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In Mr. R, .\, Fisher's paper' on the mathematical foundations
ol theoretical statistics the following statement is found: “The
method of moments applied in fitting Pearsonian curves has an
efficiency exceeding 80 per cent. only in the restricted region for
which &G, lies between the limits of 2.65 and 3.42 and for which
B, does nat exceed 0.1. It was, of course, to be expected that
the first two moments would have 100 per cent. efficiency for the
normal curve, for they happen to be the optimum statistics for
fitting the normal curve. That the moment coefticients &, and ,62
also tend to 100 per cent. efficiency in this region suggests that
in the immediate neighborhood of the normal curve the departures
from normality specified by the Pearsonian formulas agree with
those of that system'of curves for which the method of moments
gives the solution of the method of maximum likelihood.

T'he system of curves for which the method of moments is the
hest method of fitting may easily be deduced. for if the frequency

in the range &% heylx, 8, 4,6, §)dx then a—%[ogy must involve

%« only as polynomials up to the fourth degree; consequently

yee -d‘?fx"fgx‘?ﬁ,q‘t"s-,Q?Z fg’}

1 Philusophical T'ransactions of the Royal Suciety oi Loudon, vel. 222
series A (1921), p, 355.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%g"’é
The Annals of Mathematical Statistics. RIKGIS

_ ®
Www.jstor.org



2 CURVES FOR METHOD OF MOMENTS

the convergence of the probability integral requiring that the
coefficient of x % should be negative, and the five quantities
a, Py, Py pa,p4lfeing connected by a single relation. representing
the fact that the total probability is unity.” It is with these
curves having a fourth degree polynomial .in the exponent that
the present paper is concerned.

The first step in the study of this system of frequency fune-
tions is to ind an expression for the value of the integral

f=/we- a®(x*e p, z"f,q‘,z‘a;pgz,ﬂp“)dz.

~00

In other words, it is necessary to know how the integral depends
on the parameters @, Py Py Py, LPg.

Since a depends only ‘on the unit of measure of # it will be
sufficienc for the moment to consider @?=7 . Furthermore a
linear transformation on x -leaves the value of the integral un-
changed. If we replace x by z- Iﬂthe integral to he considered

bhecomes

Ve =/e adx=k dx where 4=’

-00 . Yoo

®_x Fepibegqutr) /%tm&qz)
e

-(x%pxérgr)

Consider now then the frequency curves y = 4@
These curves are typically bimodal and may be classified accord-
ing to the number and kind of modes. The positions of the modes
are given by the solutions of the equation %’ 2., that is by the
roots of the equation # %2ax+g«0 'I'he discriminant of this
cubic equation tells us that there will be three distinct real roots
and thus two distinct maxima with a minimum between them for
the curve, that is two distinct modes for the quartic exponential
curve, if -5p3>27qf 0<0. Two roots will be real and equal if
-(3,03=27q‘f,0< Q. 'T'he thrée roots will be real and equal if
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p=g=0 . ihe three roots being z=0. In the case of three real

distinet roots, if two of the roots are equal in magnitude but

opposite in sign then g=¢ and the curve is symmetrical with
respect to the y-axis. 1 p=0 g/O there will be one real root

and two imaginary roots given by the three cube roots of p

That there will be a real maximum at the value of = given by

the real cube root of f is easily seen from the nature of the

curve or by considering points at values of 2 on cach side of

this real cube root of Z .

Henee the following classes of curves and’ their respective
cquations will he considered.

Typel: y=ke -z‘.‘
The curve which is symmetrical with vespect to the y - axis
and has only one maode, this mode being at z=o0,

” (x* 2b62%)

I'ype 11: y=ke ,0>0,

T'he curve which is symmetrical with respeet to the y/=axis
and has two distinet modes at 2z =2 V3.

-x%-dcx) -

'l‘ypc l“ LoyE ‘2‘ i‘ a.

, . . 9
I'he asymmetrical curve with one veal made at = e

fp e oxrq ).
Type IN: yehe Slcadia

‘The general type of curve with the quartic exponent,
Type 1.

First evaluate the definite integral

o (-4 P
Z /e oz -‘7 e Y.
- a0 £
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Ve -4
Let 2=y /, dx=(2/4)y /a’y, Then Then

-4 -4 .
Z =z///4// y"/“e"dy=/z/z// y Ve ay=gry).
(4 (4

Similarly it may be shown that

(-4 - Q [
/z’oe Y = é‘/’/ﬁé"—/,,a»].

(/]

4 4
L=/ ze za’za- a since the integrand is an odd function,
7 Y
- Q0
-x
VA zZe a’,z::éz-/-'/;‘/.
-0
o 4
-X
[j = ;L"?e ax=0.
w0
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<
7

Hence if the total frequency is unity then A4 =

e 13/ <O,

Vas 2INNPT
=L,/ = = = O. 337989/ approximately,
Ay =Ly /4y /-,/2{ ') 5%4[/ ;Z / p y

iy Ly )l = 14,

HMap s '/:'»-//‘/;'01

/"’/iﬂ",
A2n ""'617//; = 7(—2;—/
£
Type 11:

Consider the definite integral

o 2
/; -v‘/.f.(‘x -2bx }a’&’, b>0
“e0
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4 2
-w* 2b2%)
Integrate by parts letting «= e & and @Vv'= . Then

4 2
-/ e 2b2%) e (x-20% sz

» < @t o4
= 4/ N ""ézzja’,z- Jb/ 226 Zéja’z.
r ape .

Now obviously /,, cannot be zero. Hence dividing by Z, we
find 7 = 4/14 -Jé/{a and therefore

b 4/{(4-1 ﬂ4 ‘.2\5

( 4, cannot be zero).
A, A g : )

Now that & is known (calculated from the given data by this
last formula) it is possible in any particular problem to find by
mechanical quadrature the value of the integral ./, to any desired
degree of -approximation. The simple rectangle formula with even
a small number of ordinates known will give a good approxima-
tion.,

Return now to the integration.hy parts just performed. The
result takes the form

47 a7,
josd,éza -Zb-jl-z— or

2% o6 2L a7,

aw’ 25 409

which is a Riccati® differential equation. Riccati’s equation is

2 Johnson's Differential Equations, p. 227.
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Zi: w2ax” 4 j Yy arml)x yso It has a solution capable of

expression in finite form in terms of elementary functions if 77
is the reciprocal of an odd positive integer. In our equation 77+.2,
a=-1 hence no finite solution for the differential equation is
possible. That is no finite expression in terms of elementary func-
tions can be obtained for /, . The solution of the Ricatti equation

here is
S10”* 9516° 13.95.76°%
C"ﬁz’ 4./ L d 6/ * a/ +...'.-)
(1)
26% 735‘ 277356 ° /5—1/-234f )

+C, b/]fdl 57 > 5

To determine C, 7 and Q e note that when 4=athen

7
L=z (F/=¢c

d that when 4 =0 th e 2 ;’e"‘; /7L)-c
and that whe N 77 | peo /()=
~ a0
It is worth while to make certain transformations on the

differential equation

7 a7,
—_%dé ’2&07 -, = 0.
2
Let 7, =€ 6 /ZV . Then
sz 2
a’bz O°v = 0.

Let b%-.—f . Then
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a’"y_ 1 av

—df? +2—t?-{-y=0.‘

Let vs= & ’/4;4/ . Then

*fa’w[

o Zu ¢ +/1/4/‘]W

let #=¢x where (=, 7. Then

z2 ';;%/4- za’z: [zz 2/4) ]We

‘This last equation is Bessel’s differential equation® with 7= //4.
Hence its solution is

2
W= ,4‘/; )+ B/, ,ﬁyaAJ} (—— zlb /*ﬂ(];/ > )where

<

Z
e ”/7/*7/(/1;41/23 (rrrdf 102/ 2 %2/ #d

B L))
reo Cr+drr).r/

The above transformations give

-/b/ZJ/ o/z.

Hence 2
. 2 b
%) Ve Ty Doy (4

8 Johnson’s Differential Equations, p. 235.



A.L. OTOOLE 9

Setting 4:0 in [, we find 5'-'2-’/"/;-7//"/5} .
4 /21".

A TalaL a2,
Setting =0 in Z7 Ve find A = i

Putting in these values for 4 and B we find finally

53 7 X4
-[o /?[/-'//K[fj‘g m+-....)

s 42 48 ]
-/-/-'(4jé/.,d_4 -9—5?-7 ....),

It is worth noting, for purposes of computation. that the ex-
pression (2) converges much more rapidly than thg form (1)
given above,* on account of the factoring out of @ % 1In addi-
tion the series in (2) have the advantage that the powers increase
by 4 instead of by 2 as in (1). It will be shown presently that
ordinarily 4 is less than unity. But even for =7 it will not be
necessary to go further than the terms involving & % to get at
least seven decimal places of accuracy. For 4 less than one even
fewer terms will suffice for this degree of accuracy.

4 The form (1) is obtained immediately if we write

I / @ ot 2bx%), {/e NTCETY % asesxl,

2.
:,‘20/‘9"/_/;2&12* ‘;/X # a\?é/z oo o .)dz

7

assume term by term integration permissible, and make use of the fact

o0 . 4 ,a+/
already mentioned that / 2Pe *a /" ?
o
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From the point of view of the Ricatti differential equation it

4 2
- =254
A ad é/z is the solution of

can he shown that ]o =‘/ e
-

a? Vs . .
22-5 -2b gz—"— -7 b = o when the solution is sought in

the form of a definite mt(_gml‘ FFor the rhffcwntlal equation

LB D) v+ d(OJp-Ovhere D < 7% 75 b and & and ¢ are polynomials

in & with constant coefficients is satisfied by

P-4
e / an///f/?/f/a’ 708 )t

o

where ¢ is a constant, 777 / is the reciprocal of ﬂ’/ / and « and
A are so chosen that for all values of &

[e bre /;éﬂ/r/z‘/dr] o
*

Let 84 (Dlv+ d(D)v = D% - 6D -v. Then
Bl =-21, frt)-#412,
<
T(t)55, JACE)T#)dt=-FF togt)

o7 (- 109?10
and I = Ofor all values of & if -0 Gras.

Hence

z
V=c/ or-F (F- 109 jzt}df

o

3 A. R. Forsyth's Differential Equations, 6th edition, 1929, pp. 277-2%0.
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=-£/:-§z‘bz‘/sﬁ‘,
< 72

4

Now let Z=2x%and c=- V2. Then
Ly 2
v.-Z/e(z 2b6x )dz
g

Y_ . 4 2
-/ e(z-sz /a/z

-0

=Z,.

An idea of the variation of.ﬁ as a function of & can be ob-
tained from the. following table calculated from (1) for values

of 4 at intervals of 0.1 from O to 1 and using /7 (,‘9&26?55/0,

/-'/4-'"/.- 1225477, The results are plotted in the accompanying
graph, Fig. 1,

6 Z,

0.0 1.812 805
0.1 1.945 063
0.2 2.099 726
0.3 2282 225
04 2.499 648
0.5 2.761 349
0.6 3.079 783
0.7 3471 748
0.8 3.960 152
09 4.576 578
1.0 5.365 158

The modes are at 2= ¥ /4 . Ordinarily the ordinate at the
modes will not be greater than e<.2 7/8¢ times the ordinate at
%O . Hence ordinarily it will not be necessary to consider
values of & greater than unity.
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FIG. I
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w zbzz)
T/z"e x™= 2{_ 7,

-0

o -/z“zazzj
=/l"€ dy = O

@, x> sz’/ 1 ‘i,

] <
=/§2,7€‘(Z ZbZ) /j/ ___Q 7e QLI
a0

a0 £ <
- [ty TS e e 423

]
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To find these derivatives one might use the relations®

&Ly a7 5- g (&)~ Lyt () = T,y ()= 3y 1),

But term by term differentiation is permissible and for this pur-
pose it is simpler to use (1) rather than (2). We find

] b 58* 955, 13956° 315’ 73,:»’//735
12‘2—/1//[13/ PZAdy e f'/) =t ];
dl, 1,1\, 3% 956 P Jé 75b ]
227/_’//%37*7 G\ 5 g

a7, 1 I6% 9)% s Nb /17315’
éz 1/’4/[ 2, 7 * // —-—-——-f/

Since £ 2 O hence /, and all its derivatives are greater than zero
Now the totai probability is to be unity hence take 4 -—;—f .
o

4y =40,
9
A
,a2=.{2=275
4, ZzI,
z
Ady =23 :0'
g,
2
b 52
VA5
etc.
Type III:
3
. - - dck,
Y= 4fe k e/

¢ Whittaker and Watson, Modern Analysis, third edition, p. 360.-
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This curve is not symmetrical. But, obviously, changing ¢
to - ¢ has the same effect as changing x to -x or simply revers-
ing the shape of .the curve and the distribution from which it
arises. Hence it will be necessary to consider only positive values
of ¢ . As stated already. it is easy to show that there is a real
mode at the point given by x equal to the real cube root of ¢ .
If ¢=7 then y-—ho", that is e 7 times the value of the ordinate
at x=0 . Hence usually ¢ will not be as great as unity.

Y
2)
)
o X
FIG. I
(1) y-ke -x* 2) Y=ke 'ﬂﬂta).
w-ﬂ;:f Lex)
Let [ =/ e ax.
4 dcx

Integrate by parts letting « =& 'X, av=e <.
Then
z aoj ‘K(‘- Lex)
]; =& e ax.

' 4
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Hence

00
4
-(x7-42c2/) ,
/ ,I,je c/z
-~

o

With this value of ¢ calculated from the given data mechan-
ical quadrature can be used to find an approximate value for Z,
Then let

Z

2o
The result of the ntegration by parts could have heen written

in the form of the diticrental equation

a°%
e 7 _646‘[0 =0
@® 4
: . -(x-4cx .
Conversely it is easy to show that 12 =/e @ )dz 15 the

- 00

dedinite integral form of the solution of the differential equation

a%v

o3 b4cv=0.

IFor. here

r4
p)=-64, f(@)-07 T1#) -2 JUrt) T1¢)ett=-fom

s
4
and [@cz‘— ¢ /Zjﬂ =2 for all values of ¢ if @-- a0, F= a2, Hence
o
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L 4
- é
V=-"-/—r ecf b /Zfa/ -
52/ ¢

Now let “=<4x and c¢=--76 . 'T'hen

0 _ %
V—/é = 4(%)0/2:

-4
=7,

An expression for the value of £, can be obtained either by
finding the series solution of the differential equation and deter-
mining the constants by setting ¢=C in ./, and its derivatives, or
by expanding e*%in series in the definite integral itself and

then integrating term by term.

© 4

o
—a

o ~ 4— o
‘/e * 40’%’1 +/ e G Aex)
0

-0

©_ i dcx) »_ %
=/e x a’z+/e (x 4:‘2:{/(
(4

(4

afl" -2cx Lcx o—'z *
= ﬁ (e e Jax =2%’ cosh (Hcx)ax
o 7}

A 6
“ % dex)® (2cx)” (Fcx)
=/e [j+ 2(/ * =27 # %7 f--"-]d{

o
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322"—— 51

2 L ey
a0 (217)7 Y,

78 %) centl)
=z£o (Zn)/ 7z

12
|, @c)? szc)? 9-5/4c)
-5/—'/4/[1*4.4/ " 275, 7 Taegm "

6 Zo0
L 3|0/ 2c)° 73(%c)
*Z/—'@/[‘a/ #* 46/ + 42‘10/ £

These series may be differentiated term by term to obtain the
derivatives of [ and hence

@ < .
- o (X =4c¥) 1 2 %7,
[z 4; ¢ -/4/ dci’
/ M_g '/&'-46'1/ 7 ja’jc"
3=-wz€ Q/ - —4—-/ T )

ad P
£~ 2cx) 1,4 2%,
4—1_”’”9 ‘/4/ i

etc.
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If = is replaced by x2-VC the effect is to translate the raodal
value of x to the origin. T'he equation of the curve then beccmes

y:; 8"654# crxlic,ulrc xkcy)
f)
where
4Tz,
¢, = 672
cy= -de,
" 5ec .
Type 1V:
y= ke ~Cxtypuisg)

Consider the dehnite integral
o _ 4 2
/;=/e x5 pirgel
-0

If p-g=O we get Type 1. If p£0 =0 we get Type IL. 1i p=0),
g#C we get Type II1. Hence consider now o040, g4 O,

-~ 4 -
Integrate Z by parts with aaek i z:x/nd P Then
7 g s (& % px%r g2l
Z, =~ (4x%20%)e @

-

@ ) 2, 02
~aHoxtgr) e P poxiigr
4/4"76 afr-g-’-o xe > ro¥ G {:/z:,

By -

-
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Now divide by ] and multiply by ¢ . Then
c-Ay’-2 /
@=-tuy-Cpu.
and integrate by parts, this time with

Begin again with /,

o

-4 px 4gz)

us=e and v+ v . Then
oo 4 2 -(14*p32)‘gz}
Z, //4x 1 2px rgxle adx
]

:4/: &% px +qr/ *2/0/ ~(xtepx”, ge:)
~ oo

‘g —K«: + P ng)

~ 0
Divide by Z, . Then
7= 4,4(4/ /—Zp/{‘,’ *g/z/.

’ . ’ / .
Now substitute g=-4u,-204 in /=4y +ppy+ g4y and we get

. L1t -4u,
2@;'/“,’")

¢

)

¢4ﬂ1/aJ -4ﬂ4/

Z
g -Huy- 2/0/“/"4/‘/3‘//// Py
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The result of the two integrations by parts can be written in
the form of two simultaneous partial differential equations. They

are
0% o7,
g =2 _ =< 7 = O
9% 0g »?ﬂdq * G,
o< a7, a7,
¢d,o‘e Z'Odp_?dg o=@
o < 4
-z Frpx”c) .
Let S, = / e . I'hen
- a0
o 7
(% px*) 2”s,
3,/ e w- ()" 7
oo
® 2, .2
Srs™ [ e ) g
- o0
® e puligr)
];r e adia it
)
© 4, .2) _
. ) o @7HP% )e AP
o0
w—(x'efpz /Q&‘/ /?"}3
- [1/ ) e
-
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- 7
f::; /2/// e -

o P4 <l
Lz, =/lzne-/2f or *g{/a’,&
Y

=-y)”

97
de 7

Zorns :,e,,,.j Cx e priigr)
- 00
dg
2/-1

_Z /1//21 1)/ 2n+21

When the values of o and ¢ are calculated from the data
of any given problem by the formulas (3) then values for ./, ,
1, 7, fj, f . etc. can be obtained by mechanical quadrature.

For two real. distinct modes -8o>27¢% (0 < O). Hence if
-ZcpocOthen /545> g-154. lf‘dp"u’/"g" then one mode tattens
forming a point of inflexion with a horizontal tangent at the min-
imum point. Changing @ to -g has the same effect as changing
x to“.x and hence g is a component of skewness of the curve.
I the curve is so placed that the sum of the values of x at the
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modes and at the minimum point is zero then the equation of the
curve will be of the form

y-ke” (x*+ pategr).

If now we change the scale of z by replacing & by x/a then
we are led to the functions of the form

y = ke ~a?(x*s pxtege)

I'erforming the two integrations by parts, as before, on the

[=/:o_ d"'/xﬁpz"fgx/dz

0

integral

leads to the relations

9 =-4,u3’-2,o,uj’ <- Ay +I3Mu, *M%?M/J,

4)
Fé .7 ’ (
o= a}*¢/‘7ﬂ3 - 4/“4 - ‘212 - 4&‘4 "JM/J.? *‘]Mf“’.e)
2 -l %) Cuig .
If
@ < 2 )
Y A X2 U p
/:v”e g dl*[”,/g?, 77’-/'42/‘3““
- o0
then

® e 2
/t”e a*(x™s px +9x)dz .

Yo

1 /
W 2, Gnp, “7&%}’ Z,(ap, a 3/29)'

In particular,

it 4
L<Loo) [ aninrcf)
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Z»?n-[ :/:’ (0,0)=Q
Ly 1, loo)e [ w2 e L rZnd)
zn'znqo--/a; &,(301‘1)/2 i

et
L
Hon “Len o35 7T
I the case of Type 1 when
yey,e L v i 1OF),
p=g =0 and hence from (4), or as can be shown directly, a’-zj}—.
2
In Type 11,
- 2 ar .
y:)/oe_dz/,( v‘/(?»()ls/__{x/e _42/x4*p‘2)d¥‘
o -a0
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¢=C and hence a’- Z

. In the Type III where
2pp,+ Ay

2,4
2 %% g/

Vi w.di’ﬂgﬂ«gt/
Y=y o€ 2%, =0 and hence
(4

-4

l
T Yy Ity + I, )

az

In general, since o0 and ¢ are determined when the modes and
minimum point of the curve are known, theoretically at least, %
is fixed by the relations (4). In practice, however, this would
mean that the accuracy in the determination of @< would be con-
tingent upon the accuracy with which the modes and minimum
point are determined. Hence other methods for fixing &7 will be
required in general. Now if in ]o'é ,a"/‘%}we replace © and g
by (4) which involve only #% and quantities calculable from the
given data we have a function of a alone, say 7ra/). It will be
sufficient then if we determine a value of @ such that #a/): NV
where /Y is the total given frequency. Then fix o and ¢ by 4)
and the modes and minimum point by 4.z %+ 2ox rg=0.

The points of inflexion are found from the equation

2% _,
ax?

and for Type I are given by z*% 473, . Hence
oo £0.990605

va
approximately. For Type II they are given by Ga%r*s&a’ox*s
el 3wt p < 0. For Type 111 they are given by 6a%%su’qx’®
-sz"*a%’ =&. And in general they are given by roots of the

equation

16a% 6+]6d,zaz4+ Bagqu’s 4623 x% daloga+a’gio <O,
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It will be noticed that the distribution given by

yey e @ % priegr)
o

can have the Mean at the origin if and only if @=0 . that is.
if and only if the distribution is symmetrical. Now replace x hy
X-m. The area remains the same and hence also y/ .

The equation then is

Yey @ -d¥ax 0,80+ 0,%%40, % +py ) where
[

IO/’ - 4”7;
Pz = 61772#p,
Py = g-Lmp-4m’

4 2
= 4 m o777,

and p and ¢ are given by the relations (4) above. An integra-

~aYe %210 XA % 1 g )

tion by parts with «=e shows that

62/4/4’*.5,0,#; +Zp2/z; +,03,a;)=-/.
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T'his small beginning of the study of the system of frequency
curves with the quartic exponent will be concluded here with the
construction of artificial illustrations of ‘I'ypes 1 and Il.

TYPFE I

4
y= L ¥ ‘/0710 /"/2‘-'/30.)79\3&11,

j ,
rcg)

x y z%y x%y
0.0 0.5516313 (.0000000 0.0000000
0.1 .5515762 0055158 0000551
0.2 .5507494 ,0220300 0008812
0.3 5471811 0492463 0044322
0.4 5376888 0860302 0137648
0.5 5182096 1295524 0323881
0.6 4845787 1744483 0628014
0.7 4338852 2126037 1041758
0.8 3662367 2343915 .1500105
09 2862255 2318426 1877925
1.0 2029338 2029338 .2029338
1.1 1275846 1543774 .1867966
1.2 0693579 0998754 1438205
13 0317147 0535978 0905803
14 0118376 0232017 0454753
1.5 0034917 0078563 0176767
1.6 0007861 .0020124 0051518
1.7 0001301 0003760 0010866
1.8 0000152 0000492 .0001596
1.9 0000012 0000043 0000156
2.0 0000001 0000004 0000016

5.2758155 1,.6899455 1.2500000

2. 2755/5250. 5516313 _ , sonoooo

u, 2 68994551)50. 0000000 _ ,, 3379594

P =2(1.250000?£a. aaoo300 _ 0.2500000.

Total frequency =




TYPE II

CURVES FOR METHOD OF MOMENTS

a=1, p=.5, g=0.




A. L. O’'TOOLE 29
ye 2 ~(x%0.5%%)
2187099
TYPE II
x 3% x3y x%y
0.0 0.4572267 0.0000000 0.0000000
0.1 4594725 0045947 .0000459
0.2 4657175 0186287 0007451
0.3 4744135 0426972 0038427
04 .4827888 0772462 0123594
0.5 4867153 1216788 0304197
0.6 4808614 1731101 0623196
0.7 4594725 2251415 1103193
08 4180410 2675462 1712296
0.9 .3556970 2881140 2333728
1.0 2773220 2773220 2773220
1.1 1936552 2343228 2835300
1.2 .1181056 1700721 2449038
1.3 0611958 1034209 1747813
14 0261429 0512401 1004300
1.5 0089145 0200576 (451297
1.6 0023433 0059988 0133571
1.7 .0004575 0013222 0038211
18 .0000638 .0002067 .0006697
1.9 .0000061 .0000220 0000795
2.0 0000004 0000016 0000064
5.2280133 2.0827448 1.7706859
. 2(5.2286133)- 04572267
Total frequency :'Z/ 2% ) 7 =1 00docao,
70
220827448, - O 0020000
w, A / - 041654896
10
2(1.7706859,)-0 a02a060
, LI /09) <Q35413718.

From relations (1) or (2) it is found that when 6 = Q29 ,
(i.e. p=-Q23J, g=0)

Uy -O25

then = 2 187099. Conversely, the formula &= =z
b= O 250000.

('To be Continued in May Issue)

gives, retaining six decimal places,

T



