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SPECTRAL GAP FOR KAC’S MODEL OF
BOLTZMANN EQUATION

By Elise Janvresse

Université de Rouen

We consider a random walk on Sn−1, the standard sphere of dimen-
sion n−1, generated by random rotations on randomly selected coordinate
planes i� j with 1 ≤ i < j ≤ n. This dynamic was used by Marc Kac as a
model for the spatially homogeneous Boltzmann equation. We prove that
the spectral gap on Sn−1 is n−1 up to a constant independent of n.

1. Introduction. We consider a random walk on the standard sphere
Sn−1 generated by random rotations on randomly selected coordinate planes
i� j with 1 ≤ i < j ≤ n. This dynamics was used by Kac ([5], [6]) as a model
for the spatially homogeneous Boltzmann equation. Kac’s idea was developed
later on by, for example, [8], [3], [9] and [1]. The same walk was used by
Hastings on the orthogonal group ([4]).

More precisely, let Rθ
i�j be a clockwise rotation by θ ∈ �0�2π� in the coordi-

nate plane i� j. Explicitly, Rθ
i�j is given by

Rθ
i�j =
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where all the diagonal entries are 1 except for the �i� i� and �j� j� entries that
are c = cos�θ�, and all the off-diagonal entries are 0 except for the �i� j� and
�j� i� entries that are equal to s = sin�θ� and −s, respectively.

We consider the random walk on Sn−1�1�, the �n − 1�-dimensional sphere
of radius 1, generated by repeatedly multiplying by Rθ

i�j for 1 ≤ i < j ≤ n
chosen uniformly and θ chosen uniformly in �0�2π�. Then the generator of the
dynamics is defined by

�nf�x� =
1(
n
2

) ∑
1≤i<j≤n

∫ 2π

0

(
f�Rθ

i�jx� − f�x�
) dθ
2π

�
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for x ∈ Sn−1�1�. Let Pt denote the corresponding semigroup. Let Sn−1 denote
the uniform probability measure on Sn−1�1�. One can check that Sn−1 is in-
variant and reversible with respect to the generator �n. The Dirichlet form is
given by

�n�f� = −
∫
f�nfdSn−1 =

1(
n
2

) ∑
1≤i<j≤n

Di�j�f� �

where

Di�j�f� =
1
2

∫ 2π

0

∫ (
f
(
Rθ
i�jx

)
− f�x�

)2
dSn−1�x�

dθ

2π



With the generator �n, we define a Markov process in the standard way. Let
f0�x� be the initial density on the sphere. Then the density ft�x� = Ptf0�x�
of the process at time t satisfies Kac’s master equation: ∂tft�x� = �nft�x�. If
we assume that the initial distribution f0�x� is of product form, Kac proved
that this property is approximately preserved in the limit n→ ∞. In modern
terminology, Kac proved the “propagation of chaos.” Once propagation of chaos
is proved, it is straightforward to show that the marginal density of a particle
satisfies the following analog of a Boltzmann equation:

∂gt�x�
∂t

= C
∫ ∫ 2π

0

(
gt�x cos θ+ y sin θ�gt�−x sin θ+ y cos θ�

−gt�x�gt�y�
)
dθdy


(1.1)

Clearly, the spectral properties of the collision operator on the right hand
side of (1.1) is of critical importance to understand this equation. Since this
collision operator is generated by the process with generator �n, a very basic
property is the size of the spectral gap for �n. It turns out this is very difficult
and Kac conjectured it to be of order 1/n.

Since Kac conjectured it more than four decades ago, the only result is the
recent work of Diaconis and Saloff-Coste [2]. Using comparisons techniques,
they proved that the spectral gap of �n is bounded below by c/n3 where c is
a constant independent of n. Using a test function [e.g., f�x� = x1], one gets
an upper bound of the form C/n.

The goal of this paper is to prove Kac’s conjecture by supplying a lower
bound of the form c/n to the spectral gap of �n.

The paper is organized as follows. In Section 2, we state our main result
(Theorem 2.1) and outline its proof. We use the martingale method developed
by Lu and Yau [7] to reduce our problem to estimating the variance of a
function conditioned on one coordinate (Proposition 2.1). The rest of the paper
is devoted to estimate this term. As in [7], a critical step of this approach
is an estimate of a covariance term (cf. Lemma 3.1). We follow [7] by using a
substitution lemma (see Section 5, Case 2), which has its origin from the study
of interacting particle systems. Our major difficulties in using this approach,
however, is in certain region of rare events (Section 5, Case 1). For this region,
we need new arguments for performing various cut-offs. Since this part of the
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arguments is complicated, we recommend the reader to focus on the so-called
“normal case” in the first reading, although the estimates of rare events are
technically the key part of this paper.

Notice that the standard logarithmic Sobolev inequality does not hold for
this model.

For any ε > 0, one can find a set Aε of probability ε. Choosing f = 1�Aε,
the indicator function of Aε, we get that the entropy of f is equal to∫

f log
f∫

fdSn−1
dSn−1 = −ε log ε

and that �n�
√
f� ≤ ε. Hence, the logarithmic Sobolev inequality is wrong for

this model.

2. Main result.

Theorem 2.1 (Spectral gap on the sphere). There exists a constant C > 0
such that for all function f ∈ L2 �Sn−1�

ESn−1�f�f� ≤ Cn�n�f� 

ESr

n−1�f�g� denotes the covariance of f and g with respect to Sr
n−1, the uniform

measure on the �n− 1�-dimensional sphere of radius r. When r = 1, we omit
to mention the radius.

This result means that the spectral gap is bounded below by 1/Cn. Hence,
this identifies the order in n of the spectral gap on Sn−1.

This also implies that the rate of convergence to equilibrium of our process
in L2 with respect to the uniform measure on Sn−1 is of order exp�−t/Cn�.

Proof of Theorem 2.1. For all integer l ≥ 2, let al be the smallest con-
stant such that

ESl−1�h�h� ≤ al l�l�h�(2.1)

for all function h ∈ L2 �Sl−1�. We will use this induction hypothesis to set up
a recursive equation for an and to prove that an is bounded by a constant
independent of n.

Step 1
 Martingale decomposition. Let x = �x1� 
 
 
 � xn�t ∈ Sn−1�1�. For
1 ≤ j ≤ n, let f1�


�j be the expectation of f conditioned on x1� 
 
 
 � xj: f1�


�j
�x1� 
 
 
 � xj� = ESn−1�f�x1� 
 
 
 � xj�. For any integer M< n fixed, we have

ESn−1�f�f� = ESn−1

[
ESn−1�f�f

∣∣x1� 
 
 
 � xM�]
+

M−1∑
i=0

ESn−1

[
ESn−1�f1�


�i+1�f1�


�i+1

∣∣x1� 
 
 
 � xi�](2.2)

where ESn−1

[
f�g∣∣� ]

denotes the covariance of f and g with respect to the
measure Sn−1 conditioned on � :

ESn−1

[
f�g∣∣� ] = ESn−1

[
fg
∣∣� ]−ESn−1

[
f
∣∣� ]

ESn−1

[
g
∣∣� ]
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Step 2
 Induction. Notice that Sn−1 conditioned on x1� 
 
 
 � xM is the uni-

form measure on Sn−M−1�
√
1−∑M

j=1 x
2
j�, the �n−M− 1�-dimensional sphere

of radius
√
1−∑M

j=1 x
2
j. Hence, we can use (2.1) to bound the first term on the

right-hand side of (2.2) by

an−M�n−M�Avnj�l=M+1Dj�l�f��
where Avnj�l=M+1 denotes the average over j� l ∈ �M+ 1� 
 
 
 � n.
Step 3
 Variance on one coordinate. All the terms of the sum on the right-

hand side of (2.2) are of the same form: ESn−1�f1�


�i+1�f1�


�i+1
∣∣x1� 
 
 
 � xi� is

the variance, with respect to the uniform measure

µ = S

√
1−∑i

j=1 x
2
j

n−i−1 �

of Eµ�f�xi+1�, where x1� 
 
 
 � xi are fixed.
We will use the following proposition to control these terms.

Proposition 2.1. For all k > F > 0 large enough, there exist a finite
constant C > 0, εF > 0 and CF > 0, two finite constants depending only on
F, εk�n > 0 a finite constant depending only on k and n and Ck�F > 0, a finite
constant depending only on k and F, such that

ESn−1 �f1�f1� ≤ CF

εk�n
n

ESn−1

[
ESn−1�f�f�x1�

]+Ck�F�n�f�
+CAvnj=2D1�j�f� + εF Av

n
j=2 ESn−1

[
ESn−1�f1�j�f1�j�x1�

]
�

lim
F→∞

εF = 0 and lim
k→∞

lim
n→∞ εk�n = 0�

(2.3)

where Avnj=2 denotes the average over 2 ≤ j ≤ n.

Step 4
 Conclusion. Suppose we have εF/n instead of εF in (2.3). By the
Schwarz inequality, ESn−1�f1�j�f1�j�x1� ≤ ESn−1�f�f�x1�. Choosing M = 1 in
(2.2) and using the results of Steps 2 and 3, we obtain that

ESn−1 �f�f� ≤
(
1+ CFεk�n + εF

n

)
an−1�n− 1�Avnj�l=2Dj�l�f�

+Ck�F�n�f� +CAvnj=2D1�j�f�

Since we can do the same replacing x1 by xi in (2.2) and average over i ∈
�1� 
 
 
 � n, we get that

ESn−1 �f�f� ≤
((

1+ CFεk�n + εF
n

)
an−1�n− 1� +C′

k�F

)
�n�f�


From the definition (2.1) of an, this proves that an is less than an−1 − 1
n
��1−

CFεk�n − εF�an−1 −C′
k�F�, which is enough to conclude that an is bounded by

a constant independent of n.
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In our case, we do not have a factor n−1 in front of εF. However, since in
the last term on the right-hand side of (2.3) we have the variance of f1�j (and
not f), we will see that it is enough.

By Proposition 2.1, we know that

ESn−1

[
ESn−1�f1�


�i+1�f1�


�i+1

∣∣x1� 
 
 
 � xi�]
≤ C Avnj=i+1Di�j�f� + Ck�F Avnj�l=i+1Dj�l�f�

+CF

εk�n−i
n− i

ESn−1

[
ESn−1�f�f�x1� 
 
 
 � xi+1�

]
+εF Avnj=i+2 ESn−1

[
ESn−1�f1�


�i+1�j�f1�


�i+1�j

∣∣x1� 
 
 
 � xi+1�]
for any 0 ≤ i ≤M− 1.

Since we could have chosen in (2.2) any other set of size M instead of
x1� 
 
 
 � xM and since we will average over all possible choices, we can simply
assume that j = i + 2 in the last term of the above expression. But this is
exactly ESn−1�ESn−1�f1�


�i+2�f1�


�i+2

∣∣x1� 
 
 
 � xi+1��. Thus,
M−1∑
i=0

ESn−1

[
ESn−1�f1�


�i+1�f1�


�i+1

∣∣x1� 
 
 
 � xi�]

≤
M−1∑
i=0

CF

εk�n−i
n− i

ESn−1

[
ESn−1�f�f�x1� 
 
 
 � xi+1�

]

+
M−1∑
i=0

C Avnj=i+1Di�j�f� + Ck�F Av
n
j�l=i+1Dj�l�f�

+εF
M∑
i=1

ESn−1

[
ESn−1�f1�


�i+1�f1�


�i+1

∣∣x1� 
 
 
 � xi�] 

Notice that the sum in the last term of the above expression is the same than
the one we need to estimate except that it is over i ∈ �1� 
 
 
 �M and that it
is multiplied by εF which is very small. Hence, instead of having one term for
each i, we have only one boundary term:

�1− εF�
M−1∑
i=0

ESn−1

[
ESn−1�f1�


�i+1�f1�


�i+1

∣∣x1� 
 
 
 � xi�]

≤ CF

M−1∑
i=0

εk�n−i
n− i

ESn−1

[
ESn−1�f�f�x1� 
 
 
 � xi+1�

]

+
M−1∑
i=0

C Avnj=i+1Di�j�f� + Ck�F Avnj�l=i+1Dj�l�f�

+ εFESn−1

[
ESn−1�f1�


�M+1�f1�


�M+1

∣∣x1� 
 
 
 � xM�] 

Therefore, we “gained” a factor M−1. Using the Schwarz inequality to replace
f1�


�M+1 by f in the above formula and using induction (2.1) for each variance,
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we get from (2.2) that ESn−1�f�f� is bounded by

1
1− εF

M−1∑
i=0

C Avnj=i+1Di�j�f� +Ck�F Avnj�l=i+1Dj�l�f�

+ CF

1− εF

M−1∑
i=0

εk�n−i an−i−1 Av
n
j�l=i+2Dj�l�f�

+ 1
1− εF

an−M �n−M� Avnj�l=M+1Dj�l�f�


As we mentioned before, we could have chosen in (2.2) any other set of size
M instead of x1� 
 
 
 � xM. Averaging over all possible choices, we obtain that
ESn−1�f�f� is bounded above by

1
1− εF

((
CF

M−1∑
i=0

εk�n−i + �n−M�
)
An−1 +MC′

k�F

)
�n�f�

where An−1 =Sup�a1� 
 
 
 � an−1�. Hence, from the definition (2.1) of an, choos-
ing M = �n2 �, the integer part of n

2 , we get

an ≤ 1
1− εF

((
CF

n

� n2 �−1∑
i=0

εk�n−i +
3
5

)
An−1 +

1
2
C′
k�F

)



This is enough to conclude the proof of the theorem. ✷

3. Proof of Proposition 2.1. It is well known that the first marginal
νn−1 of Sn−1 has density

dνn−1�x1� = Cn−1�1− x21�
n−3
2 dx1

where

Cn−1 = �

(
1
2
�
n− 1
2

)−1
= '�n/2�
'�1/2�'��n− 1�/2�

is a normalizing constant (notice it is of order
√
n). We have

Eνn−1 �f1�f1� =
∫ ∫

�f1�x1� − f1�y1��2 1�x21≥y2
1 dνn−1�x1�dνn−1�y1�


Lemma 3.1 below gives us a formula for f1�x1� − f1�y1�. Instead of using
it directly, it is more convenient to use it to compute f1�x1� − f1�w1� and
f1�w1� − f1�y1� and then average over w1 ∈ ��x1�/2� �x1��.

Lemma 3.1. Fix x21 ≥ w2
1. Let w

�j�+� �resp., w�j�−� � be obtained from x by

changing values at 1 and j: w�j�+�
1 = w1 and w

�j�+�
j =

√
x2j + x21 −w2

1 �resp.,
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w
�j�−�
1 = w1 and w�j�−�

j = −
√
x2j + x21 −w2

1 �. We have

f1�x1� − f1�w1� = 1
2ESn−1

[
Avnj=2

(
f�x� − f�w�j�+��)

∣∣∣∣∣x1
]

+ 1
2ESn−1

[
Avnj=2

(
f�x� − f�w�j�−��)

∣∣∣∣∣x1
]

(3.1)

+ESn−1

[
f�w��Avnj=2Gx1�w1

�wj�
∣∣∣∣∣w1

]

where

Gx1�w1
�wj� = 1�w2

j≥x21−w2
1

�wj�√
w2

1 +w2
j − x21

(
1−w2

1

1− x21

) n−3
2


(3.2)

From now on, all the bounds are made up to a multiplicative constant.
Eνn−1 �f1�f1� is bounded by

∫ ∫ ∫ �x1�

�x1�/2
�f1�x1� − f1�w1��2

dw1

�x1�
1�x21≥y2

1 dνn−1�x1�dνn−1�y1�(3.3)

+
∫ ∫ ∫ �x1�

�x1�/2
�f1�w1� − f1�y1��2

dw1

�x1�
1�x21≥y2

1 dνn−1�x1�dνn−1�y1�
(3.4)

Since x21 ≥ w2
1, we use Lemma 3.1 to bound (3.3) by

∫
Avnj=2ESn−1

[
f�x� − f�w�j�+��

∣∣∣x1]2 dw1

�x1�
∫ �x1�

0
dνn−1�y1�dνn−1�x1�

+
∫
Avnj=2ESn−1

[
f�x� − f�w�j�−��

∣∣∣x1]2 dw1

�x1�
∫ �x1�

0
dνn−1�y1�dνn−1�x1�(3.5)

+
∫ ∫

ESn−1

[
f�w��Avnj=2Gx1�w1

�wj�
∣∣∣w1

]2 dw1

�x1�
dνn−1�x1��

where the integration in x1 and w1 is only for �x1� ≥ w1 ≥ �x1�/2.
Let us now turn to (3.4). We apply Lemma 3.1 again. Notice that we will

not get the same formula whether w2
1 ≥ y2

1 or w2
1 ≤ y2

1. (3.4) is bounded by∫
Avnj=2ESn−1

[
f�w� − f�y�j�+��

∣∣∣w1

]2 dw1

�x1�
dνn−1�x1�dνn−1�y1�

+
∫
Avnj=2ESn−1

[
f�w� − f�y�j�−��

∣∣∣w1

]2 dw1

�x1�
dνn−1�x1�dνn−1�y1�(3.6)

+
∫
ESn−1

[
f�y��Avnj=2Gw1�y1

�yj�
∣∣∣y1

]2 dw1

�x1�
dνn−1�x1�dνn−1�y1�
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where the integration is above 2w1 ≥ �x1� ≥ w1 ≥ �y1�, plus∫
Avnj=2ESn−1

[
f�y� − f�w�j�+��

∣∣∣y1

]2 dw1

�x1�
dνn−1�x1�dνn−1�y1�

+
∫
Avnj=2ESn−1

[
f�y� − f�w�j�−��

∣∣∣y1

]2 dw1

�x1�
dνn−1�x1�dνn−1�y1�(3.7)

+
∫
ESn−1

[
f�w��Avnj=2Gy1�w1

�wj�
∣∣∣w1

]2 dw1

�x1�
dνn−1�x1�dνn−1�y1�

where the integration is above �x1� ≥ �y1� ≥ w1 ≥ �x1�/2.

Claim 1. The first and the second terms of (3.5), (3.6) and (3.7) are
bounded by CAvnj=2D1�j�f�, where C is a constant independent of n.

Claim 2. The third terms of (3.5), (3.6) and (3.7) are bounded by

Ck�F Av
n
i�j=2 Di�j�f� + εF Av

n
j=2ESn−1

[
ESn−1�f1�j�f1�j�x1�

]
+CF

εk�n
n

ESn−1

[
ESn−1�f�f�x1�

]
�

(3.8)

where the constants Ck�F, εF, CF and εk�n are like in Proposition 2.1.
Claim 1 (resp., Claim 2) is proved in Section 4 (resp., Sections 5 and 6).

This concludes the proof of the proposition. ✷

4. Proof of Claim 1. Let’s look at the first term of (3.5).

Since ESn−1

[√
x21 + x2j −w2

1

∣∣∣x1] ≤
√
x21 −w2

1 + O�1/√n�, by the Schwarz

inequality, ESn−1

[
f�x� − f�w�j�+��

∣∣∣x1]2 is bounded by

ESn−1


(f�x� − f�w�j�+��

)2 √x21 −w2
1 +O

(
1/

√
n
)

√
x21 + x2j −w2

1

∣∣∣∣∣x1

 


Moreover, since Cn−1 is of order
√
n, we have√

x21 −w2
1 +O

(
1/

√
n
)

�x1�
∫ �x1�

0
dνn−1�y1� = O�1�


Thus, the first term of (3.5) is bounded by

Avnj=2ESn−1


∫ �x1�

�x1�/2

(
f�x� − f�w�j�+��

)2 dw1√
x21 + x2j −w2

1


 


Let’s make the following change of variable: w1 = x1 cos θ + xj sin θ. Since

dw1 = �−x1 sin θ + xj cos θ�dθ = ±
√
x21 + x2j −w2

1dθ, we get that the first



296 E. JANVRESSE

term of (3.5) is bounded by

Avnj=2ESn−1

[∫ 2π

0

(
f�x� − f�Rθ

1�jx�
)2
dθ

]
= 4πAvnj=2D1�j�f�


Using the same argument, we prove that the first term of (3.6) is bounded
by

Avnj=2ESn−1


∫ w1

−w1

(
f�w� − f�y�j�+��

)2
A�w1� y1�

dy1√
w2

1 +w2
j − y2

1


 �

where A�w1� y1� is equal to
∫ 2w1

w1

√
w2

1 − y2
1 +O�1/√n�
x1

dνn−1�x1�
(
1− y2

1

1−w2
1

) n−3
2

≤
(

1

1−w2
1

) n−3
2 ∫ 2w1

w1

√
w2

1 − y2
1

x1
dνn−1�x1� +O�1�

≤ 1
w1

(
1−w2

1

)− n−3
2

∫ 2w1

w1

x1dνn−1�x1�1�w1≥1/
√
n

+ Cn−1
∫ 2w1

w1

dx11�w1≤1/
√
n +O�1��

which is of order 1. In the same way, since

∫
�y1�≤�x1�≤2�y1�

√
y2
1 −w2

1 +O�1/√n�
�x1�

dνn−1�x1� = O�1��

the first term of (3.7) is bounded by

Avnj=2ESn−1


∫ �y1�

�y1�/2

(
f�y� − f�w�j�+��

)2 dw1√
y2
1 + y2

j −w2
1


 


Making a change of variable, we conclude that the first term of (3.5), (3.6) and
(3.7) are bounded by CAvnj=2D1�j�f�.

We deal with the second term of (3.5), (3.6) and (3.7) in the same way.

5. Proof of Claim 2. We first deal with the third term of (3.5). The terms
of (3.6) and (3.7) are treated in section 6.

Let us fix F > 0. We divide the proof into two cases:

Case 1. x21 ≥ Fn−1

Case 2. x21 ≤ Fn−1


Notice that if x21 is too large (as in Case 1), Gx1�w1
is very large and it may

be difficult to control the third term of (3.5). However, since we integrate x1
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with respect to νn−1, x1 is typically of order n−1 and thus Case 1 is unlikely
to happen if F is large. Case 2 is the “normal” case.

Case 1∗. x21 ≥ Fn−1


We will prove that in this case the third term of (3.5) is bounded above by

εF Av
n
j=2ESn−1

[
ESn−1

[
f1�j�f1�j�w1

]]
�(5.1)

where f1�j�w1�wj� = ESn−1

[
f�w��w1�wj

]
and εF goes to 0 as F goes to ∞.

Recall definition (3.2) of Gx1�w1
and the one of νn−1. We can rewrite the third

term of (3.5) as

Avnj=2
∫ ∫

w1≤�x1�≤2w1

ESn−1


f�w�� �wj�√

w2
1 +w2

j − x21

1�w2
j≥x21−w2

1

∣∣∣∣∣w1



2

×1�x21≥Fn−1

(
1−w2

1

1− x21

) n−3
2
dx1
�x1�

dνn−1�w1�

and replace f by f1�j in the above covariance. Using the Schwarz inequality,
one can bound the covariance term by

ESn−1

[
�f1�j − f1�2

1

�wj�γ�w2
1 +w2

j − x21�3/4
1�w2

j≥x21−w2
1

∣∣∣∣∣w1

]

×ESn−1

[
�wj�2+γ

�w2
1 +w2

j − x21�1/4
1�w2

j≥x21−w2
1

∣∣∣∣∣w1

]

for any γ. Making the change of variable x2j = w2
1 + w2

j − x21, we obtain that
the second expectation is equal to

ESn−1

[
�xj�1/2�x21 + x2j −w2

1�
1+γ
2

∣∣∣x1]
(
1− x21
1−w2

1

) n−3
2




Choosing γ = 1/2, we bound the third term of (3.5) by

n−1/4 Avnj=2 ESn−1

[
ESn−1

[
�f1�j − f1�2

1
�wj�1/2

∫ �x21 −w2
1�3/4 +O�n−3/4�

�w2
1 +w2

j − x21�3/4

× 1�w2
j+w2

1≥x21≥w2
11�x21≥Fn−1

dx1
�x1�

∣∣∣∣∣w1

]]



We need to estimate

∫ √w2
1+w2

j

w1

�x21 −w2
1�3/4 +O�n−3/4�

x21

x1

�w2
1 +w2

j − x21�3/4
1�x21≥Fn−1 dx1
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Since x21 ≥ Fn−1, the above integral is less than

( n
F

)1/4 ∫ √w2
1+w2

j

w1

x1

�w2
1 +w2

j − x21�3/4
dx1 =

( n
F

)1/4
�wj�1/2


Hence, the third term of (3.5) is bounded above by (5.1) with εF = O�F−1/4�. ✷

Case 2∗ �“normal” case� x21 ≤ Fn−1. Let us introduce some notation. Fix
a positive integer k independent of n (k will be chosen larger than F).

Divide �2� 
 
 
 � n into L sets Aα of size k. If k does not divide n − 1, then
the set AL has size l ∈ �1� 
 
 
 � k− 1.

For j∈Aα, we consider the expectation ofGx1�w1
�wj� conditioned on �wi�i/∈Aα

.
Notice this depends only on w̄2

α = 1−∑i/∈Aα
w2
i =

∑
i∈Aα

w2
i . Let’s denote it by

Ĝx1�w1
�w̄2

α� = ESn−1

[
Gx1�w1

�wj�
∣∣∣�wi�i/∈Aα

]



The third term of (3.5) is bounded above by

∫ ∫ �x1�

�x1�/2
ESn−1

[
f�AvαAvj∈Aα

Gx1�w1
�wj�−Ĝx1�w1

�w̄2
α�
∣∣∣∣∣w1

]2
dw1

�x1�
dνn−1�x1�

+
∫ ∫ �x1�

�x1�/2
ESn−1

[
f�w��AvLα=1Ĝx1�w1

�w̄2
α�
∣∣∣∣∣w1

]2
dw1

�x1�
dνn−1�x1�

=B1+B2


Lemma 5.1.

B1 ≤ Ck�F Av
L
α=1Avi�j∈Aα

Di�j�f��
where Ck�F is a constant depending only on k and F.

Lemma 5.2.

B2 ≤ CF

εk�n
n

ESn−1

[
ESn−1�f�f�w1�

]
�

where CF and εk�n are as in Proposition 2
1


Therefore, assuming Lemma 5.1 and 5.2 and recalling the result (5.1) ob-
tained in Case 1, we proved that the third term of (3.5) is bounded above
by

Ck�F Av
L
α=1Avi�j∈Aα

Di�j�f� +CF

εk�n
n

ESn−1

[
ESn−1�f�f�w1�

]
+εF Avnj=2ESn−1

[
ESn−1�f1�j�f1�j�x1�

]



Since the choice of the setsAα is arbitrary, we average over all possible choices
and we get (3.8). ✷
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Proof of Lemma 5.1. We can bound the square of the covariance in B1 by

AvLα=1ESn−1

[
f�w��Avj∈Aα

Gx1�w1
�wj� − Ĝx1�w1

�w̄2
α�
∣∣∣∣∣w1

]2



By definition of Ĝx1�w1
, the expectation of Gx1�w1

�wj� − Ĝx1�w1
�w̄2

α� conditioned
on �w.�./∈Aα

is equal to 0. Hence, by the Schwarz inequality, the above expres-
sion is bounded above by

AvLα=1ESn−1

[
ESn−1

[
f�w��Avj∈Aα

Gx1�w1
�wj�

∣∣∣�w.�./∈Aα

]2 ∣∣∣∣∣w1

]



Using the Schwarz inequality again, the above covariance term is less than

ESn−1

[(
f�w� −ESn−1

[
f
∣∣∣�w.�./∈Aα

])2
Avj∈Aα

Gx1�w1
�wj�

∣∣∣∣∣�w.�./∈Aα

]

×ESn−1

[
Gx1�w1

�wj�
∣∣∣�w.�./∈Aα

]



The expectation on the right-hand side is Ĝx1�w1
�w̄2

α�. Let’s compute it. We
need w̄2

α ≥ x21 −w2
1. (Otherwise, it is equal to 0.) Ĝx1�w1

�w̄2
α� is equal to∫

Gx1�w1
�wj�dSw̄α

k−1�wj�

=
∫
Gx1�w1

�w̄αz�dνk−1�z�

=
(
1−w2

1

1− x21

) n−3
2 ∫ �w̄αz�√

w̄2
αz

2 +w2
1 − x21

1�w̄2
αz

2≥x21−w2
1 dνk−1�z�


Making the change of variable w̄2
αz

2 +w2
1 − x21 =

(
w̄2
α +w2

1 − x21
)
a2, we obtain

Ĝx1�w1
�w̄2

α� =
(
1−w2

1

1− x21

) n−3
2

1�w̄2
α≥x21−w2

1

(
w̄2
α − �x21 −w2

1�
w̄2
α

) k−2
2


(5.2)

Since x21 ≤ Fn−1, this term is bounded by a constant CF depending only on
F. Hence, B1 is bounded above by CF times

AvαAvj∈Aα

∫ ∫ �x1�

�x1�/2
ESn−1

[
ESn−1

[(
f�w�−ESn−1

[
f�w�

∣∣∣�w.�./∈Aα

])2

×Gx1�w1
�wj�

∣∣∣�wk�k/∈Aα

]∣∣∣∣∣w1

]
dw1

�x1�
dνn−1�x1�
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Let’s first integrate in x1. Recall the definition of Gx1�w1
�wj�. Since∫ 2w1

w1

(
1−w2

1

1− x21

) n−3
2
(
1+ x21 −w2

1

w2
1 +w2

j − x21

)1/2

1�w2
j≥x21−w2

1
dνn−1�x1�

x1

≤ Cn−1�1−w2
1�

n−3
2


∫ 2w1

w1

dx1
x1

+
∫ √w2

1+w2
j

w1

dx1√
w2

1 +w2
j − x21




≤ Cn−1�1−w2
1�

n−3
2


log 2+ 2

w1

�wj�



√√√
1+ w2

j

w2
1

− 1






is O�1�Cn−1�1−w2
1�

n−3
2 , we proved that B1 is bounded above by

CFAv
L
α=1

∫
ESn−1

[
ESn−1

[
f�f

∣∣∣�w.�./∈Aα

] ∣∣∣w1

]
dνn−1�w1�

= CFAv
L
α=1ESn−1

[
ESn−1

[
f�f

∣∣∣�w.�./∈Aα

]]



Using induction (2.1) in order to bound the variance of f, we obtain

B1 ≤ Ck�F Av
L
α=1Avi�j∈Aα

ESn−1

[
Di�j

(
f
∣∣∣�w.�./∈Aα

)]
≤ Ck�F Av

L
α=1Avi�j∈Aα

Di�j�f��
where Ck�F is a constant depending only on k and F. ✷

Proof of Lemma 5.2. Recalling (5.2), we can rewrite B2 as∫ ∫ 2w1

w1

ESn−1

[
f�AvLα=1h�w̄2

α�
∣∣∣w1

]2 (1−w2
1

1− x21

) n−3
2
dx1
x1

dνn−1�w1�

where h�a�=
(
a−�x21−w2

1�
a

) k−2
2

1�a≥x21−w2
1


(5.3)

Let r2α = ESn−1

[
w̄2
α�w1

] = �Aα�
n−1�1−w2

1�. Since this is a constant with respect to
the uniform measure conditioned on w1, we can replace h�w̄2

α� by h�w̄2
α�−h�r2α�

in (5.3).
Assume that n−1

k
∈ N. Thus, r2α = k

n−1�1 −w2
1� does not depend on α. Let’s

denote it by r2. We will use the Taylor expansion to estimate h�w̄2
α� − h�r2�

when �w̄2
α − r2� ≤ k1−ε

n−1 . Moreover, since
∑L

α=1�w̄2
α − r2� = 0,

AvLα=1
(
h�w̄2

α� − h�r2�)
= 1
L

L∑
α=1

(
h�w̄2

α� − h�r2� − h′�r2��w̄2
α − r2�)1��w̄2

α−r2�>k1−ε
n−1 (5.4)

+ 1
L

L∑
α=1

h′′�cα��w̄2
α − r2�21��w̄2

α−r2�≤ k1−ε
n−1 �

where cα ∈ �r2� w̄2
α�.
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We split the covariance appearing in (5.3) into two parts, considering each
of the above terms separately.

Let’s look at the part corresponding to the first term of (5.4):

ESn−1

[
f�Avα

(
h�w̄2

α� − h�r2� − h′�r2��w̄2
α − r2�)1��w̄2

α−r2�>k1−ε
n−1 

∣∣∣∣∣w1

]2



From the Schwarz inequality, it is bounded by

ESn−1

[(
Avα

(
h�w̄2

α� − h�r2� − h′�r2��w̄2
α − r2�)1��w̄2

α−r2�>k1−ε
n−1 

)2 ∣∣∣∣∣w1

]

×ESn−1

[
f�f

∣∣∣w1

]



We need to estimate the expectation on the left-hand side. Developing the
square and using Chebyshev’s inequality, we get that it is bounded by

1
L

(
�h�2∞

(
n− 1
k1−ε

)2

+ h′�r2�2
)(

n− 1
k1−ε

)2

ESn−1

[
�w̄2

α − r2�4
∣∣∣w1

]

+
(
�h�2∞

(
n− 1
k1−ε

)2

+ �h�∞�h′�r2��
(
n− 1
k1−ε

)
+ h′�r2�2

)(
n− 1
k1−ε

)2

×ESn−1

[
�w̄2

α − r2�2�w̄2
β − r2�2

∣∣∣w1

]



An easy but wearisome computation shows that

ESn−1

[
�w̄2

α − r2�2�w̄2
β − r2�2

∣∣∣w1

]
=
{
O
(
k2/n5

)
� if α �= β�

O
(
k2/n4

)
� otherwise.

(5.5)

Since �h�∞ ≤ 1 and h′�r2� ≤ O
(
Fn
k

)
(because x21 ≤ F/n), we obtain that the

above formula is of order F2k4ε−1/n. We now have to multiply by(
1−w2

1

1− x21

) n−3
2 1

�x1�
≤ CF

�x1�
and to integrate in x1 and w1 for w1 ≤ �x1� ≤ 2w1. Thus, the part of (5.3)
corresponding to the first term of (5.4) is bounded by

CFk
4ε−1

n
ESn−1

[
ESn−1

[
f�f

∣∣∣w1

]]

(5.6)

Let’s turn to the part corresponding to the second term of (5.4): By the
Schwarz inequality,

ESn−1

[
f�w�� 1

L

L∑
α=1

h′′�cα��w̄2
α − r2�21��w̄2

α−r2�≤ k1−ε
n−1 

∣∣∣∣∣w1

]2

is bounded above by

ESn−1

[
f�f

∣∣∣w1

]
ESn−1

[(
Avαh

′′�cα��w̄2
α − r2�21��w̄2

α−r2�≤ k1−ε
n−1 

)2 ∣∣∣∣∣w1

]
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Since �w̄2
α − r2� ≤ k1−ε

n−1 , we have cα ≥ O�k/n�. Hence, we get that h′′�cα� is of
order F2n2/k2 and thus, using (5.5),

ESn−1

[(
AvLα=1h

′′�cα��w̄2
α − r2�21��w̄2

α−r2�≤ k1−ε
n−1 

)2 ∣∣∣∣∣w1

]

≤ CF

n4

k4
ESn−1

[(
AvLα=1�w̄2

α − r2�2)2 ∣∣∣w1

]
= O

(
CF

kn

)

where CF depends only on F.
Thus, we proved that the part of (5.3) corresponding to the last term of (5.4)

is bounded by
CF

kn
ESn−1

[
ESn−1

[
f�f

∣∣∣w1

]]

(5.7)

Recall the bounds (5.6) and (5.7) we obtained. This proves Lemma 5.2 when
n−1
k

∈ N with εk�n = k−1 + k4ε−1, which go to 0 as k goes to ∞ for ε < 1/4.
If n−1

k
/∈ N, we treat the terms corresponding to the setAL separately. Since

we have a factor L−2 = O
(
k2/n2

)
in front of them, we prove Lemma 5.2 with

εk�n = k−1 + k4ε−1 + k2/n. ✷

6. Proof of the third terms of (3.6) and (3.7). Let’s turn to the third
term of (3.6). It is equal to twice∫

ESn−1

[
f�y��Avnj=2Gw1�y1

�yj�
∣∣∣y1

]2 ∫ 2w1

w1

dνn−1�x1�
x1

dw1dνn−1�y1�
where the integration in w1 is over w1 ≥ �y1�. Since∫ 2w1

w1

dνn−1�x1�
x1

≤ C
�1−w2

1�
n−3
2

w1
�

we can bound the third term of (3.6) by∫ ∫
w1≥�y1�

ESn−1

[
f�y��Avnj=2Gw1�y1

�yj�
∣∣∣∣∣y1

]2
dy1

w1
dνn−1�w1�

in Case 1. Notice that in this case, we did not use the fact that �x1� ≤ 2w1
when treating the third term of (3.5). Hence, we can conclude in the same way.

In Case 2, we used that �x1� ≤ 2w1, so we have to be careful. But it works
in the same way because we can use in Lemma 5.1 that∫ √y2

1+y2
j

�y1�

∫ 2w1

w1

dνn−1�x1�
x1

(
1+ w2

1 − y2
1

y2
1 + y2

j −w2
1

)1/2

dw1

≤
∫ ∫ x1

x1/2
dw1

dνn−1�x1�
x1

+
∫ √y2

j+y2
1

�y1�
dw1√

y2
1 + y2

j −w2
1

is of order 1, and in Lemma 5.2 that∫ ∫ 2w1

w1

dνn−1�x1�
x1

dw1 = O�1�
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We claim that the third term of (3.7) is bounded by the third term of (3.5).
Notice that it can be rewritten as

2
∫
ESn−1

[
f�w��Avnj=2Gy1�w1

�wj�
∣∣∣w1

]2 ∫ 1

�y1�
dνn−1�x1�

x1
dw1dνn−1�y1�

where the integration in w1 is over �y1� ≥ w1 ≥ �y1�/2. The above expression
is bounded by∫ ∫ �y1�

�y1�/2
ESn−1

[
f�w��Avnj=2Gy1�w1

�wj�
∣∣∣w1

]2 dw1

�y1�
dνn−1�y1��

which is equal to the third term of (3.5). ✷

7. Proof of Lemma 3.1. We can rewrite f1�x1� − f1�w1� as
1
2ESn−1

[(
f�x� − f�w�j�+��) ∣∣∣x1]+ 1

2ESn−1

[(
f�x� − f�w�j�−��) ∣∣∣x1]

+ 1
2ESn−1

[
f�w�j�+��

∣∣∣x1]+ 1
2ESn−1

[
f�w�j�−��

∣∣∣x1]− f1�w1�

(7.1)

Let’s compute ESn−1�f�w�j�+���x1�. It is equal to∫ √1−x21

−
√

1−x21
E
S

√
1−x21−x

2
j

n−3

[
f�w�j�+��

]
Cn−2

�1− x21 − x2j�
n−4
2

�1− x21�
n−3
2

dxj


In the above formula, we first integrate in �xi�i�=1�j and then in xj. This means
we integrate �xi�i�=1�j with respect to the uniform measure on the �n − 3�-
dimensional sphere of radius

√
1− x21 − x2j and then integrate in xj. Making

the change of variable wj =
√
x21 + x2j −w2

1, we obtain that the above integral
is equal to

2
∫
E
S

√
1−w21−w

2
j

n−3

�f�w�� wj√
w2

1 +w2
j − x21

Cn−2
�1−w2

1 −w2
j�

n−4
2

�1− x21�
n−3
2

dwj�

where the integration in wj is from
√
x21 −w2

1 to
√
1−w2

1. Hence, it is equal
to

2ESn−1

[
f�w�Gx1�w1

�wj�1�wj≥0
∣∣∣w1

]
�

where Gx1�w1
is given by (3.2). Let’s turn to ESn−1

[
f�w�j�−��

∣∣∣x1]. Making the

change of variable wj = −
√
x21 + x2j −w2

1, we easily prove that

ESn−1

[
f�w�j�−��

∣∣∣x1] = 2ESn−1

[
f�w�Gx1�w1

�wj�1�wj≤0
∣∣∣w1

]



Eventually, we obtain that
1
2ESn−1

[
f�w�j�+��

∣∣∣x1]+ 1
2ESn−1

[
f�w�j�−��

∣∣∣x1]
= ESn−1

[
f�w�Gx1�w1

�wj�
∣∣∣w1

]
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Choosing f = 1, we deduce ESn−1�Gx1�w1
�wj��w1� = 1, and thus the above

expression is equal to

ESn−1

[
f�w��Gx1�w1

�wj�
∣∣∣w1

]
+ f1�w1�


Recalling (7.1) and averaging over 2 ≤ j ≤ n, we get (3.1). ✷

Acknowledgments. I wish to thank P. Diaconis and L. Saloff-Coste for
sending me an early version of their paper [2] and explaining this work.
It is great pleasure to thank H. T. Yau for many suggestions and fruitful
discussions.

REFERENCES

[1] Carlen, E., Gabetta, E. and Toscani, G. (1999). Propagation of smoothness and the rate of
exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas.
Comm. Math. Phys. 199 521–546.

[2] Diaconis, P. and Saloff-Coste, L. (2000). Bounds for Kac’s master equation. Comm. Math.
Phys. 209 729–755.
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