THE RELATION BETWEEN THE MEANS

AND VARIANCES, MEANS SQUARED AND

VARIANCES IN SAMPLES FROM COMBINA-
TIONS OF NORMAL POPULATIONS

By

G. A. BAkEr

The distributions of the means and variances of samples
from the combinations of normal populations have been discussed
in a previous paper.! It is known that if the sampled population
is not normal the means and variances of samples are not
independent.

The present discussion aims to give some idea of the relation
between the means and the variances, means squared and vari-
ances of samples from a population that is the combination of
normal populations. To this end the case of samples of two from
such populations is rather completely investigated. Also empir-
ical random sampling results for two special populations are pre-
sented.

Suppose that a population is represented by

~Lx? - -m)°
) fla)= g [% s A J

“Random Sampling from Non-Homogeneous Populations,” Metron, Vol.
VIII, No. 3 (1930), pp. 1-21.
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334 RELATION BETWEEN MEANS AND VARIANCES

If a method used by Karl Pearson! is followed, the prob-
ability of
x, in dx, is flx,)dx, ,

X, in dog,is flx,) dx,

and the probability of the concurrence of these two events is
) Flx,) f (x,)dx, da,

which may be written

e
L 2 l:e_é [J.’,"'a-xﬂ + % e ‘20'2 [(xr"’l)e*(xe~m 2J
g

(I+k)em

(3)
( é[‘re‘g%;"‘? “é [xe* G ]}] dzdx,

Now

L =5(X,+X,)

Z2=4 [( x,-2) % ('.re-.r)a] .
Whence
{x, =-2 +x
4
) =X+ -

Also  d, dx, may be replaced® by

1Appendix to Papers by “Student” and R. A. Fisher, Biometrika, Vol. XIX
(1925), p. 522.

2R. A. Fisher: “Frequency Distribution of the Values of the Correlation
Coefficient in Samples from an Indefinitely Large Population,” Biometrika,
Vol. X (1915), p. 507,
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(5) cdZ dx

In virtue of (5), (4) and (3), (6) is obtained.
i [ Hetand gy teelentatein]
(1+k)em i

2
vk fe 4 [Czrx Ergrm))
g

~Llex )24(-2:4.x—m)a
ve $[@= =g ]}]

This is the correlation surface for the means and standard
deviations of samples of two drawn from (1). To get the corre-
tation surface of the means and variances write

Zé=y
dau
az = 0
Then
'é[z.z +2u] s }!;E[Zui-,.?/xmf]
Flr, ) (/*k)‘en[zr ozt €
é-[(f“*x)ﬂ( E*I- )_]
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is the desired surface.
The locus of mean w’s for given x's is

-lx-m)? -2(x- Q)a 2
- == e 2d (02-)x+m

e'r+k20'e g 4-4_—@ 02“/ {62_‘_ {—2—)—-——} ]

U= (a?47)% a?s
(8) m,2 )

2 -2(x-7)

XL KR ERY 2vZk T EiT

g 24/

The locus of the mean x ’s for given u ’s is

me wea
L2 -2(f- %) -efa+ z)
i e s s il
(9= 2 77,2 -
afa-7)° . elfa- )
e-‘ﬁé’e'é—‘gem {,_; —(—,T,?,'-*e rey) }
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The correlation surface for the means squared ( = & ) and
variances is

_é Ezz+2u] 2 }§2[2u+2{f§.—m)2]
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The locus of the mean « ’s for given =’s is

-2(rz- Z)?
e +k e L—Tl '4‘E"(—5 ia*?’[da {(E)rz+m l]

Yozen) ¥ o2+/
(11)u= —
-(_1_2_) -2(ri-7)
kz a2k
e -;- ‘ﬁ: e oe+l

The locus of the mean & ’s for given «’s is

Z= /

- % -2z - —a(/a:.;- ZZ )2
-4 ke 72 o 2
e +57— *m{ —% -2y }

(12) multiplied by

—it A2 -4
[e +a,k—(a'?4m2)e 4

m.2
2k [, k) 202 2)
gZ;/)g{( 2 )

m\2
(oxnlasni ‘_mi_é‘_lﬂ

+ (” + o4y )e. 2wl

By expanding the denominators of (8), (9), (11), and (12)
by the multinomial theorem, it can be shown that each of these
loci is essentially parabolic, ¢2/ # 0. They are subject to an
exponential influence at the beginning of the range of the inde-
pendent variable, which influence rapidly diminishes as the inde-
pendent variable takes on higher values.

The probability relations in general between means and vari-
ances, means squared and variances will be expected. to approx-
imate those for the case of samples of two, because of the fol-
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lowing considerations. Suppose that »n (the number in the
sample) is large.! When a large proportion of the sample comes
from the first component, the first term of (7) w1th 2 in the
numerator of the exponent replaced by 77 and with w L replaced
by w 2" will be an approximation to the surface of the means
and variances, Similarly, when a large proportion of the sample
comes from the second component, the second term of (7) witll 2
in the numerator of the exponent replaced by 7z and with « €
replaced by ce will be an approximation to the surface of
the means and variances. When about equal proportions of the
sample come from each component, the last term of (7) with 3
in the numerator (_)5 each exponent replaced by g and with « 2
replaced by « "2 will be an approximation to the surface of
the means and variances. Or, all together, (7) with the
mentioned changes- in the exponents_ gf the terms, w1tf£1’_3)roper
weighting of the terms, and with «& € replaced by « is a
proportionate approximation to the distribution of the means and
variances of samples drawn from a population represented by
(1). Further, increasing 77 will not influence relations (8), (9),
(11), and (12) as approximations for the general case except
the exponential term, if it is assumed that the denominators are
expanded and then multiplied by the numerators, for ,‘7" occurs to
the same power in the numerators and denominators.

INote: The effect of & and of the binomial coefficients is roughly as fol-
lows. I{ the 27+1 terms denoting S from the first component of (1)
and 7-s from the second component are divided into thirds, then, if
£, , 4, , &, are the exponents of kK in the mxddle terms,

A £,= 25

or approxxmateﬁy, since 77 is large and sirice only a proportionate expression

is desired J a 2= 7 Ly= €7

or the exponents of & of the middle terms of the three sections above
n

are ¥ times the exponents of k& in (7). The effect of increasing ry be-

cause of the binomial coefficients is to weight the middle section of the

possible surfaces to a much greater extent than the extreme sections, sc

that with 772 very large the last term of (7) with 2 replaced by 2

becomes an approximation to the desired surface.



G. 4. BAKER 339

From (8), (9), (11), and (12) it is clear that the par-
ameters of the sampled population have great influence on the
regression relations considered. It should be borne in mind in
this connection that many flattened and skewed, as well as bi-
modal, distributions can be adequately represented by combina-
tions of normal populations. Also, results (8), (9), (11), and
(12) can be extended to the sums and differences of any number
of normal curves, subject to the condition that the resultant is
always positive.

In 1925, Dr. Neyman! gave the correlation coefficient be-
tween the deviations of the means of samples from the mean of
the sampled population and the variances of these samples for
samples of 7 drawn at random from an infinite uni-variate popu-
lation in terms of the betas of the sampled population as

(13) o' 7 8 .
N4 n-l)ﬁz -n+3

Similarly, the correlation coefficient between the deviations
squared of the means of samples from the mean of the sampled
populaticn and the variances is

L 7 (8,-3)

14 = = .
(14) ol B, +2n-3) [(n-1) By~ 7+ 3]

Under certain very special conditions the statement of 0’
and @’ may give an adequate idea of the regression relation
between the means and variances, means squared and variances
of samples from a population represented by (1). In general
the mere statement of these coefficients will not give any useful

1J. Splawa-Neyman: “Contributions to the Theory of Small Samples
Drawn from a Finite Population,” Biometrika, Vol. XVII (1925), pp.
472-479. i
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notion of the actual probability relations. This is true because:
(a) the regression relations between means and variances, means
squared and variances of samples from a population represented
by (1) are essentially parabolic, as shown for samples of two
and as seems probable for larger samples; (b) the frequency
arrays may vary markedly in dispersion, in skewness, and in
other characteristics. '

To illustrate these remarks, samples of four were drawn
from two special populations by throwing dice.

Suppose that a population is represented by

~Lxem)? “Lfa-m,)2
2 ' 2
(15) f(x)=;§;[@i,.;e +a’jz_”_e o2 ]

The first four moments of f () about its mean are
wu,=1/,

(-m+km,) _
I+k

1

o,

[1+mPe k(s maz J]
U, = »
e I1+k
9
-3 m-m3+ k(3m,o?sm,’)
g 1+k

2

2 _2 4
3+6m2+m%s k(35 6m 0"+ my )

I+k
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Whence

2
- {/+k)[—3m,—m,"+ k(3m,o%+ mz”)]

[1#m%k (a2+ m2)]? '

16 A

(1+k)[3e6mPem *+ k(30 %+ 6 mPa®+ m,*)]
[/#m,2+k(a?+m; Nk

-

an 4

Thus, for any special population of the form (15), E" and
/O' can be easily calculated.

Samples of four were drawn from a population approx-
imately represented by

2
4 [.7) - I(x-t?}
Z(Jf'f' / e >
¢ +f2_71

(18) 1 (x)= 646[,;1'—,—,

The actual sampled population is shown in Chart A and is
hereinafter called Population I.

Table I shows the distribution of 1038 samples of four drawn
from Population I with respect to the observed values of the
means and the variances. The arrays for constant values of the
variances are at first distinctly bimodal, gradually becoming uni-
modal. Chart I shows the means of arrays of Table I with the
regression lines as calculated without correction for groupings.
It is apparent that the locus of the mean variances for a given
value of the means diverges a great deal from a straight line.
This regression relation looks as though it was a normal curve,
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which is what would be expected from (8) with o ®-/ = 0. The
theoretical and actual correlation coefficients for this and three
subsequent tables are compared in Table V and the constants of
the marginal distributions of Tables I to IV are presented in
Table VI.

If the deviations of the means of the samples of Table I
from the mean of Population I are squared, Table II results.
Chart II shows the means of arrays and regression lines of Table
II. The regression lines are very poor fits to the means of the
arrays which are, apparently, exponential loci.

Table III shows the distribution of 1058 samples of four
drawn from a population approximately represented by

e /7 2
) 1 ~5(x+8) -5(x-2.4)
(19) Q(x): -.972[/2—’; e *3/?;-,' e ]

with respect to the observed values of the means and variances
of the samples, The actual sampled population is presented in
Chart B and is hereinafter called Population II. Chart III shows
the means of arrays and regression lines of Table III. This chart
resembles Chart I in that the locus of the mean variances for given
values of the means is so obviously non-linear. Also, a glance at
Table III is sufficient to see that the arrays vary markedly in
skewness.,

Table TV shows the relation between the means squared and
variances of samples of four from Population II. Chart IV shows
the means of arrays and regressibn lines for Table IV. In this
case the regression relations seem to be fairly near linear, and the
frequency distributions of the arrays do not change strikingly.
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The Means of Arrays and Regression Lines of the Means and
Variances of Samples from Population I
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CHART 1I

The Means of Arrays and Regression Lines of the Means
Squared and Variances of Samples from Population I
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NOTE: The last thirteen class intervals of the means squared are grouped
into one group.
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CHART III
The Means of Arrays and Regression Lines of the Means and
Variances of Samples from Population II
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CHART IV

The Means of Arrays and Regression Lines of the Means Squared
and Variances of Samples from Population 1I
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TABLE V
Correlation Coefficients of Tables I-IV
Correlation-Coefficient
Number of Table | Theoretical Actual?
I 00 -05
II -34 -.37
I11 40 37
v -07 -05
TABLE VI
Constants of the Marginal Distributions of Tables I-IV
in Terms of Class Intervals
Standard
Marginal Distribution Mean |Deviation
Means of Samples from Population I 252% | 247
Variances of Samples from Population I 4.890% | 2.900
Means Squared of Samples from Population I | 3.5913 3.203
Means of Samples from Population IT 07 | 2.237
Variances of Samples from Population II 3.570% ) 2.854
Means Squared of Samples from Population II | 1.408°% | 1.744

'Calculated without corrections for grouping.

2Is so far from zero because of the groupings employed. Many means were
exactly odd integers. These were all put forward into higher classes, mak-

ing the calculated mean tao large.
30rigin taken at the beginning of the range.
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From the results for the case of samples of two and from
the results of empirical sampling, it seems clear that the simplest
regression relation that is generally applicable to the means and
variances, means squared and variances, of samples from popu-
lations which are the combinations of normal populations is para-
bolic. For small samples and for certain values of the parameters
of the sampled population the regression relations may involve
exponential terms that are quite important. As the size of the
samples increases, it is expected that this exponential term will
decrease in influence. It seems plausible that even with large
samples the regression relation of means and variances, means
squared and variances will remain essentially parabolic. It is not
expected that the determination of a good approximation to the
regression relations will serve to give an adequate notion of the
probability relations of the means and variances, means squared
and variances of samples from a population represented by (1),
because the arrays may vary in number of modes, in skewness,
in dispersion, and in other characteristics. For instance, surface
(7) may be trimodal so that arrays may be bimodal or unimodal,
and in such a case the arrays must vary markedly. Surfaces
(7) and (10) with 2 replaced by 27 and with the terms suitably
weighted are valuable approximations to the probability relations
of the means and variances, means squared and varances of
samples drawn from a population represented by (1).
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