called neighboring points, if one of their coordinates coincide
and the other one are neighbors in the obvious meaning. For 0 < ε1 ≤ 1, and
neighboring points g�g′ ∈ Gn with g ≥ g′, introduce the event

Ag�g
′

ε1� n
�=
{∣∣N1

t �a� −N1
t′ �a′�

∣∣ ≥ 2−n/pε1φβ′ �a�� t ≤ τ1�4p�4pβL ∧ τ2�4p�4pγL

}
�(181)
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and denote by Aε1 the union of A
g�g′
ε1�n , with all these g�g

′ ∈ Gn and n ≥ 1. By
Markov’s inequality and Lemma 27,

sup
x∈I1

Px
(
Ag�g

′
ε1� n

)
≤ 22nε−2p1 φ−2pβ′ �a� sup

x∈I1
Px
∣∣N1

t �a� −N1
t′ �a′�

∣∣2p1{t ≤ τ1�4p�4pβL ∧ τ2�4p�4pγL

}
≤ 22nε−2p1 φ−2pβ′ �a�c�167�

√
L
(
2−n/2

)p−1
T1/4

(
φp�β+γ��a′� +φp�β+γ��a�

)
= c�167�

√
LT1/42−n�p−5�/2ε−2p1 φ−2pβ′ �a�(φp�β+γ��a′� +φp�β+γ��a�)


Using our assumption (163) on β′� β� γ, having in mind a′ = a− 2−n,∑
a∈Gn�t�

φ−2pβ′ �a�(φp�β+γ��a− 2−n� +φp�β+γ��a�
) ≤ c2n�(182)

where Gn�t� denotes the section of Gn with a fixed t from the grid. Hence,
since there are 2n + 1 different t in Gn,

sup
x∈I1

Px
(
Aε1
)≤∑

n≥1
c
√
LT1/42−n�p−5�/2ε−2p1 �2n + 1�c2n

≤ c�183�
√
LT1/4ε

−2p
1 �

(183)

since we assumed p > 9. Similarly to [34], page 295, for all 0 ≤ t ≤ T and
a ∈ R we then obtain∣∣N1

t �a�
∣∣≤ c�184�ε1�1+T�φβ′ �a� on

{
T ≤ τ1�4p�4pβL ∧ τ2�4p�4pγL

} ∪Ac
ε1

(184)

for some constant c�184� only depending on p and β′. Recalling (24) and (38),

1
2Stx

1 ≥ 1
2c

′
1Stφλ′1 ≥ cφλ′1 ≥ c�185�φβ′ 
(185)

Make ε1 > 0 now so small that

c�185� ≥ c�184�ε1�1+T�(186)

implying
1
2Stx

1 ≥ c�184�ε1�1+T�φβ′ 
(187)

Then, by (184),

Px

(∣∣N1
t �a�

∣∣ ≤ 1
2Stx

1�a��0 ≤ t ≤ T�a ∈ R
)

≥ Px
(∣∣N1

t �a�
∣∣ ≤ c�184�ε1�1+T�φβ′ �a��0 ≤ t ≤ T�a ∈ R

)
≥ 1−Px

(
T > τ

1�4p�4pβ
L

)−Px(T > τ2�4p�4pγL

)−Px(Aε1)

(188)

By the definition (164) of τ1�4p�4pβL ,

Px
(
T > τ

1�4p�4pβ
L

) ≤ L−1 sup
x∈�+

tem� �x�λ1≤c1
Px sup

0≤t≤1

∥∥�X1
t �4p

∥∥
−4pβ(189)



CATALYTIC SUPER-BROWNIAN MOTION 857

since T ≤ 1. Hence, because we assumed λ1 > β, by the uniform moment
bounds in Corollary 15,

sup
x∈I1

Px
(
T > τ

1�4p�4pβ
L

) ≤ cL−1 ≤ ε

6
�(190)

where for the latter estimate we made finally L sufficiently large (recall that
we fixed ε in the beginning of the proof). Similarly, we may assume that also

sup
x∈I1

Px
(
T > τ

2�4p�4pγ
L

) ≤ ε

6

(191)

Now we further redefine our T ∈ �0�1� by making it additionally so small that
the right-hand side in (183) gets smaller than ε/6. Then from the chain (188)
of inequalities, from (190), (191) and (183) we obtain

inf
x∈I1

Px

(∣∣N1
t �a�

∣∣ ≤ 1
2Stx

1�a��0 ≤ t ≤ T�a ∈ R
)
≥ 1− ε/2(192)

[as announced in (179)]. Then by (178),

inf
x∈I1

Px

(
X1
t �a� ≥ 1

2Stx
1�a��0 ≤ t ≤ T�a ∈ R

)
≥ 1− ε/2(193)

[as announced in (180)].
As X1 is now seen to be not too small with a high probability, and since

it is the catalyst for X0, it will kill X0 by time T with a large probability.
This idea we want to make precise by comparing t �→ �X0

t �α, after an appro-
priate random time change, with a supercritical Feller’s branching diffusion
[see (216) below].
Let

κ �= inf
{
t ≥ 0� X1

t �a� < 1
2Stx

1�a� for some a ∈ R
}

(194)

Then from (193) we already know that

inf
x∈I1

Px�κ ≥ T� ≥ 1− ε/2
(195)

By Corollary 16 [recall our notation (12)], for t ≥ 0,

�X0
t �α = �x0�α +

∫ t
0
ds
〈
X0
s �
σ2

2
�φ̃−α

〉
+M0

t �φ̃−α�(196)

with the stochastic integral

M0
t �φ̃−α� �=

∫
�0� t�×R

M0
0

(
d�s� b�)φ̃−α�b�(197)

satisfying

d
〈〈
M0

· �φ̃−α�
〉〉
t
= γ0〈X0

tX
1
t � �φ̃−α�2

〉
dt
(198)

But for t ≤ κ we have by the definition (194) of κ,
X1
t ≥ 1

2Stx
1 ≥ cφλ′1(199)
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[as in (185)]. Moreover,

φλ′1φ̃−α ≥ c(200)

since α > λ′1 by assumption. Hence,

d
〈〈
M0

· �φ̃−α�
〉〉
t
≥ c�201��X0

t �α dt on �0� κ��(201)

uniformly for x ∈ I1.
Note that �X0

t �α = 0 if and only if �X0
t � = 0, and recall that the state 0

is absorbing for the continuous martingale t �→ �X0
t �. Thus, for our further

proof we may assume that �x0�α > 0.
Set

At �=
∫ t
0
d
〈〈
M0

· �φ̃−α�
〉〉
s

1

�X0
t �α

�≤ ∞�� t ∈ �0�∞�
(202)

We introduce the new time scale,

t �→ ϑt �= inf
{
r ≥ 0� Ar > t

}
(203)

(on which A grows linearly) and the process

Ut �=
∥∥X0

ϑt

∥∥
α
� t < A∞
(204)

This U we want to bound by a supercritical Feller’s branching diffusion.
By (196), we have

Ut = �x0�α +
∫ ϑt
0
ds
〈
X0
s �
σ2

2
�φ̃−α

〉
+Mt� t < Aκ�(205)

where

t �→Mt �=M0
ϑt
�φ̃−α�� t < Aκ�(206)

is a continuous local martingale such that

d
〈〈
M
〉〉
t
= Ut dt
(207)

In fact, from (202),

d
〈〈
M0

· �φ̃−α�
〉〉
t
= �X0

t �α dAt�(208)

hence, by (206), and a change of variables [see, e.g., [28], Proposition (0.4.9)],〈〈
M
〉〉
t
=
∫ ϑt
0
dAs�X0

s�α =
∫ t
0
ds
∥∥X0

ϑs

∥∥
α
=
∫ t
0
dsUs
(209)

By (205)–(207), and the martingale representation theorem (see, e.g., [18],
Theorem 2.7.1), passing to an enlarged probability space � ′�� ′�� �, there is
a (standard) Brownian motion B in R such that

Ut = �x0�α +
∫ ϑt
0
ds
〈
X0
s �
σ2

2
�φ̃−α

〉
+
∫ t
0
dBs

√
Us� t < Aκ
(210)
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Again by a change of variables,∫ ϑt
0
ds
〈
X0
s �
σ2

2
�φ̃−α

〉
=
∫ t
0
dϑs

〈
X0
ϑs
�
σ2

2
�φ̃−α

〉

(211)

Recall from (66) that

σ2

2
�φ̃−α ≤ cφ̃−α�(212)

and from (201) and (202) that

dAt ≥ c�201� dt on �0� κ�(213)

implying

dϑs ≤ cds on �0�Aκ�
(214)

Inserting (211), (212) and (214) into (210), we get

Ut ≤ �x0�α + c�215�
∫ t
0
dsUs +

∫ t
0
dBs

√
Us� 0 ≤ t ≤ Aκ�(215)

with c�215� uniform in x ∈ I1. Thus, by comparison (see [29], V.43.1),

U ≤ Û on �0�Aκ��(216)

where Û is the pathwise unique solution to

Ût = �x0�α + c�215�
∫ t
0
ds Ûs +

∫ t
0
dBs

√
Ûs� t ≥ 0
(217)

In other words, Û is a certain supercritical Feller’s branching diffusion.
Now

Px
(
X0
t = 0� t ≥ T) ≥ Px(�X0

T�α = 0� κ ≥ T)
(218)

But T = ϑAT by the definitions (202) and (203). Hence, by definition (204) of
U� we may continue inequality (218) with

≥ Px
(
UAT

= 0� κ ≥ T) ≥ �
(
ÛAT

= 0
∣∣∣ Û0 = �x0�α

)
−Px�κ < T��(219)

where we also used (216). But AT ≥ c�213�T by (213), and by assumption (23),

�x0�α ≤ c0�φλ0�α = c0 c�220�(220)

[recall (163)]. Thus, by the branching property of Feller’s branching diffusion
and the estimate (195), we may continue (219) with

≥
(
�
(
Ûc�213�T = 0

∣∣∣ Û0 = 1
))c0 c�220�

− ε/2
(221)

But the latter probability expression is positive, thus the right-hand side
in (221) can be made greater than or equal to 1 − ε by choosing c0 > 0 suffi-
ciently small. This completes the proof of Theorem 5(b). ✷
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de Probabilités de Saint-Flour XIV. Lecture Notes in Math. 1180 266–439. Springer,
Berlin.

[36] Williams, D. (1991). Probability with Martingales. Cambridge Univ. Press.

Weierstrass Institute
for Applied Analysis and Stochastics

Mohrenstr. 39
D-10117 Berlin
Germany
E-mail: fleischmann@wias-berlin.de

University of Tennessee,
Department of Mathematics
Knoxville, Tennessee 37996-1300
E-mail: jxiong@math.utk.edu


