THE SAMPLING VARIABILITY OF LINEAR AND
CURVILINEAR REGRESSIONS

A FIRST APPROXIMATION TO THE RELIABILITY OF THE
RESULTS SECURED BY THE GRAPHIC “SUC-
CESSIVE APPROXIMATION” METHOD

By

Morbecar EzExIEL!

Many statistical problems involve determiring the change in one
variab'z with changes in each of several others, all operating at the
same time. I.inear multiple correlation provides a method of making
this determination, on the assumption that all the relations are linear.
In many problems this assumption is not valid. To determine curvi-
linear relations without making assumptions as to the type of each
curve except that it be a continuous function, a method of successive
approximations by graphic fitting was presented six years ago; and it
was demonstrated empirically that in cases of high correlation this
method successfully determined the underlying curves.? Tt was also
pointed out that multiple regression curves could be fitted by the least-
squares method. if specific parabolae or other first-degree equations
were assumed for each variable, following methods previously sug-
suggested by Yule.!

1. Formerly Senior Agricultural Economist, United States Department of Agri-
culture,

2 Ezekiel, Mordecai. A Method of Handling Curvilinear Correlation for any
Number of Variables. Quart. Pub., Amer. Stat. Assoc., XIX, No. 148, Dec.,
1924.

3. Yule, G. U. “On the Theory of Correlation,” Jour. Roy. Sta. Soc., Vol. LX,
p. 817 (1897). Apparently Wicksell had also suggested fitting regression ¢urves
to several variables simultaneously. Wicksell, S. D., Annals of Math, Stat.,
Vol. 1, No. 1, pp. 3-15. Feb., 1930.
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276 SAMPLING VARIABILITY OF REGRESSIONS

The advantage claimed for the successive approximation method
was that it did not require assumptions as to the specific type of each
curve, but instead permitted each regression to be indicated by the ob-
servations themselves.

A new measure, the “index of multiple correlation,” was suggested
to measure correlation for curvilinear regressions in the same way
that the coefficients of multiple correlation measured it for linear re-
gressions.

No measure of the reliability of the net regression curves or of
the index of correlation, was provided in the initial article. The use-
fulness of the results secured by this method has therefore been lim-
ited by the inability to state the confidence that could be placed in them
even when based on a random sample, or to judge how large a sample
would be necessary to infer, within any stated limits of precision and
probability, the relations existing in the universe from which that
sample was drawn.

This paper reports an attempt to determine the sampling error
of multiple regression curves and indexes of correlation obtained by
the successive approximation process, under conditions of simple
sampling . The experimental method has been used to investigate the
variatility of results from ‘successive samples drawn from the same
universe under specified conditions and to establish error formulae in-
ductively. These experiments, representing the solution of over 150
multiple curvilinear correlation problems, indicate the possibility of es-
tablishing approximate expressions for the reliability of multiple re-
gression curves and indexes of multiple correlation.! The results, how-
ever, are not fully consistent, and the error formulae are not com-
pletely satisfactory. The experimental results are therefore given in
full, in the hope that the attention of mathematicians may be attracted
to this problem, and that the tentative formulae may be modified to
provide more rigorous and exact measures of the reliability of the
curvilinear regressions and correlations.

1. The extensive computations involved in this investigation were carried through
by Helen L. Lee and Della E. Merrick, and by others of the staff of the Division
of Farm Management, U, S. Department of Agriculture. Credit is due them
for their intelligent and loyal assistance,



PART I.—COEFFICIENTS AND INDEXES CF
CORRELATION.

1. Tne RepucTtioN oF THE “DEGREES oF FREEDOM” BY
FREE-HAND SMOOTHING.

When a line is fitted to a series of paired observations by the use
of the formulae Y=0+bX , the assumption is made that the
straight regression line is adequate to describe the relation. Twe para-
meters. one giving position to the line and the other slope, are required.
For that reason, this equation will give a perfect fit toc any two pairs
of observations of X and Y. Furthernmore, if the line is fitted to
four pairs of observations, the determination of two parameters from
four observations reduces the degree of freedom in obtaining the line
from four to two; and the standard errors of the parameters must
be determined with the number of degrees of freedom, N equal to
2instead of 4. Similarly, if a cubic parabola Y=a+bX +c X +a’ Vel
were fitted to ten observations, there would be only 6 degrees of free-
dom after determining the four parameters, and the standard errors
would be based on A/=6. In this case the four parameters determine
position, slope, rate of change, and change in the rate of change.!

If instead of fitting a curve by the method of least squares or
some other exact method, a free-hand curve is drawn by eye through
the series of observations, it is necessary to make certain assumptions
in drawing the curve, analogous to those represented in the parameters
when more rigid methods are used. In addition to the basic assump-
tion of continuity, these condijtions may include:

(1) Whether the origin for X=0O will be at Y=0 or at some
ordinate to be indicated by the data.

(2) Whether a straight line will be fitted (by ruler or thread) or
‘whether a curve will be permitted.

1. The treatment of standard errors for small samples by “Student” and R. A.
Fisher, as set forth in the latter’s “Statistical Methods for Research Workers,”
give full recognition to these facts. Least square theory has always recog-
nized that, for small samples, the number of parameters determined reduced
the number of observations. See Wright, Thomas Wallace, and John Fillmore
Hayford, “Adjustments of Observations,” 1905, pp. 24-40, 132-133, and Merri-
man, Mansfield, “Method of Least Squates,” 1911, pp. 80-82,
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(3) If a curve, whether it will be limited (a) to a continuous arc of
even curvature, (b) to a continuous parabola-like curve, (c)
whether one or more inflections will be permitted, (d) whether
the line will be so drawn as to miriimize departures on the Y -axis,
the X -axis, or at right-angles to the line itself.

- It is evident that if a curve is drawn free-hand with its initial
ordinate as indicated by the observations, with a continuous changing
rate of curvature, and with no inflection, at least the three parameters
of position, slope, and rate of change of curvature are represented, as
shown by the corresponding equation for a parabola.

Y=a+bX+cX?

It is true that the free-hand curve may involve still more para-
meters, but three is the minimum. While the number of parameters
represented in any free-hand curve cannot be exactly determined, it can
be roughly estimated by a process of reasoning similar to that indicated
above; and any measure of the sampling reliability of such free-hand
curves would be more reliable if it allowed for the number of para-
meters assumed than if it ignored this reduction of the degrees of
freeclom.

It should be noted that while the process of fitting curves free-
hand involves the “taste’” of the investigator, represented in the con-
ditions he places on himself as previously mentioned, and on his skill
in drawing the line under those conditions, the process of fitting a curve
by a mathematical formula also involves “taste” in deciding what for-
mula to use. If the conditions placed on the free-hand fitting are the
same as those represented in the mathematical equation, the results may
agree within the significant limits of error, and, therefore, either may
be satisfactory for practical purposes.!

When coefficients of correlation or coefficients of multiple correla-
tion are obtained from samples with.a limited number of cases, the
reduction in the number of degrees of freedom by the two or more

_parameters in the regression equation makes the observed correlation

1. Note the witty discussion of free-hand versus mathematical curves in the pres-
idential address by E. B. Wilson, Proceedings: Americanr Statistical Associa-
tion, March, 1930.
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tend to exceed the true correlation in the universe from which the
sample was obtained. Accordingly, even the usual linear correlation
coefficients, if obtained from small samples, tends to exceed the true
values. Adjustments to correct for this factor will be considered before
going to the more complicated problem of adjustments in observed in-
dexes of correlation.

2. Bias 1N CoEFFICIENTS OF CORRELATION

Determining a coefficient of correlation from a finite sample re-
duces by 2 the number of degrees of freedom present. As a conse-
quence, there is a tendency for the computed correlation to exceed the
true correlation in the universe, and a corresponding tendency for the
computed standard error of estimate to fall below the true value. Exact
measures of the “most likely” value of the correlation coefficient were
given by Soper and others in 1917 and an elaborate method was pro-
vided for estimating it.?

Where a coefficient of multiple correlation for n , independent
variables is determined from a finite sample of n’ mdependent obser-
vations, the degrees of freedom are reduced by the », + 1 parameters
represented in the regression equation. I# n’'=n,+1, the number
of observations exactly equals the number of parameters to be obtained,
the least square solution reduces to a simultaneous solution of the n’
observation equations, and the coefficient of multiple corzelation comes
out 1.00 regardless of the presence or absence of correlation in the
universe.

R. A. Fisher called attention to this problem in 1924 and suggested

an approximate adjustment of the observed correlation from limited
samples by the equation

(1) /-R*= n_n'_/ L e)

1. Soper, H. E., Young, A. W,, Cave, B. M,, Lee, A., and Pearson, K. On the
Distribution of the Correlation Coefficient in Small Samples. A cooperative
Study. Biometrika. Vol. XI, Part IV, May, 1917, pages 352-359,

2 Locus, Cit., pp. 374-375.
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where n'and N, have the same meanings as above, R is the correla-
tion observed in the sample, and & is the most probable correlation in
the universe.! Thjs correction is very similar to that deduced inde-
pendently by B. B. Smith in 1925, directly from the least square ad-
justment for number of constants? In the same notation as above,
Smith’s adjustment:

52 /-R*
r =/-, o
-
may be stated
_Pz_.; n, _9:
@ =R L (R)

which differs from Fisher’s formula only by the omission of the -1
from both numerator and denominator. In restating this formula a year
ago® the present author modified it to the form

Bt 2R
=T
i

or, stated in the same form as (1) and (2)

3) 1-R3*= B‘#,("R‘)

This differs from both the previous equations in including the ~1
term in the denominator but not in the numerator. The effect is thus
to make the correction most severe; i. e., the corrected value departs
still more fromni the uncorrected value than in either of the other forms.

1. Fisher, R. A., The Influence of Rainfall on the Yield of Wheat at Rotham-
stead—Phil. Trans. B. ccxiii, 89-142; 1924,

2. Smith, B. B. Forecasting the Acreage of Cotton. Jour. Amer. Stdt. Assoc.,
March, 1925. Footnote on p. 41.

3. Ezekiel, Mordecai. Application of the Theory of Error to- Multiple and Curvi-
linear correlation. Jour. Amer, Stat. Assoc., Supp., pp. 99-104, Vol. XXIV,
No. 165-A. March, 1929,
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The interpretation of correlation coefficients adjusted by any one
of the three equations (1), (2), or (3) has been difficult because of
lack of a definite exj:lanation of the meaning ot the adjusted coefficients.
To determine their exact meaning, and to decide which one of the three
forms of adjustment is most satisfactory, a study has been made of
the relation of the adjusted values to the distribution of simple corre-
lation coefficients when computed from random sanwles of various
sizes drawn from universes with specified correlations. The “Cooper-
ative Study” gives tables showing the exact theoretical frequency
curves for zero order correlation coefficients, computed from samples
of from 3 to 25. and 50, 100, and 400 observations, for true correlations
ranging {rom O to .9, by tenths. Ordinates of the distributions of
observed correlations are given for each value from ,=-1.00 to 1.00
by .05 steps. With the frequency curve thus defined by as many as 41
ordinates, a rough integral of the curve was constructed by a cumu-
lative summary of the ordinates. Then dividing by the total area, the
proportion below any particular value was deterinined. Whea o (the
true correlation in the universe) = 0, the summation was made from
0 in both directions to show the proportion of all samples showing
correlations falling below the particular r, either plus or minus. When
o exceeds 0, the sumniation was made from —1.00 to increasing values,
to show the proportion of all the samples which show correlations
falling below any particular value.

For each size sampie investigated as described, more than 50 %
of the theoretical observed correlations exceeded the true correlation.
Thus for 0 =40, with samples of 4, over 55 per cent of the samples
showed r in excess of 40; 53 per cent with samples of 9; and about 51
per cent with samples of 50. But with o =.80, over 61 per cent of
the samples showed r above .80 with samples of 4, 56 per cent with
samples of 9, and 53 per cent with samples of 25. If we define the
value which will be exceeded by exactly half the samples as the value
which is most likely to be observed in any given sample, this “most
likely” observed correlation is evidently in excess of the true value.
The problem is to determine the adjustment equation, similar to eq.
(1), (2), or (3), which will reduce the observed value to the correla-
tion which exists in the universe from which it is most probable that
that sample was drawn.

Frequency ogives (on a percentage basis) were constructed from
the tables i in the “Cooperative Study for =0, 0.2, 0.4, 0.6, 0.8, and
09, for n'=4, 5,9, 17, 25, 50, and 100. Equation (1) was then
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tested against these ogives, to determine what was the significance of
the adjustment. For zero order correlations, equation (1) becomes

-2

e (e

Hence, with ,~-0 and n'=9,(r) would have to equal at least
+0.35 for 7 tobe 0. Comparing this value, 0.35, with the frequency
ogive for =0, n'=9, it was found that only 35 per cent of the
samples would give observed correlations larger than 0.35, or smaller
than -0.35. Similarly for ©=0.6 and ~=17, r would have to be
0.63 for 7 to be .60. For these conditions, 49 per cent of the samples
would give observed correlation in excess of .63. Carrying ‘out this
same comparison for all of the ogives constructed gives results as shown
in the following tabulation.

Size of When correlation in sample is
sample )

(n) 0.0 0.2 0.4 0.6 0.8 09
4 042 0.29 0.36 042 0.49 0.51
S .39 .29 37 43 48 .50
9 35 .30 .38 44 48 49
17 .33 32 40 45 48 49
25 32 34 42 46 48 49
50 31 37 44 47 48 .50
100 31 40 46 48 49 .50

Proportion of samples, of specified sizes, drawn ffom universes of
specified correlations, which show correlations in excess of the true
value in the universe, even after adjusting the cbserved correlation

by the formula ,
n-/
mis - n,_z(/-r')

These values are determined from the graphs based on a rough
integration by successive summations, and slight errors may have en-
tered in making the graphic interpolations. Hence the values cannot
be regarded as precise. The error probably does not exceed .01 or .02
in any case. however, so the results are sufficiently exact to interpret
the general effect of the correction formula.

It is evident from the table that when the true correlation is high,
'.80 or above, the probability of a value as large as that implied by
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the use of adjustment formula (1) is practically .50. Tests by the
tables given in the “Cooperative Study” for the most probable value
show that the probability becomes almost exactly .50 for larger samples
and still higher correlations, the adjusted values by those tables and
by the correction formula agreeing to the third or fourth decimal
place.

Where the true correlation is low, however, the table indicates that
the adjustment is too severe—that is, the probability of the true cor-
relation in the universe being as high as the correlation shown after
the adjustment is more than .50, and may be as high as .70 (for 7’'= 4
or § and o=02). Even with this variation in the meaning of the
adjusted value, however, equation (1) gives a valuable adjustment,
since it indicates the probable correlation with almost exactly a .50
probabilitv where the correlation is high, whereas it indicates the prob-
able correlation with a higher probability—between .50 and .70—for
those cases where the correlation is low and the standard error of the
coefficient is correspondingly large.

Comparison of equations (2) and (3) with the frequency ogives
showed that where »~’ was small, the adjustment was more severe in
the case of (3), and less severe in the case of (2), and did not in
either case tend to approximate the 50 per cent probability, except
where n' was very large. In some cases equation (2) gives corrected
values so low that such cases are likely to occur more than 50 per cent
of the time, and accordingly the probability would be even less than
.50 that the correlation is really as high as shown by the adjusted
coefficient.

It may be concluded that equation (1) gives the most satisfactory
simple method for adjusting coefficients of simple or multiple correla-
tion to remove the positive bias. The adjusted value thus obtained
may be defined as the value that most probably exists in the true uni-
verse, in the case of a high correlation, or a value slightly below the
probable true value, in the case of a low correlation.

The adjustment of the standard error of estimate may next be
considered. When a standard deviation, o , is calculated from the
items in a sample of 7' cases, the probable standard deviation of the
items in the universe, o ., may be computed (following Fisher) as

2_ ng,
=

Cx
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So if the standard error of estimate is calculated by the usual
formula

S)-a, (1-R?)

but the adjusted correlation, 2, is substituted for 2, and the value
Just shown is used for g, the equation becomes

n -
5:= nd7 ’:n ] (- R’)]

4)
( 5:_ nd,l(/_R )

This is identical with the equation given by Fisher!, though in
different form.

3. CoORrRRECTING FOR Bias wiTH INDEXES oF
(CurvILINEAR) CORRELATION

Where correlation is measured with respect to curvilinear regres-
sions, the greater number of parameters represented in the regression
curve increases the tendency for the observed correlation to exceed
the actual and requires a more drastic correction of the observed values.
Where the regression curve is determined by a definite equation, the
number of parameters is known, and the observed correlation may be
adjusted to the most probable true correlation by the use of equation
(1), as before. Since the number of parameters, rather than the
number of independent variables, now becomes of moment, the equa-
tion may be restated for curvilinear correlation

/—/5' ‘-

_,ol)

using m to designate the number of parameters, and ,© and S to
designate the observed and the adjusted index of correlation. This
formula may be used either for simple or for multiple curvilinear cor-
relation. Thus if the regression equation

X,= a+bzx.+b;(X:)+ b,X, +b;(X;)

L. Fisher, R. A., Statistical Methods for Research Workers. 1928. P. 117, first
equations; page 135, 2nd equation.
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had been fitted, m would equal 5. For a sample of 20 observations
and an observed multiple correlation of 0.80, the most probable true
correlation would be but 0.74.

Where the regression curve or curves have been fitted free-hand,
the observed correlation may be even more in need of adjustment than
where a definite equation has been employed.!

It is true that the number of parameters which it would take to
duplicate the free-hand curve by a definite mathematical furiction can-
not be exactly determined without finding some equation which will
exactly represent the curve. On the other hand, even an approximate
estimate of the number of parameters which would be required pro-
vides a better basis for judging the probable true correlation than
does the observed correlation taken alone. Such an approximate es-
timate may be made by considering how many degrees of position,
change, or movement are represented in thé graphic curve. The follow-
ing list suggests some of these:

(a) Position

(b) Direction

(c) Change of direction

(d) Change in the change of direction

Where several different free-hand regression curves have been
obtained by the method of successive approximation, the number of
parameters represented by each one must be estimated separately. Only
a single “position” parameter is required, since the origin of each
regression is purely arbitrary, depending upon the constant in the
regression equation, and the origin assumed for each of the other
curves. That is, in the curvilinear regression equation

Xo=a+f (X)+f(x)+f(x,)

the value of & depends upon the origin used in graphing each of the
functions. ‘

Once the number of parameters represented in the regression

1. Ezekiel, Mordecai. Application of the Theory of Error to Multiple and Curvi-
linear Correlations. Jour. Amer, Stat. Assoc., March, 1929, Supp., pp. 99-104.
Vol. XXIV, No. 165-A,
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equation has been estimated, equation (4) may be used to adjust the
observed correlation. Until more exact information is available, the
explanation of the precise meaning of the adjusted value which has
just been developed for the coefficient of linear correlation, may be
assumed (by analogy) to apply to the adjusted index of (curvilinear)
correlation as well.!

4 SAMPLING AcCCURACY IN COEFFICIENTS OF CORRELATION

Although equations (1) and (4) may be used to find the most
probable correlation in the universe from which a given sample has
been drawn, they do not give any measure of the range within which
the true value probably lies, for any specified degree of probability.

It has long been recognized that coefficients of correlation, com-
puted from small samples drawn from a universe in which some cor-
relation exists, show a very skew distribution. Even for samples of
a size most used in actual research—up to 11 = 100 or larger—the
distribution is so skewed that the computed standard error of the cor-
relation coefficient is of relatively little value. Even with fairly large
samples the chances of the observed value departing from the true
value by four or five times its standard error are very much greater
than any interpretation based upon the normal curve would indicate.?

Recent investigations by “Student” and by R. A. Fisher have de-
veloped means of determining the reliability of correlation coefficients

1. The adjusted correlation corresponding to a given observed correlation, for any
size of sampic and value of m, may be more readily determined from a graphic
chart, instead of eq. (1) or (4). Such a chart is shown in the appendix to
“Methods of Correlation Analysis,” by the present author, page 404. (John
Wiley and Sons, 1930.)

2. “Student,” On the Probable Error of a Correlation Coefficient. Biometrika,
Vol. VL, p. 302, 1908
Soper, H. E., On the Probable Error of the ‘Correlation Coefficient to a Second
Approximation. Biometrika, Vol. IX, p. 91, 1913,
Fisher, R. A., Distribution of the Correlation Coefficients of Samples, Bio-
metrika, 10, p. 507, 1915.
Soper, H. E., A. W. Young, B. M. Cave, A. Lee, K. Pearson. Distribution of
Correlation Coefficients in Small Samples. Appendix 11, to the papers of “Stu-
dent” and R. A, Fisher. Biometrika, XI, p. 328-413.
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while allowing for the skewness of their distribution. That phase of
the subject will not be developed in this article; it is referred to here
merely to call attention to the fact that even after the most probable
value for the true correlation has been determined, it may still be
necessary to take account of how much confidence can be placed in
that value—of how far the correlation obtained from the sample, even
after adjusting as suggested, is likely to vary from the true correlation
of the universe for any stated odds of probability.!

It must be recognized that the interpretation of the reliability of
a correlation merely serves to indicate the significance that may be
attached to the observed correlation, in view of the possibility of varia-
tion of the observed value from the true value in the universe due
solely to random variation in sampling. If the conditions under which
the sample is obtained do not fulfill the assumptions of simple sampling,
then obviously Fisher’s methods cannot be used unless the necessary
reservations or modifications are added.

1. Fisher, R. A. On the “Probable Error” of a Coefficient of Correlation Deduced

from a Small Sample. Metron, 1, No. 4, p. 3, 1921.—Statistical Methods for
Research Workers, pp. 159-175, 2nd edition, 1928.—The General Sampling
Distribution of the Multiple Correlation Coefficient. Proc. Roy. Soc., A. Vol
121, pp. 654-673. 1928.
The methods developed by Fisher in the last of these articles have been made
more readily available by the construction of graphic charts, both for simple
and multiple correlations, which are given in the present author’s “Methods of
Correlation Analysis,” pp. 400-403.



PART II.—-LINEAR AND CURVILINEAR REGRESSIONS

1. SAMPLING VARIABILITY OF LINEAR REGRESSIONS

Relatively little attention has been given in practical research work
to the reliability of the regressions determined. Many correlation
studies. especially where multiple correlation has been employed, have
been misinterpreted because proper attention has not been given to
the standard errors of the regression coefficients. As was pointed out
recently,’ this sampling variation may readily be so great in practical
work as to invalidate the conclusions as to the effect of various vari-
ables, even when samples of considerable size are employed.

Fortunately, regression coefficients, derived from finite samples
selected by random sampling, tend to be distributed in a normal dis-
tribution in the same way as does the arithmetic mean, so that elab-
orate devices necessary to allow for skewed distribution are not nec-
essary. If the necessary corrections are made for the failure of the
distribution to be normal when the number of degrees of freedom falls
below 30, the standard error of a linear coefficient of gross regression
or of partial regression may be employed with only the same restric-
tions as apply in the case of the arithmetic mean. More recently the
formula for regression errors has been extended by Working, Hotel-
ling, and Schultz to develop the standard errors of each constant for
curves fitted by least-square methods.?

Where the regression is represented only by a plotted curve in-
stead of by a definite equation, the reliability of the curve has been
unknown. Obviously, it cannot be estimated from the constants rep-
resented in the curve, for they are unknown, and only their number

1. Ezekiel, Mordecai. The Application of the Theory of Error to Multiple and
Curvilinear Correlations. Jour, Amer. Stat. Assoc. Proceedings, 19th annual
meeting, Vol. XXIV, No. 165-A; pp. 99-104, March, 1929.

2. Working, Holbrook, and Hotelling, Harold. Applications of the Theory of
Error to the Interpretation of Trends. Jour. Amer. Stat. Assoc. Proc., Vol.
XXIV, 165-A, pp. 73-85, March, 1929.

Schultz, Henry. Discussion of above paper. pp. 86-88.
Schultz, Henry. The Standard Error of a Forecast from a Curve. Jour. Amer.
Stat. Assoc., June, 1930.
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may be roughly estimated. Some knowledge of the variability of such
regression curves may. however, be obtained experimentally.

2. OUTLINE AND SUMMARY OF EXPERIMENTAL STUDY OF SAMPLING
VARIABILITY OF MULTIPLE CURVILINEAR
CORRELATION RESULTS

The study was conducted by first constructing a set of data in
which a dependent variable, X,, was related to several independent
variables according to known curvilinear regressions, and in which a
certain known portion of the variance of X, was not related to any
of the independent variables. A second universe was then constructed
with the same underlying functions, but with a different proportion
of random variation in the dependent variable. Successive samples of
various sizes were drawn at random from both ‘‘universes” and net
(partial) regression curves and indexes of multiple correlation were
computed separately for each sample. The net regression curves ob-
tained in successive samples of the same size were compared with the
true curves and with each other to see how far the results determined
from the samples diftered from the true values, and how much vari-
ance there was among them. The variability of the curves, for samples
of different size, different true correlations, and different points along
the curves, was then studied, and it was found possible to construct
an error formula to estimate the standard error of the regression
curves from the values obtained in the individual samples. Checking
this formula by applying it to each of the samples previously deter-
mined, the actual errors were found to be in fair agreement with the
estimated errors.

For a more rigorous test of the new error formula for regression
curves, two new synthetic universes were constructed. Samples of vari-
ous sizes were drawn from them, net regression curves computed sep-
arately for each sample, and the actual departures of the computed
curves from the true curves checked against the error indicated by
the new formula. The agreement in ‘this test was not so good as in
the previous case, although 66.5 per cent of the ordinates of the curves
showed errors no greater than their computed standard errors, only
20.3 per cent {ell between 1 and 2 times the computed values, while
7.5 per cent fell between 2 and 3 times, as compared to 68.3, 27.2 and
4.3, the proportions to be expected if the distribution were normal.
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On the other hand, 5.8 per cent of the ordinates had errors exceeding
3 times the computed standard error, and some departures in excess of
5 times the computed standard error were obtained. It is evident from
these results that either (a) the tentative formula is not adequate to
estimate the $tandard errors of regression curves determined by the
free-hand method, or (b) that net regression curves obtained by the
successive approximation process are so unstable that their errors can-
not be represented by a normal curve, and possibly may be impossible
of estimation by any mathematical process. In the hope that the atten-
tion of others may be drawn to this problem, and a more satisfactory
error formula be obtained, the experimental study is given subsequently
in as full detail as possible.

The indexes of multiple correlation obtained from successive
samples of the same size, were studied with respect to (1) bias and
(2) variability. As has been previously reported’, the indexes of mul-
tiply correlation show an average positive bias even larger than that
of coefficients of multiple correlation. Indexes of multiple correlation
apparently require a correction which takes into account both the num-
ber of observations and the estimated number of constants represented
in the regression curves, according to equation (4) already discussed.
Further study of the variability of the correlations showed that as far
as could be judged from the relatively small number of replications of
each size sample (5 to 16) they tend to have a standard error of the

order of

/ — 2
(5) S Gl
n-m
where n’ and m have the same meaning as for equation (4), and
where ,o represents the observed index of multiple correlation. If
this very rough approximation for their sampling errors is found ade-
quate, it would seem logical to expect Fisher’s determination for the
sampling error of multiple correlation coefficients to apply equally well
to indexes of multiple correlation.

In concluding this summary, it'must be reiterated that these con-
clusions are only tentativhe. They provide at least some indication
of the reliability of curvilinear correlation results, for which previously

1. Loc. Cit., Proc. Amer. Stat. Assoc., March 1929, p. 100,
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nothing had been known. The error formulae are only first approx-
imations, however, and in the case of the error of net regression curves,
are such a poor approximation that much more work remains to be
done before the results of such analyses can be used with anything like
the degree of confidence that can be felt in older and more well-estab-
lished statistical procedures.-

DETAILS OF EXPERIMENTAL SiUDY

3. CoNsTRUCTION OF SYNTHETIC UNI\Easks

The set of data used in the initial sampling was constracied as
fullows:

1. Values for X ,were obtained by taking the sum of values from
two dice. The throws were repeated S00 times, giving 500 values.

2. To insure some curvilinear correlation between X, and X, ,
values of X, were computed for each value of X, , according to the
following function.

Value of Valuelof Value of Value of

X, X, Xz s

2 3 8 6

3 4 9 6

4 5 10 7

5 5 11 8

6 6 12 9

7 6

One die was then thrown, and the value for X, computed as the
dic reading +X; [ X - die reading + £(X,)] .

3. Values for X, were then computed for each value of X,,
according to the following function:
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Value of Valug of Value of Value of

X, X, X, X4
3 4 10 0

4 3 11 0

5 2 12 0

6 1 13 0

7 1 14 0

8 1 15 0

9 1

Again, one die was thrown, and the reading of the die added to

the X, value to get X,. This gave a set of 500 values of X,, X, ,
and X, , fairly normally distributed, with positive correlation between
X;and X, (r= + .534); with a negative correlation between X,
and X, ( r- - .489); and between X, and X, ( r= - .234); and

with all of the inter-correlations more or less curvilinear.

4. Values for a dependent variable, X, , were then calculated

according to the relation

X,=F X) +F (X)) +F(X) +e

where the values for each of the functions were read from the assumed
regression curves tabled below, and where & was obtained by throwing

two dice, and taking the sum of the readings.
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VALUES FOR ASSUMED REGRESSION CURVES

X, | AXD Xe | AX) | Xo | FOX)
2 26 4 20 1 0.0
3 34 5 1.5 2 0.2
4 4,0 6 1.3 3 0.7
5 4.4 7 1.0 4 1.7
6 4.7 8 1.0 5 3.0
7 5.0 9 1.3 6 4.1
8 5.0 10 1.7 7 5.0
9 5.0 11 2.1 8 5.0
10 5.0 12 28 9 4.5
11 5.0 13 3.6 10 3.3
12 5.0 14 4.4 11 2.5
15 5.2

Values for a second dependent variable, Y, were obtained by usmg
the same assumed regressions, but obtaining the value for e by throw-
ing a single die, rather than two dice. This gave two sets of 300
observations, both identical as to the independent variables, but with
different dependent variables, and with the true correlation higher in
one universe than in the other, since the dependent variable included
a smaller proportion of random variation in one case than in the other.
The complete set of 500 paired observations are shown in Table A.

4, DrawiNG RaNDOM SamPLES

Thirty-one separate samples were drawn from each of the 2 *‘uni-
verses”; 5 samples of 100 observations each; 10 samples of 50 observa-
tions; and 16 samples of 30 observations. In making the drawings,
slips numbered from 1 to 500 were mixed in a box, and drawn at
random. They were stirred afresh between each drawing. In making
the drawings for the X, universe, the slips were not returned to the
box until each sample was completed; so that the same set of data would
appear only once in each sample. In making the drawings for the Y
universe, each slip was returned to the box as soon as its number was
noted. In a few cases this resulted in the same observations appearing
twice in the same sample. While 500 is not an “infinite” universe as
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compared to a sample of 100, the difference in the method of drawing
appeared to make no practical difference in the variability in the two
sets of samples. However, the fact that the samples made an appre-
ciable proportion of the “universe” would mean that the variability in
the observed results would not be quite as large as if drawn from an
infinite universe. Using Bowley’s statement of this the maximum
effect!, however, which would be for the samples of 100, would make
the of the observed deviations about one-tenth smaller than it would
have been if determined by drawings from an infinite universe of sim-
flar characteristics.

For, following Bowley,
o,.=aq,/1-n,/n,

Where, q,,=6 of actual sample, from a finite universe

6, = ¢ of a similar sample, from an infinite universe
ne = number of cases in sample

n.- number of cases in the finite universe
Hence where =500, n, = 100, then o, = 8% g,

Since the effect of the limited universe on the variationn in the
results can thus be estimated, the results can be transformed to what
they would probably have been had a much larger universe been avail-
able for study.

5. CURVILINEAR REGRESSIONS DETERMINED FROM THE SAMPLES

Net regression curves were determined for each sample by the
method of successive graphic approximations, and indexes of multiple
correlation were computed for each set of curves. Each sample was
carried through successive approximations until no further significant
increase in correlation was found by further modifications of the curves.
From 2 to 4 approximations were necessary, in various cases. The
multiple correlation found for each sample at the first (linear) solution,

1. Bulletin Int. Institute Statistics, Proceedings, Rome, 1925. Annex by A. L.
Bowley, Cambridge Univ. Press.
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and for each successive set of curves, are shown in Table B. For the
Y universe, a multiple correlation was run to adjust, by least squares,
the slope of each regression curve according to the formula.!

Y=-a+bi [FX) b £ X )-62[F (X))

The indexes of multiple correlation (necessarily higher than the
previous indexes) as found by this process are also shown in Table B.
The further study of the sampling variability of the reg:ession curves
was based on the set of regression curves for each individual sample
which showed the highest correlation for that sample.

6. [ERrORs IN REGRESS1ION CURVES FROM THE SAMPLES

The net regression curves determined from each successive sample
were all put on a comparable basis by adding a constant to each so that
the central ordinate of each would equal the central ordinate of the
corresponding true regression curve. The differences between the ad-
justed ordinates at other points along the curves and the true ordin-
ates would then show the errors in the curves. That is, the difference
between ordinates at the central value and the ordinates at other points
along the curve, as shown for the curves determined from the samples,
were compared with the same differences for the true curves.

This procedure centered attention on the reliability of the slope
and shape of the curves, rather than on the accuracy of their position.
It is true that in linear correlation, the & as well as the b of the for-
mula Y=4a+bx , issubject to sampling errors, and formulae have
been devised to compute its standard error. In the present case, how-
ever, it seemed desirable to first solve the problem of the shape and
slope of the curve, before attacking the further problem of its position.

The departures of the curves found in the several samples from
the true values for each curve are shown in Table C, for selected or-
dinates. The central point of reference (and therefore the point of
0 error) was taken at approximately the mean value of each independent

variable.

The individual samples were studied to see if there was any rela-
tion between the correlation observed in individual samples and the

1. See pages 445-447, Dec. 1924, Jour. Amer. Stat. Assoc., for the original dis-
cussion of this process.
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errors in the regression curves. No relation whatever was found
between the size of the correlation in the individual sample and the
size of the errors for the sample so long as samples of the same size
and drawn from the same universe were compared.

Standard errors for the linear partial regression coefficients were
computed for each sample by the standard formula given by Yule, and,
modified, by R. A. Fisher:

a? - 67 /-ﬂ:
5,36 n's? (- R,

When the actual errors in the regression curves for individual
samples were compared with these standard errors, again no relation
was found for samples of the same size and drawn from the same
universe. For that reason it was decided to abandon further study of
the characteristics of individual samples, and instead study the charac-
teristics of each entire set of samples of the same size and from the
same universe.

7. DEerivation oF TENTATIVE ERrRoR FOoRMULA

Study of the errors showed that, so far as could be judged from
the limited number of observations, they had a marked tendency to a
normal distribution. However, to prevent undue weighting of single
extreme cases, the average deviation was used instead of the standard
deviation as a basis for summdrizing the results shown by different
samples of the several sizes. These average deviations are shown in
Table 1 (page 298).

Each of these results would be expected. The true standard error
of estimate for Universe X is 2.39, and for Universe Y is 1.80, or
75.3 per cent as large. It would therefore be reasonable to expect that,
other things being the same, the errors in the ordinates of the regres-
sions for Universe Y would average only three-quarters as large as
the corresponding errors for Universe X . Stating each mean error
(Table 1) in Universe Y as a percentage of the corresponding mean
error in Universe X , and taking the geometric mean of these per-
centages, it appears that on the average the errors in Universe Y are
78.5 per cent as large as in Universe X, or in fair agreement with the
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proportion expected. The extent to which average error shown in
Table 1 for the selected ordinates in Universe X are correlated with
the average error for the corresponding ordinate in Universe Y are
shown graphically in Figure 1. Tt is evident that the individual group
averages agree fairly well with the expected relation. Accordingly,
it was concluded that any formula for the standard error of net regres-
sion curves would have, for one component, 3, ,,, , the standard error
of estimate for the dependent variable, just as does the formula for
the probable error of a linear net regression coefficient, which is

z 5°

1.234

(o} = -
b,z,34 n '0'; (I— ’?22.34 )
TABLE 1.

Average deviation of errors in net regression curves, at selected
ordinates for various sizes of sample.

Universe X Universe Y
16 10 5 16 10 5
X, | f (X 2)' samples | samples | samples | samples | samples | samples
of 30 of 50 | of 100 | of 30 [ of 50 of 100
3 114 1.66 1.19 0.34 0.90 0.82 0.50
5 12.4 0.93 0.63 0.24 0.48 0.50 0.26
7 129 0.00 0.00 0.00 0.00 0.00 0.00
9 13.0 0.72 0.56 0.34 0.38 0.32 0.24
11 130 1.48 1.09 0.77 0.71 0.58 0.50
S 12.5 1.65 1.25 1.04 1.38 0.52 1.10
7 12.0 0.84 0.44 0.38 0.38 | 0.18 0.16
9 12.3 0.00 0.00 0.00 0.00 0.00 0.00
11 13.1 0.61 0.47 0.24 0.41 0.56 0.52
13 15.6 1.35 0.93 0.82 1.56 1.24 0.88
X4 F (X4)
2 10.2 0.69 0.80 0.38 0.58 0.80 0.50
3 10.7 0.52 0.54 0.48 0.39 0.36 0.34
4 11.7 0.35 0.36 0.40 0.30 0.16 0.22
5 13.0 0.00 0.00 0.00 0.00 0.00 0.00
6 14.1 0.28 0.29 0.12 0.34 0.54 0.22
7 15.0 0.72 0.67 0.40 0.68 0.68 0.54
8 15.0 1.50 1.09 0.76 1.14 0.92 0.66
9 14.5 2.26 1.60 1.00 1.34 1.25 0.74

1. This and subsequent figures will be found at the conclusion of the paper.
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It is evident from Table 1 and from Figure A, which shows the
data graphically for Universe X, (a) that in general the larger the
sample the smaller the average error; (b) that the further from the
center ordinate, the larger the error; and (c) since the errors in Uni-
verse X were usually larger than in Universe Y, that the lower the
true correlation, the larger the error.

The influence of sample size may next be considered. The num-
ber of observations is involved in two ways in the results shown in
Table 1. In the first place, the average error tends to vary somewhat
inversely with the size of sample. But in addition, it tends to vary
with the distance from the central ordinate. Since the independent
variables were composed of elements derived from dice readings, their
distribution was roughly normal. As a result, the number of observa-
tions upon which the regression curves were based was largest toward
the center portions, and thinned out toward the extremes. In the graphic
approximation method of determining the curves, each portion of the
curve is determined from the cases falling within that portion, rather
than from all the cases as a whole. Accordingly, it seems logical to
try to relate the observed differences in the average deviation of the
errors to differences in the number of cases from which they were
determined, rather than to the total size of sample.

There is no precise range within which the observations can be
said to be considered in free-hand fitting. Instead of trying to meas-
ure the exact number of cases within any specified range, therefore, it
seemed desirable to establish a measure of the concentration of observa-
tions at any point along the curve. Thus, for example, if within a
given interval of X,, with a group interval of « units, there are n.
observations, we can express the concentration of observations at the
mid-point of that group by the relation

(2
ne ()
X

If the group-interval is taken.equal to the standard-deviation of
the variable, n, will be simply the number of cases falling within
that group. If, however, the group-interval is made either larger or
smaller than the standard-deviation, this equation will measure the con-
centration of observations in terms of the number per standard-devia-
tion range. TIn a rectangular distribution, changing the value of u,
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would change the size of ~a, to a corresponding extent, so the value
of n, would be independent of the group-interval selected. In a
normal distribution, however, n, would be only an approximation of
the true value which would be secured from the theoretical distribution
when the total number of cases was made very large and v, was
made infinitely small.

On the basis of the foregoing reasoning, it was thought that the
differences in the average deviations within each universe as shown
in Table 1, might be explained by differences in the number of cases
which each portion of each curve was based upon. In sampling theory
the dispersion of values of a constant determined from successive

samples ordinarily varies with _\/—'!;- , rather than with L , hence, in
. . . /
this case, it was tentatively assumed that the value \/ﬁx would be a

component of the formula for the error of ordinates of regression
curves. This hypothesis was tested by adjusting the average shown

in Table 1 by multiplying each of these by the factor Jﬁl}‘ , determin-

ing the p, in each case from the true distribution of that variable in
the whole universe, and from the total number of cases in the samples,
These average differences would presumably reflect the true distribu-
tion of each independent variable in the original universe, since the
variations in distribution in different samples would tend to cancel out.
We may therefore use the distribution of the entire universe to in-
dicate the average distribution within samples of specified sizes drawn
from that universe. The calculation of £, for each ordinate in ac-
cordance with this method is shown in Table 2.
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TABLE 2

Calculation of n,_values for selected ordinates and
various sizes of samples.

Number of cases  (1Mv) Valueof n,?
Group | Inentire| 30 50 100 30 50 100
Universe
3| 32 | 192 | 32 | 64 | 2171 | 2803 | 3964
5| 55 | 330 | 55 | 110 | 2846 | 3674 | 5.197
9| 53 | 318 | 53 | 106 | 2794 | 3607 | 5.102
1 )1( 38 | 228 | 38 | 76 | 2366 | 3.055 | 4.370
s’ o9 | o054 | 09 1.8 | 1.081 | 139 | 1974
71 70 | 420 | 70 | 140 | 3015 | 3.892 | 5.505
11| 91 | 546 | 91 | 182 | 3437 | 4437 | 6276
1;( 18 | 108 | 1.8 | 36 | 1.520 | 1974 | 2792
2* 62 | 366 | 62 | 122 | 2771 | 3577 | 5060
3! 76 |45 | 76 | 152 | 3.003 | 3993 | 5.648
4| 79 | 474 | 79 | 158 | 3153 | 4071 | 5757
6| 91 |546 | 91 | 182 | 3.385 | 4.370 | 6.181
7| 55 | 330 | 55 | 11.0 | 2631 | 3.397 | 4.804
8| 26 | 156 | 26 | 52 | 1.809 | 2335 | 3.303
9| 16 |09 | 1.6 | 32 | 1419 | 1.832 | 2591

[-F
1. Computed from formula ng=n, (U‘i) , with Uy = 1, g = 2455;
63 =2164; g, = 2098, ux= 1, since the frequencies for 3 include 2.5
to 3.5; for 5, 4.5 to 5.5, etc.
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TABLE 3

Average deviation of errors in net regression curves, at selected ord‘n-
ates, adjusted to error per unit observation per standard-deviation range

Group Universe X Universe Y

Xy |1 %0 50 100 % 50 100

3.60 3.34 1.35 1.95 2.30 1.98
2.65 231 1.25 1.37 1.84 1.35
0.00 0.00 0.00 0.00 0.00 0.00
2.01 2.02 1.73 1.06 115 1.22
3.50 3.33 3.33 1.68 1.77 2.16

1.78 1.75 2.05 1.49 0.73 2.17
2.53 1.71 2.09 1.15 0.70 0.88
0.00 0.00 0.00 0.00 0.00 0.00
2.10 2.09 1.51 1.41 2.48 3.26
2.06 1.84 2.29 2.39 2.45 2.46

1.91 2.86 1.92 1.61 2.86 2.53
1.61 2.16 2.71 1.21 1.44 1.92
1.10 1.47 2.30 0.95 0.65 1.27
0.95 1.27 0.74 1.15 2.36 1.36
0.00 .0.00 0.00 0.00 0.00 0.00
1.89 2.28 1.92 1.79 2.31 2.59
271 2.55 2.51 2,06 2.15 2.18
3.21 293 2.59 1.90 2.29 1.92

—

Pt
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When the values in Table 1 are multiplied by the corresponding n,
values, from Table 2, the adjusted values shown in Table 3 are ob-
tained. Averaging together all the values in Table 3, average adjusted
errors of 1.89 are secured for samples of 300 cases, 2.04 for samples
of 50, and 1.98 for samples of 100 cases. It is evident that most of
the difference due to different sizes of samples has been eliminated.
However, even after this adjustment, the errors tend to increase as
the ordinate departs from the assumed point of origin at the center.
This same relation holds for linear regression lines. The standard
error of any point on a regression line (in relation to the origin at
M,= 0) is 6,z , and hence increases directly as x increases. A line

1. Number of observations in each of the successive samples,
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continues out with the slope given it by &4, and any error in » has a
progressive influence on the accuracy of the line. The free-hand curve,
on the contrary, is more flexible, and does not continue in any deter-
minate direction. Hence it would hardly be supposed that the errors
in the ordinates of the curve would increase with increasing values of
X so rapidly as does the standard error of the straight line. The
errors shown in Table 3 may be tested with respect to this hypothesis
by averaging, for each universe, the errors shown by the three sizes
of samples for the several selected ordinates and relating the resulting
averages to the departures from the assumed means. To put these de-
partures in comparable terms for the three variables, they may be stated
in terms of standard deviation units. Carrying these operations
through, the data appear as shown in Table 4.

TABLE 4

Average adjusted deviation of errors at selected ordinates, contrasted
with departure from origin

Departure]  De-
from parture a Average adjusted errors

Group | origin o \/ c Uni)\(rerse Uni:{erse
| 4 1.63 1.06 2.76 208
5 2 0.81 0.90 207 1.52
7 0

9 2 0.81 0.90 192 1.14
1 4 1.63 1.06 3.39 1.87
5° 4 1.85 1.36 1.86 1.46
7 2 92 096 2.11 o1
9 0

11 2 92 0.96 1.90 2.38
1} 4 1.85 1.36 2.06 2.43
2 3 1.41 1.20 223 2.33
3 2 95 0.97 2.16 1.52
4 1 48 0.69 1.62 96
5 0 '

6 1 48 0.69 9 1.62
7 2 95 097 2.03 2.23
8 3 1.43 1.20 2.59 213
S 4 1.91 1.38 291 204
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It is evident from Table 4 that the average error, adjusted for
size of sample, increased as the departure from the origin increased.
This is shown more clearly in Figure 2, where the average error is
plotted against the departures from the origin. This figure. however,
indicates that the relation is not linear, as the errors do not increase
in proportion. When the average errors are plotted against the de-
partures on semi-log paper, however, as shown in Figure 3, the rela-
tion is substantially linear, and is of such an order as to suggest that
the errors vary with the square-root of the departures, rather than the
departures themselves. The line drawn in on each chart, with such
a slope as to coincide with the square roots, parellels the relation fairly
well, so from this it may be concluded that another constituent of the
error formula will be

Units departure from origin
61

If the origin is made at the mean of X , the independent factor,
X, , X, etc., this segment of the error formula may be stated (using

:!:-X-.Mx)

X

Ox

Each of the adjusted errors shown in Table 4 may be further
adjusted by dividing each one by .ﬁ—g_g , the value shown in the third
column. They may also be adjusted to allow for the difference in the
original standard errors of estimate in the two universes, as noted
earlier. The standard error in Universe Y was 1.80 and Universe X,
2.39, so the errors may be made comparable by dividing those from
each universe by the corresponding standard error of estimate. Per-
forming these two operations, the average deviations of the errors
appear as shown in Table 5. These average deviations are now so
adjusted as to eliminate differences due to (1) number of observa-
tions in each portion of the distribution, (2) departure from origin,
and (3) standard error of estimate in the universe. As stated in
Table 5, the average deviations are in-per cent of the deviations that
would have been estimated from an equation representing the three

elements discussed.
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TABLE 5

Average deviation of errors at selected ordinates
adjusted for n,, /£ and 3,
Ox

Group Universe X | Universe Y Average

Average X, -3 1.09 1.09
5 0.96 0.94
9 0.89 0.70
) | 1.33 0.98

Average X, 1.07 0.93 1.00
X; =5 0.57 0.60
7 0.92 0.53
11 0.83 1.38
13 0.63 0.99

Average X, 0.74 0.88 081
Xq—2 0.78 1.08
0.93 0.97
4 0.98 0.77
6 0.60 1.30
7 0.83 1.28
8 0.90 0.99
9 0.88 0.82

Average X, 0.84 1.03 0.94

Averaging all values for each variable, as shown in Table 5, there
still remains some difference in the average errors. The errors for
f (X5 are smaller on the average than the errors for either of the
other variables, while those for f (X,) are larger. This suggests
that some element other than those already considered influences the
errors, and that it differs with individual independent variables.

The formula for the standard error of a linear net regression co-
efficient contains the term

| Jpey
! 22.34
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which allows for the intercorrelation between the independent variables.
The more closely an independent variable may be estimated from the
other independent variables, the less accurately its net regression line
can be determined. The same relation might be expected to hold true
of multiple regression curves. We can test this by comparing the aver-
age adjusted errors, just computed, withh the intercorrelation, as
follows:

Mean Adjusted 5 Mean Error
Regression Error’ \i- R 1-R*
f( z) 1.00 ‘\/" e;.ux 07857 0.76
f(X)) 081 )- Q.'u z0 1044 0.68
4 (X,,) 0.94 JI- Ef_"_o‘." 0.82

It is evident that the means vary somewhat inversely with the
//—@* values. They may therefore each be multiplied by the cor-
responding /— 2% value to secure the final adjusted values, as shown
in the last column’. This column now shows the average deviation of
the errors actually observed stated in per cent of an estimated error
computed from a theoretical equation composed of the four elements

developed separately.

The average deviations of the observed errors varies from 68 to
82 per cent of the estimated error in each case, as contrasted to the
value of 80 per cent to be expected if the equation gave the standard
error. This is consistent with the fact that the standard error of es-
timate is included as the initial value in the equation. Furthermore,
since the samples were drawn from a limited universe, the variation
observed would tend to be slightly less than if they were drawn from
an infinite universe with the same characteristics, which is consistent

1. This demonstration is by no means convincing proof of the need of including
this adjustment. After this final adjustment, the discrepancy between the
smallest and largest average errors, 0.68 and 0.82, is still as great as it was
between the smallest and largest before, 0.81 and 1.00. On logical grounds,
however, some such adjustment for the closeness of inter-relation between the
independent variables is necessary, and bty analogy, this method seems a pos-
sibility. It may be, however, that the index of (curvilinear) multiple correla-
tion, £, 54, should be used in the adjustment, rather than the coefficient of
multiple correlation,
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with the observed values falling mostly a little below the expected
value of 0.80. The elements considered in estimating the error may
therefore be said to give the standard error of the regression curves.

By a combination of induction and deduction, of which the fore-
going is a condensed re-statement, a tentative formula for the standard
error of the ordinates of a net regression curve was constructed from
the four elements developed separately. They may be combined as
follows':

I e j(xz)-(gl.z-") </’/l7;~ )\/T;;; <‘/’—-——E%,::>

or writing n, out in full,

IL -(Sl.za-) (a: n,> \/%; <\//T7:?7: )

Hence

2 5::” Uy X

1L ef(“'x)- n,oi (- R} ye)

8. TrsSTING TENTATIVE FORMULA BY SAMPLES DRAWN FROM THE
ORIGINAL UNIVERSE

The formula which has just been shown was derived from the
average errors shown by all the samples, using the known facts about
each universe—the standard error of estimate, the frequency distribu-
tions and the standard deviations of each independent variable, and
the inter-correlations among the independent factors in working out
the estimated errors. But for practical use in estimating the reliability
of regressions determined from a single sample all that would be known
about the universe would be what could be inferred from that sample,

1. Equation (III) may be restated in a simpler form for practical comp.utation! and
the operations of working out the standard error for sel?cted ordinates along
the net regression curves may be organized in @ systematic manner, as shown
in the author’s “Methods of Correlation Analysis,” pages 384 to 389.
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and the standard errors of the regression curves would have to be
computed from the values so obtained. The next step of the experi-
ment, therefore, was to calculate the standard error separately for
each sample in turn, using only the values obtairied from each one.
These computations were made for each independent variable for each
abscissa listed in Table C. The actual error of the regression curve
at that point was then compared to the calculated standard error, and
the ratio

Observed error
Calculated standard error

-7

computed for each selected abscissa. If the computed error was the
true standard error of the regression curve, these ratios should then
be distributed according to the normal curve, and should have a stand-
ard deviation of 1.00.

The test was first applied to a‘ll the samples from both universes
without including the term 1 - A2, ,, in the error formula.

The standard deviation of the ratios o, was calculated sep-
arately for each selected abscissa of each independent variable with
results as follows:
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TABLE 6

Standard Deviation of Ratios of Actual Errors to Calculated Errors,
as shown by 62 separate samples

Value of
independent | Errors in Errors in Errors in
variable FX) FX,) Fx,)
2 0.96
3 1.13 1.06
4 0.98
5 1.10 0.81
6 1,19
7 0.82 1.21
8 1.23
9 0.89 1.11
11 1.13
13 1.34 0.87
All values’ 1.19 0.94 1.10

It is evident (1) that ¢, does not tend to increase apprecian.y
as the abscissa departs from the mean of the independent variable; and
(2) that the results based on the errors computed from individual
samples are on the average quite consistent with those based on the
facts from the universe. This is shown more fully in the following
comparison :

Errors from Errors from entire
Regression _ individual samples universe ; mean
Sr 080 o, | adjusted error
£ ) 1.19 095 1.00
£0) 0.94 0.75 0.81
F(x,) 1.10 0.88 0.94
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Taking 0.80 of the ¢, gives an approximate measure of the
average deviations of the 7 values, to compare with the average devia-
tion of the adjusted errors as calculated in Table 5. The average
deviation of the 7 values ranges from 93 to 95 per cent of the aver-
age adjusted errors, showing the same average differences from vari-
able to variable as were shown in Table 5 and suggesting the need of
some element in the error formula to allow for the inter-correlation
among we independent variables.

For the next step in the test, the term 1 - P;, + Wwas included
in the error formula for f ( X,) and the corresponding terms were
included in the other formulas, using, in each case, the & values shown
by each individual sample. Calculating the 7  values by comparing
the actual errors with these revised estimates, and calculating their

standard deviations, results were secured as follows:

oy , using full
Regression error formula
FX 0.77
FX 0.76
F X 0.90

The o, is calculated from O as origin, disregarding differences
in the average error from zero. It is evident that in these sample re-
sults the errors, on the average, are somewhat less than would be ex-
pected from the formula, as &, falls below the unity. The distribu-
tion of the errors is also important. Figure 4 shows the distributions
of the 7 values and compares it with the corresponding normal dis-
tribution. The extent of the agreement with the normal distribution
may be judged from the following comparison:
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Value of Per cent of total frequencies in range
alue o
A | AR | AR |
Over 3.00 0.5 0.14
200to 2.99 0.9 2.6 2.14
1.00to 1.99 6.5 4.4 119 13.59
0.00to 0.99 46.1 40.1 31.3 34.13
0.00 to -0.99 38.3 46.2 43.2 34.13
-1.00 to ~1.99 6.5 8.4 10.5 13.59
-2.00 to -2.99 1.7 09 2.14
-3.00 and larger 0.14

Although the distributions are not exactly normal, they agree fairly
well. The different variables give slightly different distributions, how-
ever. For f (Xj), in farticular, the distribution of the errors appears
to be skewed, with more negative errors than positive ones. This may
be due to a slight bias in the free-hand method of fitting the curve,
which in this instance, for a very peculiarly-shaped regression curve,
led to a slight but persistent error in the fitted curve. This possible
individual bias in fitting the curve free-hatd will be taken up again

subsequently.

The test of the error formula described above was not a complete
proof of the adequacy of the formula, since it used the same samples
as those from which the original formula was constructed. For a more
rigorous test the formula would have to be tried out on completely new
samples secured from a different universe. Such a test was made in
the next phase of the investigation.

9. TEesTING TENTATIVE ForMULA BY SAMPLES DRAWN FROM
A NEw UNIVERSE

A new “universe” was constructed for testing purposes, by meth-
ods parallel to those described before. ‘In this case only two indepen-
dent variables were used. There were 328 observations in the universe
and 45 samples were selected at random—-15 of 10 observations, 15
of 20 and 15 of 40. (The number of observations was taken as small

~as 10 so as to make an extreme test of the value of the sampling form-
ula.) Multiple curvilincar regressions were determined for f ( X3)
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and £( X,), and the standard error of selected ordinates was com-
puted by equation (III). The value of 7 was then computed by
dividing the actual errors by the expected. The distribution of these
errors is shown in Figure 5, as contrasted with the normal curve.

When the standard deviations of T are computed separately for
each size of sample, the results are as follows:

Size of Sampie
10 20 40
F(XL) 1.29 1.30 1.23
F(X,) 1.46 1.80 1.79

Combining the distribution for both £ ( X;) and f( X3), the
distributions of the errors for each size of sample are as follows:

Size of sample Normal
Valueof 7 10 20 40 Distribution

Per cent Per cent Per cent Per cent

of total of total of total of total
Over 3.00 20 24 29 0.14
2.00to 2.99 3.3 4.5 3.2 2.14
1.00to 1.99 10.7 9.2 12.8 13.59
0.00to 0.99 342 30.8 , 31.1 34.13
0.00 to -0.99 35.8 344 33.3 34.13
~1.00 to-1.99 8.3 11.5 7.8 13.59
-2.00 to ~2.99 24 3.6 5.5 2.14
-3.00 2nd larger 3.3 3.6 3.4 0.14

There were many more wide departures—of 3.00 or larger—than
would be expected if the errors had a normal distribution, with o =
the estimated standard error. Instead of only 5 per cent of the errors
exceeding twice the estimated standard errors, from 11 to 135 per cent
were this large. Yet the general di.tribution of the errors (Figure §)
was in fair agreement with a normal distribution.

Two elements may contribute to the greater variation in the actual
errors than in the estimated. With samples of the size involved—10 to
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40 cases—the shape of various portions of the curve is determined
by much less than 30 observations, and in some cases, by 10 or 1-ss.
With such small samples, Student and Fisher have shown that for
arithmetic means and other constants, the distribution of actual error
<+ estimated error does not follow the normal curve and hasa <& in
excess of unity. It may be that some modification needs to be intro-
duced into equation (III) to take account of this tendency before it
can be correctly applied to small samples. From Student’s table for
small samples', 15 per cent of the errors would be expected to exceed
twice the standard error if there were 3 degrees of freedom in the
sample, and 10 per cent if there were 5. This indicates a reasonable
number of cases, as compared with the size of the samples used in
these tests. But whether n&o' , or some other fraction of the tota\
number of observations, would give the proper number of cases to use
in entering the table, has not been determined, and more work needs
to be done on this phase of the problem.

A second element of error appears to lie in using 7_—';,;—;—- as
.. 2.84
one element of the error formula, instead of using the index of cor-

relation, 77[15_{;4 . Substituting the index of correlation for the

coefficient in the error formula was tried in two of the samples where
the 7 values were the highest, and in both cases it much improved the
accuracy of the estimated error—reducing values of 7 from 5.0 to
3.0, from 8.3 to 4.7, from 6.7 to 3.8, etc. It would appear that wher-
ever the inter-correlation between the independent factors is markedly
curvilinear, the accuracy of the estimate of the error could be much
improved by measuring that curvilinear inter-correlation, and using
it in computing the standard error of the function.

In view of the two sources of variation mentioned above, the fact
that the variation of the actual errors ranges from 23 per cent to 79
per cent in excess of the variation of the estimated errors does not
necessarily mean that the suggested formula (eq. III) is entirely in-
adequate, but may mean only that the necessary reservations in the use
of the formula have not been applied. On the other hand, the fact
that the actual results do vary as widely as this from the expected
suggests that the formula can be used only as a very tentative approx-

1. This table is reproduced, in abridged form, in the author’s “Methods of Corre-
lation Analysis,” on pages 19 and 392.
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imation to the standard error of the regression curves until its pos-
sibilities and limitations have been more definitely determined.

10. FREE-HAND VERSUS MATHEMATICAL NET REGRESSION CURVES

~ It was noted earlier that there appeared to be some tendency toward
bias in fitting the first set of curves. The errors from the second uni-
verse, as shown in the last set of results showed a little of the same
tendency, with the average error not falling exactly at 0. To test
whether determination of the regression curves mathematically would
eliminate this bias, mathematical partial regression curves were fitted
by least squares to one set of samples from the second universe. The
15 samples of 20 observations were used, and two types of curves
were fitted—the parabola and the cubic parabola. The regression equa-
tions were therefore:

(1) X,=a+b,X,+b, X, +b,X, +b’X}

(2) XK=a+b, Xy +biX7+b X+ b, X, +b' X +b) X2

The estimated error was calculated for selected ordinates, using
the same equation (III) as derivec for free-hand methods, and 7
and o, computed. The values of &, were as follows:

Simple parabola  Cubic parabola

£(X,) 0.77 0.95
£ X,) 0.90 1.13

It would appear, therefore, that equation (III) gives about as
good results in estimating the reliability of net regression curves math-
ematically determined as it does in estimating the reliability of those
secured by free-hand fitting.

Even with the curves fitted by least squares, however, there was
some tendency to bias, as is illustrated in Figures 6 and 7. It is evi-
dent from these figures that neither the free-hand curve nor the math-
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ematical curve exactly reproduced the true curve, even.on the average
of the fifteen samples. The average amount of bias is shcwn in the
following statement:

AVERAGE BIAS IN FITTING REGRESSION CURVES

Value of Average error! in f()( 2) Average error! in (X ,)
independentf Cubic | Free-hand Cubic | Free-hand
variable | Parabola | parabola curve parabola | parabola | curve

0.16 0.09 062 | -0.35 -0.31 -0.69
-0.06 | -0.03 0.21 -0.10 [ -0.20 | -0.31
-0.05 0.00 0.05 -0.06 | -0.09 | -0.15
-0.04 0.00 | -0.02

0.11 -0.04 | - .07 0.00 0.05 -0.05
013 | -0.07 | -0.10 |-0.05 0.05 -0.07
-0.06 0.07 | -0.18
10 0.23 0.43 -0.16 |-0.09 009 | -0.25
12 0.42 046 | -024 |-0.13 -0.09 | -0.50
14 -0.27 | -0.35 -0.79

2
3
4
5
6 0.11 0.02 -0.05
7
8
9

In this particular, where the true curve is of such a slope as to
be fairly well repiesented by a parabola or cubic parabola, the math-
ematical curves appear to give a slightly more accurate fit, on the aver
age, than do the free-hand curves. ‘The standard deviation of the er-
rors, however, is only slightly greater for the free-hand curves than for
those fitted by the cubic parabolae, as shown by the following tabula-
tion :?

1. Taken with regard to sign.

2. At first glance it seems strange that the regressions fitted by the cubic parabola
should have, on the average, larger errors than those fitted by the simple
parabola. The explanation may be that the extra constant allowed the cubic
parabola to follow more closely the individual characteristics of each sample;
but that in fitting those (partly random) relations more closely, the regressions
were distorted from the true underlying relation,
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Standard deviation of errors (absolute values).

Free-hand Parabolic Cubic
F(Xz) 0.98 0.7¢ 0.84
fx 3) 091 0.65 0.89

Where the true regression is of such shape that it could not be rep-
resented by any simple equation, it seems likely that the free-hand
method would give a more accurate fit than would a mathematical equa-
tion which was not capable of representing the particular relation in-
volved. Since, in practical investigations, the shape of the net regression
curve is usually unknown to start with, the most satisfactory procedure
would seem to be to usc the free-hand method to determine the approxi-
mate shape of the curves, and then, if their shape appeared tc follow any
definite types by least-squares as a final check on the shape of the
curves.

CONCLUSION

This article is only a progress report. The experiments reported
here suggest that it may be possible to develop a formula for the stand-
ard error of net regression curves fitted frec-hand. The problem has
not been completely solved; the tentative formula which is developed
has given only fair results in experimental tests; and several points are
in need of further study. I hope at some future time to carry this in-
vestigation further, but my present plans make it necessary to lay it
aside for a year or more. I am, therefore, publishing this preliminary
report now, in the hope that others may be led to attack the same

problem.
Mordeeas Copheif
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FIGURE 2
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FIGURE 3
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FIGURE 4
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FIGURE 5
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FIGURE 6
AVERAGE CURVES FITTED BY THREE METHODS £ ( X 2)
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FIGURE 7
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TABLE A—SYNTHETIC DATA FOR SAMPLING STUDY

No. X | Xg| X | X, | Y No. | Xy | Xp| Xg| X,
1 5 6 94 | 104 51 8 7 4 1127
2 6|9 |2 (142 ]| 92 52 9 |11 3 (148
3 8 ¢ 4 1160 | 110 53 7 |12 3 [19.5
4 7 |12 5 | 168 | 128 54 9 |11 2 |153
5 10 |13 2 1148 | 148 55 89 |4 |120
6 6 |10 | 6 |185 | 125 56 9 7 3 137
7 8 |11 4 1138 | 148 57 10 | 8 1 {120
8 2 4 |10 | 99 | 99 58 |11 |11 5 |20.1
9 |10 |13 2 {108 | 11'8 59 4 |11 8 181

11 (11 3 | 188 9.8 60 7 |11 7 |21.1
4 |10 | 8 |17.7 | 157 61 9| 8 (2 (152
4 | 9|7 (183|123 62 8 (11 2 | 143
719 3 (110 ] 80 63 3 7 7 |124
7 8 | 4 |167 | 107 64 8| 8 7 |170

10 |11 2 [ 143 | 103 65 3 8 9 1179

11 9 5 1153 | 123 66 9 |12 | 2 [120

11 9 6 | 134 | 164 67 4 (11 9 176

10 | 11 2 | 153 | 133 68 6 7 2 [ 149

10 | 13 3 | 153 | 153 69 7 (12 | 6 |169
6| 8 3 (144 | 94 70 2| 8 [10 {159
8 12 | 4 (175 | 145 71 5 (10 | 4 |188
6|7 |3 ]134 (104 72 8 (11 5 {171

10 | 11 5 1211 | 121 73 9 110 | 2 |109

11 9 4 | 180 ! 11.0 74 11 113 5 146
7 7 3 (157 | 87 75 5 8 | 8 |174
7192|115 8.5 76 5 7 7 |214
6 110 2 | 126 7.6 77 7 8 2 |15.2
9 110 | 3 |124 | 94 78 6| 9 | 2 |142
6|9 5 1130 | 100 79 6 |12 [ 4 [162

12 |10 | 2 | 159 | 119 80 3 8 | 6 |145
6 | 8 3 ]|114 74 81 71713 {167

11 |12 4 1165 | 15.5 82 8 8 3 (127
4 | 8| 9115|135 83 6| 8 | 4 |154
9 |10 | 6 {138 | 118 84 8 |12 7 |228
7 |10 7 1197 | 137 85 12 | 14 3 |16.1

11 |13 11126 | 136 86 7 {11 4 | 158
6 |11 7 |28 178 87 5 7 | 6 {165
6| 8] 3 84| 74 8 | 11 |13 3 | 173
S |11 4 1162 | 9.2 89 7 | 11 2 123
71 9] 6164 ]| 144 90 7 |11 4 (128
S 8 4 | 15.1 9.1 91 7 7 6 | 121
6 7 2 (169 | 69 92. 71 9] 6 |154
7 112 ] 6189 | 169 93 7 8 5 [ 140

10 | 10 2 | 149 | 109 . 94 6|10 7 | 204
4 8| 4167 ]| 107 95 11 |13 5 | 226
3 5 51139 89 96 8| 7 6 | 14.1

11 {11 31158 | 98 97 6 7 6 | 148
7|11 7 (2211 181 98 2| 4| 6117

10 { 13 11731 123 99 71 81 4117
5 7 4 {121 8.1 100 10 | 13 6 | 207
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TABLE A—SYNTHETIC DATA FOR SAMPLING STUDY (Continued)

No. x‘ X‘ x‘ X, Y NO. X’ X, X4 x, Y

101 6 |12 | 4 |172 | 152 151 719 |5 (173 {13
102 315 |8 |179 | 159 152 918 |5 (120 {110
103 7 |10 [ 2 [139 | 119 153 7 (12 [ 3 {135 |14.5
104 8 |7 |3 |147 | 77 154 7 |10 [ 6 |148 [118
105 6 |7 |6 |198 | 118 155 8|8 |7 ]170 |140
106 4 (10 {5 |127 | 117 156 319 |6 |128 |138
107 |11 |14 | 6 1205 | 16.5 157 |12 |12 1 |148 | 128
108 319 (9 (162|112 158 112 |12 | 3 1205 | 95
109 9 19 |6 (184|154 159 717 {3167 |107
110 315 |8 (179 | 129 160 216 |9 (174 | 144
111 |12 {14 | 6 |20.5 | 145 161 8 |12 | 3 135 [115
112 9 18 |6 (121 | 161 162 9 |11 7 (211 | 171
113 7 |7 |3 |107 107 163 6 |12 | 4 |182 |10.2
114 7 {8 |2 (142 72 164 719 |3 1]130 | 90
115 6 |9 |4 (137|107 165 6 |10 | 5 |214 | 154
116 | 11 9 | 5§ (193|133 166 9 110 | 5 |157 |117
117 S| 8 |6 |175 | 105 167 6 (12 | 7 | 155 | 185
118 7 |1 4 1148 | 148 168 9 |11 2 153 | 113
119 6 |9 |4 |117 |137 169 7 |1 6 [21.2 | 122
120 7 | 8 |2 (152|112 170 5|8 |8 174 | 124
121 717 |2 (142 ]| 72 171 4 |11 9 1206 |156
122 3 |7 10 (137 | 97 172 817 |6 171 [151
123 5 {6 |5 (157 | 97 173 6 |9 |3 (127 | 77
124 8 | 8 |6 |181 |16l 174 |12 |14 | 6 225 |14

125 |10 | 8 | 3 |147 | 97 175 717 112|122 ] 7

126 6 |8 |7 |197 | 137 176 717 (2142 | 8

127 7 [12 | 3 |135 | 125 177 4 17 |6 161 |15.1
128 6 |10 | 4 (161 9.1 178 7 111 4 1178 | 138
129 4 16 |4 [160 | 100 179 7 |10 | 6 |168 | 128
130 6 |12 |2 |97 | 97 180 |10 |11 51161 |161
131 11 9 | 3 |130 | 130 181 11 |12 | § | 148 | 148
132 511 7 |155 | 12,5 182 9 (12 | 6 | 209 | 129
133 3 (8|5 (154 84 183 (10 | 9 |1 133 |103
134 (10 (12 | 6 [219 | 169 184 7 |1 4 1168 | 9.8
135 | 12 |10 | 4 [184 | 114 185 9 112 | 3 1185 | 95
136 8 |11 6 [192 | 152 186 8 (12 | 4 | 175 | 145
137 7 {1 6 {192 | 132 187 |11 |11 4 1128 | 148
138 31819 (179|129 188 S {9 | 4124 |[124
139 {101 9 |5 (173|133 189 6| 7 | 4]114 124
140 6| 8 |3 |154 | 84 190 27 (11121 |[101
141 89 |2 (105|125 191 S| 7 |6]175 |105
142 519 |4 |164 | 104 192 5|11 5 [125 | 115
143 8 |11 6 232 | 132 193 71 8 (71180 {150
144 8 |11 5 [17.1 | 121 194 9 {11 5 (131 | 151
145 9 (12 | 6 {239 | 149 | 195 |11 |13 | 6 237 | 137
146 6 |11 3 |175 | 135 196 9 110 | 4 | 134 | 134
147 519 |8 |177 | 137 197 7 |12 | 4155 [ 155
148 | 11 (14 | 4 [181 | 17.1 198 6| 8| 4|124 | 114
149 8 |11 6 |21.2 | 132 199 41 6 | 4] 90120
150 [ 10 |12 | 1 |168 | 98 200 3|10 |10 | 184 [ 94
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TABLE A—SYNTHETIC DATA FOR SAMPLING STUDY (Continued)

No. | X, | Xa | Xe| X, | ¥ No. | X, | X, | X, | x, | v
201 | 4|10 |7 [177] 147 251 | 11 [14 |5 |184 | 134
22 | 2|6 |11 |94]124 252 | 5|6 |8 207|137
23 | 6|11 |6 |179] 119 253 | 4|9 |5 |153 |113
200 | 7] 9|4 |160] 140 254 | 3|5 |7 |159 | 159
205 | 3|10 |6 |162 | 142 255 | 9 (11 |4 |148 | 98
206 | 8|8 |5 (170 120 25 | 11 |11 |1 |151 | 81
27 | 5|10 | 8 |161 | 121 257 | 9|7 |6 131 111
208 | 4|11 |8 171131 258 | 7|9 |3]|140 | 130
20 | 8|11 |5 [161 ] 161 259 | 6 |10 |7 |184 | 164
20 | 7| 8 |6 [131] 111 20 | 6| 8 |4 |154 | 84
211 |11 |11 |1 {141 | 131 261 | 5| 8 |4 (141 91
212 | 8 |12 | 6 |179 | 159 262 | 9|8 | 3|17 ]| 87
213 | 7|10 | 6 [198 | 158 263 | 7 |11 |4 |188 | 108
214 | 6|11 | 2 |170] 120 204 | 2| 4 | 6157|147
215 | 8 (12 | 2 |170 | 140 265 | 9 [11 |3 [178 | 138
216 |10 (10 | 1 [137| 77 26 | 7| 8 | 4157|117
a7 |10 [13 | 3 |193 | 153 267 | 11 |11 |5 | 141 | 151
28 | 6| 9 | 4 177 | 107 268 | 5 |11 |8 |205 |175
219 | 8 |10 | 6 |178 ] 128 260 | 6 |12 | 2|157 | o7
220 | 6 |12 | 5 |145 | 155 220 | 6 | 8 | 2139 | 79
21 | 89 |5 |183] 123 271 | 8 |11 |4 |138 | 108
22 | 8|7 |6 (141|131 22 | 8|7 |6|131 151
23 | 7|7 1|7 (170|130 23 | 5|7 |3|91] 71
224 |10 | 8 |2 [142] 112 274 | 51100 {5201 | 101
225 | 7|19 |7 |183] 123 275 |11 |12 |1 ]|148 | 118
226 |10 8 |1]90]| 70 276 | 7|9 | 7|23 173
27 | 6| 7 |5 |197] 127 277 | 5|7 | 8184|114
228 | 5|11 | 4 |162 | 122 28 | 6| 7 | 6138|108
229 |10 |10 | 3 |134 | 134 29 | 516 |6]158 |158
255 | 7 |12 16 |179 | 139 280 | 8 |12 |3 145|135
231 | 6| 7 | 4 [164] 84 281 | 5 (10 | 3|148 | 78
232 | 2| 6|8 |169] 149 282 |10 |11 | 4 |178 | 148
233 | 3|10 | 6 |132] 11.2 283 | 7|12 |6 (219|129
234 | 9| 7|5 |160( 100 284 | 5| 8 [ 3181 91
235 | 10| 8 | 6 181 121 285 | 12 |15 | 5212152
236 | 3| 5|5 |129]| 99 286 | 4|11 | 4]108] 98
237 | 8| 7 |7 |200] 130 287 | 3 (10 | 5191 141
238 | 9|11 | 6 |162] 132 288 | 8 (10 | 62081168
29 | 710 | 3 |114] 124 29 | 11 ]13 | 5] 206 166
240 | 3010 | 7 |151] 131 200 | 10|11 | 2]153]| 83
241 | 4|11 | 5 |181] 151 201 | 4|10 |v|202!132
242 | 7|1 |2 ({133| 83 22| 7117 |5]190] 150
243 | 9| 8|3 |n7| 117 23 | 8| 7 |5]160] 140
246 | 4|10 | 5 |127] 147 204 | 3| 7 |8]|174] 104
245 | 5| 7| 3 |151] 121 205 | 6|10 | 6175 155
246 | 7| 8| 5|180] 130 206 | 4111 | 4]|108] 108
2#7 | 4|1 |6 |132] 112 207 | 5|6 |3]|174] 124
248 | 3|10 | 9 |166]| 146 28 | 8| 7 | 7] 220|170
249 | 8| 7| 2142 92 29 | 210 | 2] 139/ 119
250 | 5|10 | 8 [181] 171 0| 4|8 |9]135] 115
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TABLE A—SYNTHETIC DATA FOR SAMPLING STUDY (Continued)

———-

No. Xol X3 Xe| X, Y No. Xe | Xy | Xa| X, | ¥
300 | 6|11 |6 |29 |169 31 | 4 | 9|7 |123]123
32 | 6 |11 |2 [130 | 90 352 | 7 |7 |4 (157 97
303 | 8|7 |6 |191 l161 33 | 7 {12 | 3 1165 | 95
34 |12 [15 | 6 |233 193 3¢ | 9 [11 | 2]178 ] 128
305 | 7|9 |3 |140 | 110 35 | 6 |8 |5 147|117
306 | 35 |5 (109|119 3% | 9 |10 | 5 |197 | 127
307 | 8 |11 |7 |181 |171 37 | 9 |8 |4 (197! 107
308 | 9|8 |7 190170 38 | 7 (9| 21115105
39 | 5 110 | 4 [138 | 128 259 | 5 |6 | 3 |134 | 94
30 | 719 |2 125 ] 95 30 | 5 |8 |6 |155] 125
311 | 7|7 |5 (120 | 110 361 |12 [15 | 2 | 214 | 154
312 | 3|8 | & 184|154 %62 | 6 (12 | 2 177 | 137
313 | 4 (6 |6 |164 | 134 363 | 8 |7 |7 ]|20/170
314 | 719 |4 |190] 90 64 | 6 [12 | 3 |112] 132
315 | 3| 5 |7 |179 | 159 35 | 6 |9 |6 |121] 141
316 | 6| 8 |7 |167 | 117 366 | 8 | 8|6 |211] 131
317 | 2| 8 | 7 |126 | 106 %7 |10 | 8|3 ! 97| 87
318 | 9 {11 |3 148 | 128 368 | 7 (10 | 7 |187 | 147
319 {11 |10 | 3 |184 | 114 3 | 5|9 |3 |104] 114
3201 719 |7 223|123 30 112 14 | 4 {191 | 141
20 | 7 |10 |7 {207 | 147 371 | 7 |'8 | 6 |151] 151
322 | 5|7 |4 |141] 91 372 | 4 |7 | 8,160/ 110
323 | 718 |2 |142]| 82 373 | 3 16 |7 1187 147
24 | 9|11 |7 221|171 74 | 7 17 |3 [127] 97
325 | 516 |4 |174 ]| 84 75 | 9 |8 |6 [171] 121
326 | 8 [10 | 7 [197 | 167 37 | 6 | 9 | 4 |117] 137
3227 |12 |11 |1 {121 | 101 377 | 7 |7 |3 |157] 97
38 | 5|8 |6 165|145 378 | 8 | 8 | 4 [117] 87
30 | 8|8 |5 [130|130 379 | 5 [10 | 5 {131 ] 151
33 | 6|7 |2 [149 | 79 38 | 5 (11 | 3 |192] 122
31 | 8! 7 |5 [130 100 38 (11 (13| 2|28 98
332 3|8 |6 135|115 38 | 9 |11 |5 |181] 111
331 8|9 |6 |184 124 383 | 8|9 |7 |183] 123
3 | 9|7 |3 127 77 3% | 3|7 | 8164/ 124
35 718 |7 ]150] 170 385 | 4|7 | 9]|115] 125
336 | 7|9 |3]|140]| 80 38 | 5| 8|7 154 134
37 | 7|10 | 3 |124 | 124 38 | 5|7 3[151] 81
338 |11 |14 | 2 | 176 | 146 38 | 9 |11 | 6|162] 132
330 | 4 |11 | 9 |186 | 166 38 |10 | 8| 6 |141! 111
30 | 7| 7 |3|177| 77 390 | 8|8 | 4|127] 97
341 | 4| 6 | 5123|143 1 | 8|7 | 6[151] 161
32 | 2| 4 | 8166 146 392 | 8 9| 3!120! 110
431 3| 5] 6]160] 120 03 | 7 10| 7]|217] 177
44 | 71 8|6 ]171] 131 394 |10 | 8 | 2| 142] 82
345 11 | i1 | 6 | 182 | 142 395 | 9 |12 | 2 |140| 90
46 8|12 | 5 |168 | 118 396 | 4|6 4]|160] 90
47| 9110|2169 89 97 | 4|81 5|110] 130
348 | 7| 8| 4!157] 127 98 10| 9] 3|130| 80
349 | 11 |10 | 4 | 174 | 144 39 | 7 |11 | 2133 133
30| 7| 7| 3]137] 97 4001 9 10| 5/]167] 117




M. EZEKIEL 329

TABLE A—SYNTHETIC DATA FOR SAMPLING STUDY (Continued)

No. | X, [ X, | X X, | ¥ No. | Xp|Xs| Xe| X | Y
401 7 |12 | 6 149 | 139 451 6 {12 | 7 (205 | 185
402 2 |6 | 8 |189 (139 452 71815 |170 |130
403 5 {10 [ 4 | 158 | 138 453 5171 8 |144 | 144
404 8 |12 | 2 {190 ] 90 454 9 19| 6 [204 |154
405 7 | 8 |7 210 120 455 3 | 7110 |127 |107
406 6 |9 |6 ]161] 111 456 9177 [160 |160
407 6 |11 | 4 1145 135 457 |12 |11 [ 1 | 91 | 91
408 6 (12 | 6 | 216 | 146 458 8 18| 3 147 | 97
409 9 |12 [ 7 [228 | 188 459 (11 |13 | 1 |166 |116
410 8 |7 |3 |157 (117 460 6 19| 2|82 92
411 4 |11 | 8 171 | 121 461 6| 8| 5 157 | 147
412 [ 10 [ 9 |3 |190]| 90 462 31 5| 9 (154|134
413 7 (12 ] 6 | 179 | 139 463 6 (12| 2 [187 | 97
414 | 11 (10 | 1 | 137 | 117 464 7 110 | 2 |139 | 129
415 8 {11 | 7 1191 181 465 |11 (11 | 2 {113 | 133
416 4 111 | 91136 116 466 9 (11 | § {161 |131
417 6 | 8|5 |147] 127 467 8 (12 | 7 [178 | 178
418 3 [10 | 5131 91 468 9 110 | 7 (207 | 147
419 8 |7 |5]160] 110 469 7 | 8] 5 |180 [120
420 516 |5 ]|137 127 470 9 [10 | 3 |144 | 104
421 4 |11 | 8 {181 | 121 471 |10 (13 | 3 |153 |133
422 7 |10 | 3 114 | 134 472 7 |10 | 6 |148 [158
423 5 |16 |6 ]138 138 473 (11 (11 | 2 |103 |133
424 3|16 |5 (177|127 474 7 112 | 5 |128 [158
425 |11 (11 [ 1 [131 ] 101 475 S| 817 (204|164
426 7 {11 | 6 [222 (122 476 (12 |13 | 6 |17.7 | 157
427 4 (11 | 8 |181 | 131 477 4 |1C | 5 1167 | 97
428 7191|4160 | 140 478 9 |10 [ 4 {194 | 144
429 6 19 |31137|17 479 9 (7] 6 |181 [121
430 8 |9 12| 95]|105 480 9 (10 | 7 |167 |157
431 |11 (14 [ 3 |151 | 121 481 6 (8] 6 |188 [158
432 6 (12 | 5 |185 | 115 482 S| 8] 491121
433 516 (6168 148 483 |11 (10 | 4 |164 | 124
434 91917213133 484 8 171 4 (167 | 97
435 9 (11 | 3 ]|128 | 138 485 6| 8| 6 (168 |108
436 7 110 | 4 | 164 | 104 48 |12 |15 | 5 {162 | 152
437 516 (7 (137] 127 487 4 17191165 145
438 5| 8| 8124|164 488 S |11 | 6 [186 156
439 7 11112 [143] 133 489 4 16 5153|123
440 3 | 8110|147 127 490 7 (11| 51161 {131
441 | 12 |14 | 3 | 161 | 151 4991 112 113 | 1 |166 | 136
442 8 110 [ 2 |149 | 129 492 7 (10 21169 | 99
443 7 (11 ] 6|22 172 493 |11 |14 1 4 |151 | 141
44 8 111 | 31138 118 4% 6 {12 | 4 1182 | 102
445 4 16 |9(198]| 148 495 71111 4 (168 | 138
446 9110 |7 |177]| 147 496 7 |12 | 4 [135 | 125
447 519171177147 497 110 {10 | 4 | 194 | 144
448 517 | 6]185] 145 498 9 (10| 2169 [ 89
449 719121145 95 499 5191 8 (122 | N7
450 | 11 [13 | 5| 216 ] 156 500 | 9] 9| 4 [130|110
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TABLE B—COEFFICIENTS AND INDEXES OF MULTIPLE COR
(uncorrected for num
UNIVERSE X
J>)

Sample R 1st 2nd 3rd 4th
No. curves curves curves curves
Samples of 30

1 620 689 714 751

2 705 737 754 756

3 510 545 703 775

4 463 487 516 .508 548

5 741 614 679 736

6 486 688 720 731

7 681 777 787 .801

8 532 .589 659 696

9 .608 649 .598 659

10 469 539 .597 743
11 745 792 813 818
12 614 .590 628 752
13 J71 741 815 790
14 .586 742 794 798
15 551 .569 574 578
16 634 759 .809 826

Samples of 50
17 529 473 .545 .543 510
18 .507 536 621 622 655
19 418 493 541 534 536
20 512 686 .693 702 706
21 526 686 721 733 745
22 704 721 730 727 726
23 666 724 747 756 753
24 517 650 659 679 684
25 703 723 721 727 729
26 .609 646 646 677 699
Samples of 100

27 .543 629 671 684
28 679 685 699 699
29 557 649 673 673 673
30 .565 .59 656 675 678
31 .576 650 682 682 686
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RELATION FOUND AT EACH SUCCESSIVE APPROXIMATION
ber of variables)

UNIVERSE Y
P
Sample | R~ 1st 2nd 3rd 4th
No. curves curves curves curves

Samples of 30
47 697 698 .705 715
48 .588 .781 787 794
49 639 .800 836 .858
50 659 782 797 .801
51 643 812 829 .851
52 .668 745 722 746
53 .837 877 .895 .898
54 677 736 697 737
55 .505 679 702 720
56 707 767 778 782
57 .594 639 665 676
58 .580 660 661 669
59 684 762 779 785
60 825 .880 876 .881
61 461 621 .619 642
62 .590 756 .803 819

Samples of 50
37 721 786 .803 793 804 804
38 649 686 731 713 703
39 705 730 736 738
40 679 786 797 796
41 764 773 .804 805
42 725 764 759 723
43 721 772 798 799 .800 .800
44 .688 749 781 777
45 647 676 691 695 699 699
46 .564 672 731 733 736 736

Samples of 100
32 710 764 769 769
33 482 644 .656 644 650
34 668 755 760 762
35 760 794 79’ .802
36 .555 663 673 .687 .684
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TABLE C—FOR UNIVERSE X: SAMPLING ERRORS IN NET
(The errors are observed or-

|True
Or-| Re- SAMPLES OF 30
din- |gres- |
atefsion | 1| 2| 8| 4 |6} 6] 78| 9 [10j11{12] 18] 14| 15| 16
Xa| FORY
3114} 8 18|15 | 3|80 (111518 |21 |24 |21 80| 1/88
5|124 | 6|14 9| 4 | 0|15 18] 2| 7|12 {11} T184| T} 1| 8
7 {129
9180 |10 4(28| 4 | 4| 4|28 (25| 79| 6| 2|20 .7] 2| 8
11180 (2213|183 & |11| 681386112119 4({10| 9| 4|18
X,| £ (%)
5125 |21 18] .5 (12|24 2726 |12 |11 2 23
T(120| 6| 2{18| 6| 8181015617 | 2| 7| 4] 6| .7|1.0(15
9 |123
11/181 | 9| 2| 8| 4] 0] 021 ] 2| .6 ]|.2(183|16]| 011 4| 3
18 |15.6 22 (18 (16 (14| 8 |28 19 | 3 (2018 4| 4| 8| 7
Yol £1%)
2j102 .7/ 4| 110 (621 ) 8] 5{14]| 6| 5] 21]|14(18| 1| 4
g8fw007|0f 6| 3|a|7/22]7] 711 ]|8]|8]| 2|12| 2|6 .1
472 382|478/ 865|507 2]7(2|6]a
5 |18.0
6141 |1 0} 222|121} 8|8].7/8|4| 4] 4]0|4]32
71160 | 8( H{12|{ 0 |.2(10]| 8| 819 |.7T] 82218 .1]| 6| B
81650 {2819 18| .2 |{1.0|27| .7| .8 |27 |1.6 |1.0 |2.7 9 .1]16
9 |14.5 |20 6113 [29 9129 [8.7 187 |2.1,/88 14 |11 80
TABLE C (Continued)—FOR UNIVERSE Y
True
Or-|Re- | SAMPLES OF 80
din- [gres-
‘ate [sion |47 | 48 | 49 | 50 |51 | 52 (58 | 54 {85 |56 |57 {58 | 69 | 60 | 61| 62
Xa /{Xa)
3114 j21| 5] 9| .2 26|10} 21022 | 7|0 5| 318 (10| 4
5124 10| 2| 3|1 |8|6|8|.2|]4|7]|8|4]a[11]6]3F8
7 {129
9180 |7 0|.0]| 3| 4| 9|8|0|]3|2]a1]|]4|]8/18].1].6
11 (130 13| 0| 21| 9 3| 9] 2|0( 5 4| 8] .11(81(.1]10
Xy SX%)
5 [12.6 1.6 1.3 K] 1.6 |19
71120 |2 81| .0}2]|3|8|6]|]2]|]4|.7].6 161 .6
9 |123
11181 6| 1183} 9 12| 3| 4] 0| 0]2]|8|22|4|38|3S
13 |15.6 (3.4 1.7 |14 16122 | 4(27/20 | .83} .9 (20 26| 9| 9
X (XD
2|102 | 6|11} 5| 21| .0| 6| 3| 4j22|0]22]| 7] 6| 8| 4| 9
31107 | 4| 2| 8| 2|1} 2] 0| 7|22 4]|2)0] 6].6|].7]a
41176 2| 6] 2|2 2| 0| 5] .7|.83]|]8|].1].2|.6].6]a1
5 |13.0
6{141 | .2| 8| 1| 1|.b6] 1| 6| 4] 0j 0| . 4]0 928 6] .1
7{160 | 5} 8] 0} 0].7T] A|12| 4] 6] 3|9 8[12(18|11] B
8/160 | 1|14 6| 8 | 4| 485] 2|12 18| 4|1.2]|17 |24 {10]12
9 146 18110118 |1 | 5 10| 9 |87 | 4 (1120 {81 | .85]14
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REGRESSION CURVES, FOR SELECTED ORDINATES

dinates minus true ordinates)

SAMPLES OF 50 SAMPLES OF 100

171 18 | 19| 20 | 21 | 22 | 28 24 | 26 |26 ( 27 | 28 | 20 | 80 81

1.4 b 0| 26 8|18 |16 |27 9 2 .6 b 2 4 0
A 8 018 (|11 4 |12 9 4 1 2 3 B 1 5
9|11 2 3 4 .6 N 8 5 1 2 1 1 4 9

1.7 | 1.8 4 6 (1812 Jd [ 16 |12 (11 1 8 1 |18 9
2 4 1 6.4 6 | 10 d (22 |14 2 |11 |28 2

6 2 3 9 3|10 8 3 2 1 5 2 b b 2

1.2 |13 |19 1 8 3 6 NG 8 4 2 5 4 8 2
12 |11 | 1.6 2 1 8 2 0 3 1 4 a 3 9 Bt
1 b 9 2 1 4 2 1 2 ) 3 b 4 6
1 N 3 4 0 1 1 6 4 2 0 Jd 2 Bl 2
4|10 4 g 3 N a7 113 Aq b q 2 1 q 8
El 3 31T 4119 (12 |18 |16 8 4 |13 3 9 9
3113 |16 | 14 )27 |17 |18 |26 |11 d {27 2 2 1.8

SAMPLES OF 60 SAMPLES OF 100

37 | 38 | 39 [ 40 | 41 | 42 | 43 44 | 46 [ 46 | 32 | 38 | 34 .| 86 86

12 {14 |11 .6 9 1 2.2 6 A 9 b 0 111 0
1113 N b | 1.0 2 q .6 3 4 3 | 2 A 0
.6 3 3 4 4 1 1 4 0 5 3 1 3 2 3

1.6 N 6 2 1 2 3 1 2 q 8 3 8 3 5

1.0 b 4 17 .0 4 1 |11 2.8
2 b 1 3 1 3 1 1 Bt 4 2 A 1 1 3
4 1 0 2 5 6 |16 Jd 0 3 8 B 9 4 4

1.0 | 21 |12 8 512 (16 |11 |28 a1 |18 1 8 1.0
6 8 2113 11|13 (10 9 1 |13 2 |10 3 .6 4
3 7 3 6 1|11 2 5 2 110 3 a 0 1 6
0 4 3 1 4 .6 .0 0 1 3 3 8 1 Jd 3
9 4 0 2 8 3 d |14 2 9 3 1 3 2 2
8 0 0 0111 8 8 |10 0 (12 9 3 2 |12 Jd

1.2 |- 1.0 .6 3 8119 a1 112 4 116 8 (12 8 8 1

21|25 |11 4 2| 82 17 (10 |17 2 |18 9 4 4




