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draw a curve of errors which, as a rule, will deviate very little from the original. All this,
however, holds good only of the curves of presumptive errors. With the actual ones we
cannot operate in this way, and the transition from the latter to the former seems in the
_meantime to depend on the eye's sense of beauty.

V. FUNCTIONAL LAWS OF ERRORS,

§ 17. Laws of errors may be represented in such a way that the frequency of
the results of repetitions is stated as a mathematical function of the number, or numbers,
expressing the results. This method only differs from that of curves of errors in the
circumstance that the curve which represents the errors has been replaced by its mathema-
tical fornisla; the relationship is so close that it is difficult, when we speak of these two
methods, {o.maintain a strict distinction between ﬁop.

In former works on the theory of observations the functional law -of errors is the
principal instrument. Its source.is mathematical speculation; we start from the properties
which are considered essential in ideally good observations. From these the formula for
the typical functional law of errors is deduced; and then it remains to determine how
to make computations with observations in order to obtain the most favourable or most
probable results.

Such investigations have been carried through with & high degree of refinement;
but it must be regretted that in this way the real state of things is constantly disregarded.
The study of the curves of actual errors and the functional forms of laws of actusl errors
have consequenily been too much neglected.

The representation of functional laws of errors, whether laws of actual errors or laws
of presumptive errors founded on these, must necessarily begin with a table of the results
of rapetitions, and be founded on interpolation of this table. We may here be content to
study the cases in which the arguments (i. e. the results of the repetitions) proceed by
constant differences, and the interpolated function, which gives the frequency of the
argument, is considered as the functional law of errors. Here the only difficulty we en-
counter is that we cannot directly employ the usual Newtonian formula of interpolation,
as this supposes that the function is an integral algebraic one, and gives infinite values
for infinite arguments, whether positive or négative, whereas here the frequency of these
infinite arguments must be == 0. We must therefore employ some artifice, and an obvious
one is to interpolate, not the frequency itself, y, but its reciprocal, L This, however, turns
out to be inapplicable; for %— will often become infinite for finite arguments, and will, at
any rate, increase much faster than any integral function of low degree.
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But, as we have already said, the interpolation generally succesds, when we apply
it to the logarithm of the frequency, assuming that
Logy = a +Betcat+ ... 4 ga®,
whery the function on the right side begins with the lowest powers of the argument z,
and ends with an even power whose coefficient g must be neyative. Without this latter
oondition the computed frequency,
y - 10-+h+¢t‘+...+n'" 1)

would again become infinitely great for & == - 0. That the observed frequency is often
= 0, and its logarithm — oo like L, does no harm. Of course we must leave out
these froquencies of the interpolation, or replace them by very small finite frequencies, &
few of which it may become necessary to select arbitrarily. As a rule it is possible to
sucoeed by this means. In order to represent a given law of actual errors in this way, we
must, acoording to the rule of interpolation, determine the coefficients a, b, ¢, ... g, whose
number must be at least as large as that of the various results of repetitions with which
we have to deal. This determination, of course, is & troublesome business.

Here also we may suppose that the lsw of presumptive errors is simpler than that
of the actusl errors. And though this, of course, does not imply that logy can be ex-
preased by & small nuinber of terms containing the lowest powers of », this supposition,
nevertheless, is 30 obviows that it must, st any rate, be tried before any other.

§ 18. Among these, the simplest case, namely that in which Log y is a function
of x of the second degree Logy = o4 be—aet,
gives us the typioal form for the functional law of errors, and for the curve of errors, or

with other constants
y - h‘%("'i:). - blO'”‘"'(':-“.)'. @
where b
. _»,+%+i.f.§+l_';3+... - 271828,

The fanction has therefore no other constants than those which may be interproted
4s unit for the frequencies A, and as sero s and unit s for the observed values; the
corresponding typioal curve of ervors has therefore in all essontials a fixed form.

The fanctional form of the typical law of errors has applications in mathematics
which are almest as important ss those of the exponential, logarithmic, and trigonometrical
fanctions. In the theory of o:servations its importance is so great that, though it has
been over-cetimated by some writers, and though many good observations show presumptive
88 well a8 actual laws. of errors that are not typical, yet every student must make himself
perfoctly familiar with its properties.
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Expanding the index we get
$ =\ U
' %(nﬂ) - o""i(f) . c-?"-a"';'(%) R 3)

80 that the general function resolves itself inta & product of three factors, the first of which
is constant, the second an ordinary exponential function, while the third remains a typical
functional law or errors. Long usage reduces this form to ¢—*; but this form cannot be
recommended. In the majority of its purely mathematical applications ¢~ is preferable,
unless (as in the whole theory of observations) the factor % in the index is to be preferred
on account of the resulting simplification of most of the derived formuls.

The differential coefficients of ¢~ ‘) with regard to » are

Dl_%(%). -— n"u"‘;'(':‘)'
D'c"%(%). - pi(at ——n’)o"';'(':")'
Dre “i(é)' - 0= (s® —3n%7) ™ "i(e).
D‘a“%(%). - nS(xt—Bnt. 26T 4-1.3n%) a"‘;’(%).
0 [ p— (&* —bnt.22% 4 3.5nz)e” HEJ
Deils) m (20— Bnt. 8 8. Bns. 809 —1.8. %) s~ 3(5)
The law of the numerical eoefficients (prodnctl of odd numbers and binomial

numbers) is obvious. The general expression of D'e™7 -) can be got from a comparison
of the coefficients to (—ms)’ of the two identical series for eqyation (3), one being the Taylor
series, the other the product of ¢ ?( ) and the two exponential series with m* and m as
srgunents. 1 cun also be induced from the differential equation
WDty 4 2DHo 4 (r+ 1) Drp = 0.
Inversely, we obtain for the products of the typical iaw of errors by powers of z

2p = —n'Dp

2 == w'Dip 4%

239 = — 0Dy — In'Dyp

z'p = w'D'p + 6n'D'p + Bn'p (®)

29 = — oD — 108° D3y — 158°Dp

Lo = 12D 4 1581 D'p 4 45n2Dp 4 15n%p

L)

1=\
¢ = 33,
the aumerical coefficients being the same as above (4). This proposition can be demon-
sirated by ihe identioal equation w—227+'p == — D(fp)+rar—'p.
By means of these formule every product of sny integral rational fumction by
8
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exponential functions and functional typical laws of errors can be reduced to the form
k k k
k.y—-E'Dy-{—-ﬁD’y—-—La’-D'y-}-.... ©)
where _Afe—my
g =€ N\ s/,
and thus they can easily be differentiated and integrated. Every quadrature of thix form
can be reduced to
_ 1('_:_'_')’ — L(.'f .'.!)’
fi@e = +f:(z)s" s da,
where f,(z) and f,(z) are integral rational functions;. thus a very large clasz of problems
can be solved numerically by aid -l the following table of the typical or exponential
functional law of errors, y = e together with the table of its integral Sqd:
(]

—t 4 @y dy) o Cp g 1 27 Ty dY
‘9“‘”’ 2 RABD e AR D
00 000000 10000 0000 —100 00 8|24 12347 00661 —0136 021 04 0
01 008983 9960 — 100 — 99 -8 g | 26 129176 MY —~-110 B —~4 0
08 019867 9802 — 196 — 94 6 3 26 124163 ‘0340 — 089 20 -3 0
08 029566 9660 — 287 — 8T R 2| 27 120402 el — 011 16 —8 0
0¢ 038968 9231 — ‘369 — 78 10 o|28 12461 0198 -- 086 ‘14 —3 0
08 047983 ‘8825 — 441 — 66 18 1129 124864 0149 — 043 11 —~2 0
06 0Ge36 8363 — 601 — 63 13 1|39 19995 00III —00S3 0U9 —03 U3
01 1 — B B
064680 837 — 548 —, 4 14 041 1 o6z — 025 0 —2 0
08 079221 7261 — 681 — 26 14 0 34068 .
09 oo 66 — 60 3 13— | D2 Ve W o9 A -0
33 126210 0043 — 014 O ~1 O
10 085662 06065 —060T 000 12 —1
84 126247 0031 — 611 8 —1 O
11 091325 6461 — 601 ‘1 11 -2 3" 126278 02 — 008 02 —°1 o0
13 096408 4868 — 584 21 D -3 3¢ jor00n  gip — W6 V2 -1 O
18 1010867 4296 — 688 30 7 -2
25304 - 0 —0 0
14 106089 3763 — 626 86 b —2 871 o011 — 00k
38 126313 0007 — 03 01 —0 O
15 108685 BT — 4B1 Al 4 2o o0 L e 0l -0 0
16 111686 2180 — 446 43 3 -2 -
11 1i4161 9957 — 401 45 0 -1 40 125328 00008 —0001 001 — 5 ¢
18 11686 ‘1979 - ‘3566 ‘44 —1 -11 41 19633 0002 -~ 001 00
19 118138 1645 — ‘813 48 —2 —1] 42 125328 0001 — 001 00
20 11909 01353 —0271 41 —8 1 |43 12539 0001 — 000 00
®1 190858 1108 — 233 38 —8 -0 |44 125830 0000 — 000 OO0
2 121M8 0889 — ‘198 ‘34 —4 —0 |45 126331 0000 - 000 00
23 19943 0710 — 168 0 —4 ~0| > ¥ix 0000 —000 0 0 ¢
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Hero y, %2. %2 are, each of them, the same for positive and negative values
of z; the other columns of the table change signs with 2.
The intu-pohtions are easily worked out by means of Taylor's theorem:

Tero = 1+ L CH AT O O+ AR O+ )

and
(7o = (et 9 c iR igd o+ Ao+ m‘,%-m... ®

The typical form for the functional law of errors (2) shows that the frequency is
always positive, and that it arranges itself symmetrically about the value z == w, for which
the frequercy has its maximum value y ==A. For z «=m _|-» the frequency is y = A -0-60653.
The corresponding points in the curve of errors are the points of inflexion. The ares
between the curve of errors and the axis of abscissae, reckoned from the middle to 2 we m-{-n,
will be wh-0-85562; and as the whole ares from one sasymptote to the other is mhyFx
- nh . 250663, only nk.0-39769 of it falls outside either of the inflexions, consequently
not quite that sixth part (more exactly 16 per ct.) which is the foundstion of the rale,
given in §11, as to the limit between the great and small errors.

The above table shows how rapidly the function of the typical law of errors de-
creases toward zero. In almost all practical applications of the theory of observations
3" =0, if only s >> 5. Theoretically this superior assymptotical chanoh' of the function
is expressed iu the important theorem that, for s = o, not only ¢~ 7 iteell is = 0
but also all its diffevential coefficients; and that, farthermore, all products of this function
by every algebruic integral function and by every exponential function, and all the differentisl
quotients of these products, are equal to zero.

In consequence of this theorem, the integral S "$*ds = VEE oan be competed

as the sum of equidistant values of ¢ -3 multiplied by the interval of the srguments
without any correction. This simple method of computation is not quite corvect, the
underlying series for conversion of s sum into an integral being only semiconvergeat in
this case; for very large intervals the error can be easily stated, but as far as intervals
of one unit the numbers taken out of our table are not sufficient to show this error.

If the curve of errors is to give relative frequency directly, the total ares must be
1 = #AY2x; b consequently ought to be put = e~

Problem 1. Prove that every product of typicsl laws of errors in the fumctiensl
form — Ao~ +(*3), with the same independent variable 2. is, itself & typical law of arrors.
How db the constants A w, and » change in such s multiplication?

[
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Problem 2. How small are the frequencies ol errors exceeding 2, 3, or 1} times
the anean vtior, on the supposition of the typical law of errors?
teablem 3. o lind the values of the definite integrals
4 » 4 [x--m\?
8 = z'e"‘:'( .,) dx.

Awer: sy — 0 and s, = 1.3.5... (2 -— 1) n®+/2r.

~ 1. Nearly related to the typical or exponential law of errors in functional form
are the bhinomial functions, which are known from the coefficients of the terms of the a*
power of a binomial, regarded as a funclion of the number & of the term.

£ oe=s

n 0 1 2 3 4 5 6 1
0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 b 1

6 1 [ 15 20 16 6 1

1 1 1 21 35 35 21 1 1
] 1 8 28 56 70 56 28 R
9 1 9 36 84 126 126 84 36
10 1 w 46 12 20 252 210 120
11 1 11 656 165 330 462 465 330
12 1 12 66 20 495 92 94 792
13 1 13 | 2R 716 1287 1716 1716
14 1 14 91 364 1001 2008 3003 3482

For integral values of the argumen! the binomial funciion can-be computed directly
by the formula
; 1.2.3...n
Pule) = 1-2.3..2°1°2.3...(n—) B (n--2) l 0
B0 e+ 1) | @
= 1.2..% :

When the binomial numbers for » are known, those for » -+ 1 are easily found
by the formula
Bass(®) = Bu (@) + Bule—1). (10)

By substitution .according to (9) we easily demonstrate the proposition that, for
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any integral values of , r, and ¢
Balt) Bei(r) = Bulr) - furlt) s at

which meuns that, when the trinomial (a + b + c)* is developed, it is indifferent whether
we consider it to be ((a+44)+c)* or (a+ (b + o)~

For fractional values of the argument z, the binomial function Fu(#) can be taken
in an infinity of different ways, for instance by

sin
By(2) = ”‘!’1‘3 .
This formuls results from s direct application of Lagrange's method of interpolation, and
leads by (10) to the more general formula
. 1.2...» sinxz

—-— d —————y 2
B = e =5 =z (13

This species of binomial function may be considered the simplest possible, and has
some importance in pure mathematics; but ss an expression of frequencies of observed
values, or as a law of errors, it is inadmiuiblo.bmnu. for £ > or z negalive, it gives
negative values alternating with positive values periodically.

This, however, may be .remedied. As S, (z) has no other values than 0 and 1,
when z is integral, we can put for instance

3 L]
b = ()

R

by (10) then . . - 3
sin® xz
ﬂn(ﬂ’)—(?-l-(;:r)’.)";r' 3
1 2 1 ‘8in? rz
Ao~ (gt gt )

Here the values of the binomial function are constaptly positivo or 0. But this
form is cumbersome; and although for xw= oo the function and its principal coefficients
are == 0, this property is lost hore, when we multiply by integral algebraic or by exponen-
tial functions.

These unfavourable circumstances detract greatly from the merits of the binomial
functions as expressions for continuous laws of errors.

When, on the contrary, the observations -correspond only to integral values of the
argument, the origina! binomial fanctions are most valuable means for treating them. That
Bu(z) =0, if z>n or negative, is then of great importance. But this case must be referred
to special investigations.

§ 20. To represent non-typical laws of errors in functionsl form we have mow
the choice between st Teast’ three different plans:




1) the formula (1) or
Y - Pl ah g e ST
%) the products of integral algebraic functions by a typical function or (6).

k k -k _ S r—my?
y—k,¢-—~if-D¢+-r_i'-D'¢—-E'D'p+.... y-—e,!(‘n.).

8) a sum of several typical functions

! g [s—mg\®
y = it (14)
This account of the more prominent among the functional -forms,. which we have st our
disposal for tha representation of laws of errors, may prove that we certainly possess good
instruments, by means of which we can even in more than one form find general series
sdapted for the representation of laws of errors. We do not want forms for the wseries,
required in-theoretical speculations upon laws ‘of errors; nor is the-exact representation of
the ‘actual frequencies more than reasonably difficult. If anything, we have too many forms

and too few means of estimating their value correctly.

As to the important transition from Taws of actusl errors $o.-those of presumptive
errors, the functional form of the Jaw leaves us quite uncertain. The convergency of the
series is too irregular, and cannot in the least be foreseen.

We ask in vain for a fixed rule, by which we can select the most important and
trustworthy forms with limited numbers of constants, to be used in predictions. And even
# we should have decided to use only the kypical form by the laws of presumptive errors,
we still lack & method by which we can compute its constants. The answer, that the
“adjustment” of the law of errors must be made by the “method of least squares”, may
ot be given till we have attained s satisfactory proof of that method; and the attempts
that have been made to deduce it by speculations on the functional laws of .errors must,
I think, all be regarded ag failures.

VL. LAWS OF ERRORS
EXPRESSED BY SYMMETRICAL FUNCTIONS.

§ 21. All constants in a functional law of errors, every general property of a
ourve of errors: or, generslly, of a 1aw of numerical esrors, must 'be symmetrical functions
of the several results of the repetitions, .i.-e. fanctions which are not altered by inter-
changing two or more of the results. For, as all the values found by the repefitions
correspond fo -the same eesential circumstances, ‘no interchanging' whatever can bave any
inflaemos on the law of errors. Conversely, any symmetrical function of the values of the



