THE RELATION BETWEEN THE MEANS AND VARIANCES, MEANS SQUARED AND VARIANCES IN SAMPLES FROM COMBINATIONS OF NORMAL POPULATIONS

 $B\gamma$

G. A. BAKER

The distributions of the means and variances of samples from the combinations of normal populations have been discussed in a previous paper.¹ It is known that if the sampled population is not normal the means and variances of samples are not independent.

The present discussion aims to give some idea of the relation between the means and the variances, means squared and variances of samples from a population that is the combination of normal populations. To this end the case of samples of two from such populations is rather completely investigated. Also empirical random sampling results for two special populations are presented.

Suppose that a population is represented by

(1)
$$f(x) = \frac{1}{1+k} \left[\frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} + \frac{k}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\frac{(x-m)^2}{\sigma^2}} \right].$$

¹"Random Sampling from Non-Homogeneous Populations," Metron, Vol. VIII, No. 3 (1930), pp. 1-21.

If a method used by Karl Pearson¹ is followed, the probability of

$$x_i$$
 in dx_i is $f(x_i)dx_i$, x_i in dx_i is $f(x_i)dx_i$

and the probability of the concurrence of these two events is

$$(2) f(x_i) f(x_j) dx_i dx_j$$

which may be written

$$\frac{1}{(1+k)^2 2\pi} \left[e^{-\frac{1}{2} \left[x_i^2 + x_2^2 \right] + \frac{k^2}{\sigma^2} e^{-\frac{1}{2\sigma^2} \left[(x_i - m)^2 + (x_2 - m)^2 \right]} \right]$$

(3)

$$+\frac{k}{\sigma}\left\{e^{-\frac{1}{2}\left[x_{i}^{2}+\frac{(x_{2}-m)^{2}}{\sigma^{2}}+e^{-\frac{1}{2}\left[x_{2}^{2}+\frac{(x_{i}-m)^{2}}{\sigma^{2}}\right]}\right\}\right]dx_{i}dx_{2}.$$

Now

$$x = \frac{1}{2}(x_1 + x_2)$$

$$\sum_{i=1}^{2} \left[(x_1 - x)^2 + (x_2 - x)^2 \right].$$

Whence

(4)
$$\begin{cases} x_1 = -\sum + x \\ x_2 = \sum + x \end{cases}$$
 Also dx_1, dx_2 may be replaced² by

¹Appendix to Papers by "Student" and R. A. Fisher, Biometrika, Vol. XIX (1925), p. 522.

²R. A. Fisher: "Frequency Distribution of the Values of the Correlation Coefficient in Samples from an Indefinitely Large Population," Biometrika, Vol. X (1915), p. 507.

$$(5) c d\Sigma dx$$

In virtue of (5), (4) and (3), (6) is obtained.

$$\frac{1}{(1+k)^2 2\pi} \left[e^{-\frac{1}{2} \left[2x^2 + 2\Sigma^2 \right]} + \frac{k^2}{\sigma^2} e^{-\frac{1}{2}\sigma^2 \left[2\Sigma^2 + 2(x-m)^2 \right]} \right]$$

(6)
$$+\frac{k}{\sigma} \left\{ e^{-\frac{1}{2} \left[\left(-\Sigma + x \right)^2 + \left(\underline{\Sigma + x - m} \right)^2 \right]} + e^{-\frac{1}{2} \left[\left(\Sigma + x \right)^2 + \left(-\underline{\Sigma + x - m} \right)^2 \right]} \right\} \right].$$

This is the correlation surface for the means and standard deviations of samples of two drawn from (1). To get the correlation surface of the means and variances write

$$\Sigma^2 = u$$

$$d\Sigma = \frac{du}{2\sqrt{u}}$$

Then

$$F(x,u) = \frac{1}{(1+k)^{2} 2\pi} \left[\frac{e^{-\frac{1}{2} \left[2x^{2} + 2u \right]} k^{2}}{2\sqrt{u}} + \frac{1}{2\sqrt{u}\sigma^{2}} e^{-\frac{1}{2} \left[2u + 2(x \cdot m)^{2} \right]}}{\sqrt{2}} + \frac{k}{\sigma} \left\{ \frac{e^{-\frac{1}{2} \left[(\sqrt{u} + x)^{2} + (-\sqrt{u} + x - m)^{2} \right]}}{\sqrt{2}} + \frac{e^{-\frac{1}{2} \left[(-\sqrt{u} + x)^{2} + (\sqrt{u} + x - m)^{2} \right]}}{\sqrt{2}} \right\} \right]$$

is the desired surface.

The locus of mean u's for given x's is

(8)
$$e^{-\frac{x^{2}}{2} + k^{2}\sigma e^{-\frac{(x-m)^{2}}{\sigma^{2}} + \frac{4\sqrt{2}k}{(\sigma^{2}+1)^{\frac{3}{2}}}} e^{-\frac{2(x-\frac{m}{2})^{2}}{\sigma^{2}+1} \left[\sigma^{2} + \frac{\left\{(\sigma^{2}-1)x+m\right\}^{2}}{\sigma^{2}+1}\right]} e^{-\frac{x^{2}}{2} + \frac{k^{2}}{\sigma^{2}} e^{-\frac{(x-m)^{2}}{\sigma^{2}} + \frac{2\sqrt{2}k}{\sqrt{\sigma^{2}+1}}} e^{-\frac{2(x-\frac{m}{2})^{2}}{\sigma^{2}+1}}$$

The locus of the mean x 's for given u 's is

$$\frac{mk_{e}^{2} - \frac{u}{\sigma^{2}} + \frac{212k}{\sqrt{\sigma^{2}+1}} \left[\left\{ (\sigma^{2}-1)V\bar{u} + m \right\} e^{-\frac{2(f\bar{u} - \frac{m}{2})^{2}}{\sigma^{2}+1} - \left\{ (\sigma^{2}-1)f\bar{u} - m \right\} e^{-\frac{2(f\bar{u} - \frac{m}{2})^{2}}{\sigma^{2}+1}} \right]}{e^{-\frac{u}{\sigma^{2}} + \frac{u}{\sigma^{2}} + \frac{2fZk}{\sqrt{\sigma^{2}+1}}} \left\{ e^{-\frac{2(f\bar{u} - \frac{m}{2})^{2}}{\sigma^{2}+1} + e^{-\frac{2(-f\bar{u} - \frac{m}{2})^{2}}{\sigma^{2}+1}} \right\}}$$

The correlation surface for the means squared (= Z) and variances is

$$\psi(u, z) = \frac{1}{(1+k)^{2} 2\pi} \left[\frac{e}{4 \pi u f z} + \frac{k^{2} e}{\sigma^{2} 4 f u f z} \right]$$

$$+ \frac{k}{\sigma} \left\{ \frac{e}{4 \pi u f z} + \frac{e}{\sigma^{2} 4 f u f z} \right]$$

$$+ \frac{k}{\sigma} \left\{ \frac{e}{4 \pi u f z} \right\}^{2} + \frac{(f u + f z - m)^{2}}{\sigma^{2}} \right]$$

$$+ \frac{e}{4 f u f z} \left[(f u + f z)^{2} + (f u + f z - m)^{2} \right]$$

The locus of the mean u 's for given z 's is

$$e^{-\frac{z}{4}} e^{-\frac{(\overline{z}-m)^{2}}{\sigma^{2}}} + \frac{2(\overline{z}-\frac{m}{2})^{2}}{(\sigma^{2}+1)^{\frac{3}{2}}} e^{-\frac{z(\overline{z}-\frac{m}{2})^{2}}{\sigma^{2}+1}} e^{-\frac{z}{4}} e^{-\frac{z}{$$

The locus of the mean z's for given u's is

$$\frac{z}{e^{-u} + \frac{k^2 e^{-\sigma^2}}{\sigma^2} + \frac{2 \sqrt{2} k}{\sqrt{\sigma^2 + 1}} \left\{ e^{-\frac{2(\sqrt{u} - \frac{m}{2})^2}{\sigma^2 - 1} + e^{-\frac{2(\sqrt{u} + \frac{m}{2})^2}{\sigma^2 + 1}} \right\}}$$
multiplied by
$$\left[e^{-u} + \frac{k^2}{\sigma} (\sigma^2 + m^2) e^{-\frac{u}{\sigma^2}} + \frac{4 \sqrt{2} k}{(\sigma^2 + 1)^2} \left\{ (\sigma^2 + \frac{(\sigma^2 + 1)\sqrt{m}}{\sigma^2 + 1}) e^{-\frac{2(\sqrt{u} + \frac{m}{2})^2}{\sigma^2 + 1}} + (\sigma^2 + \frac{(\sigma^2 + 1)\sqrt{u} + m^2}{\sigma^2 + 1}) e^{-\frac{2(\sqrt{u} + \frac{m}{2})^2}{\sigma^2 + 1}} \right\} + \left(\sigma^2 + \frac{(\sigma^2 + 1)\sqrt{u} + m^2}{\sigma^2 + 1} \right) e^{-\frac{2(\sqrt{u} + \frac{m}{2})^2}{\sigma^2 + 1}} \right\}$$

By expanding the denominators of (8), (9), (11), and (12) by the multinomial theorem, it can be shown that each of these loci is essentially parabolic, $\sigma^2 \neq 0$. They are subject to an exponential influence at the beginning of the range of the independent variable, which influence rapidly diminishes as the independent variable takes on higher values.

The probability relations in general between means and variances, means squared and variances will be expected to approximate those for the case of samples of two, because of the fol-

lowing considerations. Suppose that n (the number in the sample) is large. When a large proportion of the sample comes from the first component, the first term of (7) with 2 in the numerator of the exponent replaced by 77 and with $u^{-\frac{1}{2}}$ replaced by $u^{\frac{n-3}{2}}$ will be an approximation to the surface of the means and variances. Similarly, when a large proportion of the sample comes from the second component, the second term of (7) with 2 in the numerator of the exponent replaced by π and with $u^{-\frac{1}{2}}$ replaced by $u^{\frac{n-3}{2}}$ will be an approximation to the surface of the means and variances. When about equal proportions of the sample come from each component, the last term of (7) with in the numerator of each exponent replaced by $\frac{\eta}{2}$ and with $u^{-\frac{1}{2}}$ replaced by $u^{\frac{n-3}{2}}$ will be an approximation to the surface of the means and variances. Or, all together, (7) with the mentioned changes in the exponents of the terms, with proper weighting of the terms, and with $u^{\frac{1}{2}}$ replaced by $u^{\frac{\eta_{1}}{2}}$ is a proportionate approximation to the distribution of the means and variances of samples drawn from a population represented by (1). Further, increasing 77 will not influence relations (8), (9), (11), and (12) as approximations for the general case except the exponential term, if it is assumed that the denominators are expanded and then multiplied by the numerators, for $\frac{1}{27}$ occurs to the same power in the numerators and denominators.

Note: The effect of k and of the binomial coefficients is roughly as follows. If the n+1 terms denoting s from the first component of (1) and n-s from the second component are divided into thirds, then, if l, l_2 , l_3 are the exponents of k in the middle terms, or approximately, since n is large and since only a proportionate expression is desired $l_1=0$, $l_2=\frac{n}{3}$ or the exponents of k of the middle terms of the three sections above are $\frac{n}{3}$ times the exponents of k in (7). The effect of increasing n because of the binomial coefficients is to weight the middle section of the possible surfaces to a much greater extent than the extreme sections, so that with n very large the last term of (7) with 2 replaced by n becomes an approximation to the desired surface.

From (8), (9), (11), and (12) it is clear that the parameters of the sampled population have great influence on the regression relations considered. It should be borne in mind in this connection that many flattened and skewed, as well as bimodal, distributions can be adequately represented by combinations of normal populations. Also, results (8), (9), (11), and (12) can be extended to the sums and differences of any number of normal curves, subject to the condition that the resultant is always positive.

In 1925, Dr. Neyman¹ gave the correlation coefficient between the deviations of the means of samples from the mean of the sampled population and the variances of these samples for samples of n drawn at random from an infinite uni-variate population in terms of the betas of the sampled population as

(13)
$$\rho' = \frac{\sqrt{n-1} \sqrt{B_1}}{\sqrt{(n-1)\beta_2^2 - n + 3}}.$$

Similarly, the correlation coefficient between the deviations squared of the means of samples from the mean of the sampled population and the variances is

(14)
$$R = \frac{\sqrt{n-1} (\beta_2 - 3)}{\sqrt{(\beta_2 + 2n - 3)[(n-1)\beta_2 - n + 3]}}.$$

Under certain very special conditions the statement of ρ' and R' may give an adequate idea of the regression relation between the means and variances, means squared and variances of samples from a population represented by (1). In general the mere statement of these coefficients will not give any useful

²J. Splawa-Neyman: "Contributions to the Theory of Small Samples Drawn from a Finite Population," Biometrika, Vol. XVII (1925), pp. 472-479.

notion of the actual probability relations. This is true because:
(a) the regression relations between means and variances, means squared and variances of samples from a population represented by (1) are essentially parabolic, as shown for samples of two and as seems probable for larger samples; (b) the frequency arrays may vary markedly in dispersion, in skewness, and in other characteristics.

To illustrate these remarks, samples of four were drawn from two special populations by throwing dice.

Suppose that a population is represented by

(15)
$$f(x) = \frac{1}{1+k} \left[\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x+m_1)^2} + \frac{k}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(x-m_2)^2} \right]$$

The first four moments of f(x) about its mean are

$$\begin{split} & u_{o} = I, \\ & u_{i} = \frac{\left(-m_{i} + k m_{2}\right)}{I + k} = 0, \\ & u_{2} = \frac{\left[I + m_{i}^{2} + k(\sigma^{2} + m_{2}^{2})\right]}{I + k}, \\ & u_{3} = \frac{-3 m_{i} - m_{i}^{3} + k(3 m_{2} \sigma^{2} + m_{2}^{3})}{I + k}, \\ & u_{4} = \frac{3 + 6 m_{i}^{2} + m_{i}^{4} + k(3 \sigma^{4} + 6 m_{2}^{2} \sigma^{2} + m_{2}^{4})}{I + k}. \end{split}$$

CHART A

Correlation Table Showing the Relation Between the Means and Variances of Samples of Four from Population I

			T'tls	-	7	0	53	65	93	115	153	184	135	118	65	45	13	7	4		1038
	240		-1							_											-
	225										_										2
		2										7		_							4
	195 2		\dashv										_	_							4
		۔						_	-	_	7			_	_				·····		7
	118	\$	=											 -							
	165	ರ	<u>8</u>							~	~	rv.	7								14
	150	\$	165					-		7	m	7	က	z.							21
es	135	\$	150						0	7	Ŋ	10	7	-	-						28
Sampl	120	\$	135						-	4	∞	∞	7	9	4	2					40
to sa	105	ę	120					7	7	2	14	82	13	2	9	7					86
Variances of Samples		ę ę					7	9	H	'n	32	12	71	17	8	-		******			126
	7.5	\$	8			***************************************	2	2	7	12	16	24	18	18	6	7					110
	99	\$	75					7	10	25	20	21	16	12	14	6	-	_	_		136
	45	\$	8			7	4	S	23	12	18	34	14	18	8	8					135
	30	to	45	-		-	0	20	91	12	81	7	14	∞	12	6	8	-	_		113
	15	ç	30			_	8	15	13	13	∞	4	12	17	9	9	9	-	_		112
	0	\$	15		_	S	13	П	4	12	4	S	S	7	9		<u>س</u>	4	-		87
		-		15 to 17	3 to 15	11 to 13	9 to 11	7 to 9	5 to 7	3 to 5	1 to 3	- 1 to 1	- 3 to - 1	- 5 to - 3	- 7 to - 5	- 9 to - 7	-11 to - 9	-13 to -11	-15 to -13	-17 to -13	Totals
	<u> </u>				s	214	шр		(o	suz	o y	v ·	!_			<u> </u>	÷		<u>-</u> -	·	<u></u>
l																					

Whence

(16)
$$\beta_{i} = \frac{(1+k)[-3m_{i}-m_{i}^{3}+k(3m_{2}\sigma^{2}+m_{2}^{3})]}{[1+m_{i}^{2}+k(\sigma^{2}+m_{2}^{2})]^{3}},$$

(17)
$$\beta_{2} = \frac{(1+k)[3+6m_{1}^{2}+m_{1}^{4}+k(3\sigma^{4}+6m_{2}^{2}\sigma^{2}+m_{2}^{4})]}{[1+m_{1}^{2}+k(\sigma^{2}+m_{2}^{2})]^{2}}.$$

Thus, for any special population of the form (15), R' and Q' can be easily calculated.

Samples of four were drawn from a population approximately represented by

(18)
$$f_{*}(x) = 648 \left[\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x+1.7)^{2}} + \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-1.7)^{2}} \right]$$

The actual sampled population is shown in Chart A and is hereinafter called Population I.

Table I shows the distribution of 1038 samples of four drawn from Population I with respect to the observed values of the means and the variances. The arrays for constant values of the variances are at first distinctly bimodal, gradually becoming unimodal. Chart I shows the means of arrays of Table I with the regression lines as calculated without correction for groupings. It is apparent that the locus of the mean variances for a given value of the means diverges a great deal from a straight line. This regression relation looks as though it was a normal curve,

which is what would be expected from (8) with $\sigma^2 - l = 0$. The theoretical and actual correlation coefficients for this and three subsequent tables are compared in Table V and the constants of the marginal distributions of Tables I to IV are presented in Table VI.

If the deviations of the means of the samples of Table I from the mean of Population I are squared, Table II results. Chart II shows the means of arrays and regression lines of Table II. The regression lines are very poor fits to the means of the arrays which are, apparently, exponential loci.

Table III shows the distribution of 1058 samples of four drawn from a population approximately represented by

(19)
$$f_2(x) = 972 \left[\frac{1}{2\pi} e^{-\frac{1}{2}(x+8)^2} + \frac{1}{3\sqrt{2\pi}} e^{-\frac{1}{2}(x-2.4)^2} \right]$$

with respect to the observed values of the means and variances of the samples. The actual sampled population is presented in Chart B and is hereinafter called Population II. Chart III shows the means of arrays and regression lines of Table III. This chart resembles Chart I in that the locus of the mean variances for given values of the means is so obviously non-linear. Also, a glance at Table III is sufficient to see that the arrays vary markedly in skewness.

Table IV shows the relation between the means squared and variances of samples of four from Population II. Chart IV shows the means of arrays and regression lines for Table IV. In this case the regression relations seem to be fairly near linear, and the frequency distributions of the arrays do not change strikingly.

CHART I

The Means of Arrays and Regression Lines of the Means and Variances of Samples from Population I

TABLE II

Correlation Table Showing the Relation Between the Means Squared and Variances of Samples of Four from Population I

- 1			T'Is	84 86 87 87 87 87 87 87 87 87 87 87 87 87 87		1038
Ī	240	to	255	-		1
	225	ಧ	240	2		2
	210	\$	225	m		4
Ì	195	ţ	210	00		4
	180	\$	195	20 H H		7
	165	\$	180	10 4		14
	150	ţ	165	12 8		71
ples	135	ţ	150	25 8 8		78
Samples	120	ţ	135	N 0 0 0 0 0 0		4
Variances of	105	ţ	120	22. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		88
Varian	06	to	105	88 411 20 20 11 11		126
	7.5	\$	8	51 19 2 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		110
	09	\$	75	25 27 27 27 27 27 27 27 27 27 27 27 27 27		136
	45	\$	8	28121200 742 75 1 ·	٦	135
	30	ಧ	45	2010 1111111111111111111111111111111111		113
	15	t c	30	223 0 0 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2		112
	0	\$	15	13 77 77 77 77 77 78 78 78 78 78 78 78 78		87
				0 to 10 20 to 20 20 to 20 30 to 40 30 to 40 50 to 50 60 to 70 60 to 70 60 to 10 100 to 110 110 to 120 110 to 130 110 to 1	to 260	l'otals
				espland to beroupl enost.	250 to 2	Tot

CHART II

The Means of Arrays and Regression Lines of the Means Squared and Variances of Samples from Population I

NOTE: The last thirteen class intervals of the means squared are grouped into one group.

TABLE III
Correlation Table Showing the Relation Between the Means and
Variances of Samples of Four from Population II

	T'Is	2 3 4 4 4 183 121 173 182 152 8 5 3 4 4 4 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1058									
	240 to 255											
	225 to 240	T T	2									
	210 to 225	д дп	3									
	195 to 210											
	180 to 195	pad pad sad	4									
	165 to 180	142 84	11									
	150 to 165	2004	17									
es	135 to 150	4000-10	23									
Samp	120 to 135	128881	36									
Variances of Samples	105 120	14400784 1	4									
arianc	8 c t 105	10 00 7 7 11 11	59									
4	K 8 8	10 12 22 22 13 14 18	93									
	8 2 %	5 6 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	103									
	24 5 8	4 7 8 2 2 2 2 7	129									
	30 to	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	156									
	15 to 30	2 2 2 2 2 2 3 3 5 2 5 2 1 1 1 1 1 2 2 3 5 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	172									
	0 to 15	1 2 2 2 4 4 4 5 5 9 5 9 5 9 5 9 9 9 9 9 9 9 9 9	206									
		15 to 17 13 to 15 9 to 11 7 to 9 5 to 7 3 to 5 10 1 10 1 10 2 - 5 to - 3 - 7 to - 5 - 9 to - 7 - 11 to - 9 - 11 to - 9 - 11 to - 9 - 7 to - 5 - 7 to - 5 - 7 to - 5 - 7 to - 5 - 10 - 7 - 11 to - 9 - 7 to - 5 - 7 to - 7 to - 5 - 7 to - 7 to - 5 - 7 to - 7 to - 7 to - 5 - 7 to - 7 to - 7 to - 7 to - 5 - 7 to - 7	Totals									
	•	solymos to snoom										

CHART III

The Means of Arrays and Regression Lines of the Means and
Variances of Samples from Population II

Correlation Table Showing the Relation Between the Means Squared and Variances of Samples of Four from Population II TABLE IV

							21			11.1											33
			T'Is	199	172	96	Ç	3 8	3 5	1 5	3, 5	۰ ،	1 0	3 0	۰ ،	٠,	₹	-	٠, د	4	1058
	240	ç	255																		
	225	to	240	2																	2
	210	ţ	225	2		-	•						•								٤.
	195	\$	210															-		-,	
	180	ę	193	4						-	1										4
	165	\$	180	5	7	۳.	-	1													=
	150	\$	165	12	8	2	0														12
les	135	to	150	13	Ŋ		7	7	-								,				23
Samp	120	to	135	19	א	7	-	8	_							-					38
Variances of Samples	105	t c	120	24	7	က	2	3	n	_									-		4
ariano	96	to	105	46	5	5	**	-					_								55
14	75	to	8	29	12	9	7	c	7	-											93
	8	to	75	89	17	S	9	-	7	7	2										103
	45	ę Ç	8	68	71	15	7	2		-											133
	30	9	45	93	24	7	14	6	3	7				7	-						156
	15	- -	30	101	35	16	6	4	3	-,	_										172
	0	\$	15	117	8	92	10	ະດ	9	3		_						-	_		506
												120 to 135	135 to 150	150 to 165	165 to 180	180 to 195	195 to 210	210 to 225	225 to 240	240 to 255	Totals 2

CHART IV

The Means of Arrays and Regression Lines of the Means Squared and Variances of Samples from Population II

TABLE V

Correlation Coefficients of Tables I-IV

	Correlation	-Coefficient
Number of Table	Theoretical	Actual ¹
I II IV	.00 34 .40 07	05 37 .37 05

TABLE VI

Constants of the Marginal Distributions of Tables I-IV in Terms of Class Intervals

Marginal Distribution	Mean	Standard Deviation
Means of Samples from Population I	.2522	2.467
Variances of Samples from Population I	4.8903	2.900
Means Squared of Samples from Population I	3.591 ³	3.203
Means of Samples from Population II	.07	2.237
Variances of Samples from Population II	3.570 ³	2.854
Means Squared of Samples from Population II	1.408³	1.744

¹Calculated without corrections for grouping.

²Is so far from zero because of the groupings employed. Many means were exactly odd integers. These were all put forward into higher classes, making the calculated mean too large.

³Origin taken at the beginning of the range.

From the results for the case of samples of two and from the results of empirical sampling, it seems clear that the simplest regression relation that is generally applicable to the means and variances, means squared and variances, of samples from populations which are the combinations of normal populations is parabolic. For small samples and for certain values of the parameters of the sampled population the regression relations may involve exponential terms that are quite important. As the size of the samples increases, it is expected that this exponential term will decrease in influence. It seems plausible that even with large samples the regression relation of means and variances, means squared and variances will remain essentially parabolic. It is not expected that the determination of a good approximation to the regression relations will serve to give an adequate notion of the probability relations of the means and variances, means squared and variances of samples from a population represented by (1), because the arrays may vary in number of modes, in skewness, in dispersion, and in other characteristics. For instance, surface (7) may be trimodal so that arrays may be bimodal or unimodal. and in such a case the arrays must vary markedly. Surfaces (7) and (10) with 2 replaced by η and with the terms suitably weighted are valuable approximations to the probability relations of the means and variances, means squared and variances of samples drawn from a population represented by (1).

J. A. Baker