THE EXTENDED PROBABILITY THEORY FOR THE
CONTINUOUS VARIABLE WITH PARTICULAR
APPLICATION TO THE LINEAR
DISTRIBUTION

By
H. P. LAWTHER, JRr.

The engineering worker is often confronted with the necessity
of utilizing a group of quantities concerning whose numerical val-
ues it is known only that they lie between definite upper and lower
limits. If a number n of specimens is selected from such a group
and the sum of the rn values taken, intuition rules that there is
negligible probability that this sum will be as great as n times the
upper limit or as small as 1 times the lower limit, and that the
most probable value must be intermediate between these two ex-
tremes. Some assurance is desired regarding the practical limits
within which such a sum may be expected to fall. While the dis-
tribution of the individual values within their limits may be un-
known directly, yet workable inferences frequently may be made
from the nature of the quantities, For example, in many manu-
facturing operations it is economical to turn out items (such as
bearing balls, paper condensers, or spacing washers) in large quan-
tities with rather coarse precision. By means of gauges set to
limits narrow as compared with the total spread, the product is
then selected into bins, and in the operation of assembly a com-
pleted article utilizes the material from a single bin. The contents
of any such bin clearly may be expected to follow a linear distri-
bution very closely, and if the relative proportions of the product
finding their ways into this bin and its immediate neighbors can
be learned, the distribution may be specified' with practical accu-
racy. The linear distribution is thus fundamental to a large clacs

of problems.
On several occasions the writer’s speculations have led to prob-
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242 THE EXTENDED PROBABILITY THEORY

lems involving the linear distribution, and the reference literature
has been searched for assistance. The special case of the rectangu-
lar distribution seems first to have been formulated by Laplace*
more than a century ago. Rietz,? Irwin® Hall,* and Craig,® in
recent years have presented analyses applicable to the study of the
linear distribution, each from a somewhat different viewpoint. In
the attempt to follow the logical processes of specialists in this
field the writer was driven to put forth considerable independent
effort in order to arrive at a satisfactory understanding. As the
result of this effort still another angle of approach was developed.
This method employs steps and terminology familiar to one whose
mathematical education may have been limited to that commonly
encountered in a college engineering course, and should be readily
understandable to a wide field of workers. Encouragement was
thus given to treating the case of the generalized linear distribu-
tion, a treatment which appears to be new. In the application to
practical cases it was necessary to carry out certain tedious compu-
tations yielding interesting values and curves. The results of this
work are presented with the thought that they may stimulate the
understanding and use of a law of considerable application to
engineering practice.

It will be understood that when a selection, or the sum of n
selections, is spoken of there is meant the dimension of that selec-
tion, or the sum of the dimensions of the n selections. Following

1Laplace: Théorie Analytigue des Probabilités, Troisiéme Edition
(1820), pp. 257-263.

2Rietz: On a Certain Law of Probability of Laplace, Proceedings of
the International Mathematical Congress, Toronto (1924), vol. 2, pp. 795-
799.
3Irwin: On the Frequency Distribution of Means of Samples from a
Population having any Low of Frequency with Finite Moments, with special
reference to Pearson’s type I1. Biometrika, vol. 19 (1927), pp. 226-239.

¢Hall: The Distribution of Means of Samples of Size N drawn from a
population in which the variate takes values between 0 and 1, all such values
being equally probable. Biometrika, vol. 19 (1927), pp. 240-244.

8 Craig: On the Distributions of Certain Statistics. American Journal
of Mathematics, vol. 54, No. 2 (1932), pp. 353-366.
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the usual notation, the symbol fn () will be defined to be such that
b
the integral / f, (x)-dx is equal to the probability that the sum
a

of n selections lies between the values a and b . Neglecting
higher orders of infinitesimals, the probability that the sum of n
selections lies between x and x+Ax would then be equal to the
product f, (% )-Ax  The sum of n selections clearly is the sum of
n-1 selections plus the value of an additional selection. The prob-
ability that the sum of n selections lies within the interval x to
x + Ax must then be equal to the summation of the probabilities
associated with all possible pairs of values for the sum of the first
n-1 selections and for the last selection, respectively, that can
yield a final sum lying between x and x + Ax. The values x-m Ax
and m-Ax, where m is an integer, are such a pair, and the totality
of these pairs is obtained by extending m to all possible values.
Recalling that the probability of the simultaneous occurrence of
two independent events is equal to the product of the probabilities
associated with their individual occurrences, there may be written
in the conventional symbols ‘

m

= 00 «
It 4 (e-m-Ax)-Ax-fi(m-Bx)-Dx.

m=-00

fa(x)-Ax

Setting. m-Ax = A, and passing to the limiting form, there is

obtained
fo00= [ £y (6= A)- £, () dA,
- 00

as the general formula for determining all subsequent f5 from
f,(x). The form of the function f, (x) is, of course, determined
for any particular case from the best available physical data. The
expression for 1 (%) is then obtained by n-1 successive applications

of the operation of integration indicated above. For the sake of
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subsequent brevity, the operator P will be defined to be such that
00
Dc()(x):/fp(x-)\)'f, (A)-dA.
So0

Using this notation it would be written
1 (x)- pm f,(x).
For the general linear distribution f, (x) is given as follows:
f,(x)=o , for -w<x<O
f(x)= 0, for a<x<ow,

fi(x.)is the equation of a straight line for O £ x £a, subject to
the conditions: (1) the area under the line from x=0 to x=a is
unity, (2) no ordinate is negative for any value of x in this in-
terval. By imposing these conditions upon the general equation to
a straight line there is obtained

f, (x):é [1+k-20—K(a-x)] , for Ofx%q

where the parameter K is restricted to the values -15K41 . With
f,(x) so defined it can be inferred immediately that fn(x,) must be
identically zero for all negative values of x , will have some positive
finite value everywhere in the interval O < x <na , and must be
identically zero for all values of x greater than na . Also, since
f,(x) is discontinuous for x —O and for x —a the application
of the operator P must be effected through proper choice of limits
of integration. In this connection three possible cases arise:

Case 1: Where x, the sum of n selections, lies in the interval
0O £ x £ a itcould have resulted only from a value for the sum
of n{ selections lying in the interval x to O , coupled with a suitable
value for the nthselection lying in the interval O to x . For this
case the operator P will be distinguished as follows:

% X
()< P fnﬂl(;c);/fn_l(x‘)\)-f,()\)-d/\ , for O¢x2a.
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Case 2: Where x , the sum of n selections, lies in the inter-
val a £ x £(n-1)a it could have resulted only froma value for the
sumof n-1 selections lying in the interval . x to x-a , coupled
with a suitable value for thenth selection lying in the interval
O to a. For this case the operator P will be distinguished as

follows:

f, (x)= P £ 00 / (x—)\)-f,(/\)-d/\,for asxt(n-1)a.

Case 3: Where x, the sum of n selections, lies in the interval
(n-1)a £ x £ na it could have resulted only from a value for the sum

of n-1 selections lying in the interval (n-1)a to x-a, coupled with
a suitable value for the n-h selection lying in the interval x-(n-1)a
toa. For this case the operator P will be distinguished as follows:

f, (x)- D fniw) /fnl(x A)-£,(X)-dA for,(n-1)asx4na.
- x-(h-1)a

The procedure now is analogous to that employed in establish-
ing the binomial theorem. The first few fs are obtained by hand-
power methods, until the sequences can be discerned and the ex-
pression for f,() can be inferred. The expression for f, () is then
established, first by applying to f}, (x) the operator P and showing
that this yields an expression for f“lbc) wholly consistent with that
for f (x) when n+1 is substituted for n, and finally by showing
that it degenerates into f,(x) when n is taken as 1.

The preliminary steps, while very necessary, are quite tedious,
and there would be no value in repeating them here. Suffice it to
state that by such means it can be inferred that f, () is of the form

f ()=~ (-;) {(1+K+—) [na-x] ()(1*K+2_K ni(iK»azg [na-a-x]
( )(M@ (1 K+ [nG-Zafx]
( )(“K*— (1 K*ZK)[TTO 3a- x,] .....

o o2 Yot
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where it is understood that each term including a bracket member
of the form [na- ba-x] is to be assigned the value zero for values
of x which render this negative. The use-of brackets [* *] dis-

tinguishes the operand in each term. The symbol —% denotes the

operation of integration with respect to x between the upper limit
X and that lower limit for which the integrand vanishes. Thus

m m+1
p [na-ba-x] =—51—+-1 [na-ba-x] o Where% occurs

with a negative exponent it signifies the inverse operation. of differ-
n!

. e . /N
entiation with respect to x . The symbol ( b) means n b)!

is one of the familiar binomial coefficients.

Preparatory to establishing the validity of the inferred expres-
sion for fn (x), it is convenient to assemble certain working ma-
terial. First <P (x) will be defined as follows:

(pn(x,)g___( 1) {1+K+—-) [na x) (1 )<1+K+———) (1 K""" )[na a_)c]
*(g)(i"K* ) (1 Kol ) [na-2a-x]
(n)(1¢K+ZK) (i K+ )[na 3a-x%]----

() (e 28 ercr ;—fg)""l[a-;d
o) (1w 2 ) 0] }

where the symbols all have the same meaning as before, but here
thefe is no special understanding regarding the bracket members
of the form [na-ba-x] and they are to exist for all values of x .
Especial note should be made of the inclusion of a final term in
[-X:J . Otherwise the expression is identical in appearance with
that for fn () for the interval O£ x¢a . Next, the typical opera-

tion

:p.[B-xJ =/7:B-X+/\]~ é’.[i-» K—z-élt((a—)\)]- dA,
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is readily evaluated and yields
1

L --){(w_ )[Bra-x]- (-1 55 »J}

Now it can be written immediately that

:P%Pn(»)%%f(-i) {(1+K+ZK) [na+a-x]- (1+K+ )(1 K+ )[ﬂa -%)

(1)(1+K+ (1 K* [no. x]
+(1)(1+K+§::)n-(1"<+§g) [ra-a-x] ---

— [ 1)"'1(n”1)(1+x+ 2. K+ &K )"'ifza %]
ORMVEES (1 K+2“) [a<]
(1) (1+K+ )(1 K+ ) [a-x]
(1)t j—g)"“[- ]}
Co]lectmg terms, this becomes

an+1 p)"+ {@+K+ ) (T\+1)a x,]
n+1){1 K+ )m-i 1(1_'“ 2K )[(ml)a. a-x]

(n+1)(1 e )n+1 2(1 K+ ) [n+1)a 2a-%|---

(o o2 o]

+(’1)n+1(i_K+%€)n+1 ['x]} :

and this is seen to correspond exactly with the expression for ivn (%)
if n+l is substituted for n. Consequently, gpn (x) must be the
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. o a
result of n-1 successive applications ot the operator OP toa
certain () (x) given by

peo-L(L) {(1 oo 25 ) fan]- (40428 )[,6]}
=%{[1+K-~—(a-x)] 1-k- 2K x)_;}

which is seen to be identically zero for all values of x . Now the
. a .

application of the operator P to zero yields zero. Therefore

(pn (¢) must be identically zero for all values of x . Finally, it is

convenient to evaluate the typical operation

GIP- [B-x] =/a [B-x+2]-L [1+k-E(a-2)]- d
x x-B a a
This yields

ai--(-é)(u K+ %'—F‘,)[BH;. x].

The expression for f (x) now may be established in straight-for-

ward fashion.
In the interval O¢ x £ a the expression for f, (x) will con-

clude with the term involving [a-x] . As has been shown before,

the expression for f_, (x) should then be given by
fot (X)=Z'P- fa (x), for Osx%a.

This operation may be evaluated readily, and will yield a result
that is correct. The form of the result, however, is such that it does
not display the desired correspondence with the expression for

f, (x) . The expression for @ (x) is introduced here to advan-
tage. Let it be written

<

fn'fi(x) =zp fn (x)"-:.p ¢n (x/\ ) for 0%& Q.
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Since the last term is identically zero its introduction is permissi-
ble. Remembering that (p () consists of all the terms of f, (x)
plus a final term in [ x] a rearrangement may he made giving

f ™=, °P £, 00+ P._.(...) (1(1 K+ )[.)a] for Qsxfa.

n

Using the operations that have been evaluated above, there is ab-

tained immediately

fmi(") n+1( ) {(1 K+“‘> [na+a x)- (1+K+ )(1 K+-- )["a’él
-(1)(1+K+-—) (1-K+*2—5)[na-x] —————
(1)(1+K+ ) (1 K+ ) [na-a- x]

__.__.___.____..___—_..__..__.___._._..__

___._..-+ i) (n 1)(1+K+ )(1 K+ ) [Za x]
(1) (s (e 2 Y 26 ) o]
%}%\‘H(‘é) {( 1) (1 +K+ o )(1-K+z ) [a-x,]} forOfx £a

Collecting terms, this becomes

]

n+1(x) T+
n+l-1

(n+1)(1+K+2K) (1 K+ )[(n+1)a a-x]
+(n;1)(1+K*§% )n+1~ (i‘K*'a_.E) [(n+1)a-20-¥]-—

+(- (""1)(1 K+~2—'-<)(1 by ) [a- x]}

for O0sxa
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and this is seen to be wholly consistent with the formula for 'Fn (%)
for the same interval with the substitution of n+1 for n.

Now for some interval between x=a and x=na, say (na-ba-a)
¢ x £ (na-ba)where b is an integer having any value from
zero to n-2 , the expression for fn (%) will conclude with the
term involving [na-ba -x] . For the interval immediately preced-
ing, namely (na-ba-Z2a)<x £ (na-ba-a), the expression will
include the additional term involving [na- ba-a-x]. Therefore in
evaluating the operation‘:P fn (x), which as has been shown be-
fore should yield the expression for ‘Fm 1 (%), the integration of all
but the [na-ba~a.-x] term will be carried over the complete range
of A from O to a. The term involving [na-ba-a-x] will not
enter into f, (¢-))until A reaches the value (x-na+ba +a), and
so the integration of it will be between the limits (x-na+ba+a)and
a . Using the operations that have been evaluated previously there

is obtained immediately

1100 ,M( p) {(1 K+—-) [na+a x]- (1+K+2K)(1 K)[na-x]
( )(1 K+ 2K)(1K+—— ) na-x]

()(1+Kf;gnl K+-)[naa ) —

—— +(_1)b( )(“K*Z:)"-b*@ K> [na-bam x|

'Gi)b(n)(i”"*&t()n bi K"") [na ba-x]
(1) " b+1> (1+ K ) (1 K+2K) [na-ba x]}

for (na-bo.-o.)éxé(na.-ba.).
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Collecting terms, this becomes
fn+1(”)=517171'(' %)n {( K+ [(n+1)a-x]
(n+1)(1+K+ ) (1 K+ )[(n+1 )a-a-x]--

A e cwm A am o —— e S e — v - — — - ——— — - o - -

--+(1) (n+1)(1+K+ (1-K+ZK) [(mgi)a (b+i)a-x]}
for (na-ba-a)£x % (na-ba).

and this is seen to be ‘wholly consistent with the expression for

-Fn (x) for the same interval with the substitution of n+i for n.

Finally, for the interval na % x £ (na+a)the expression for

£, (x) is identically zero. For the interval immediately preceding,

namely (na-a )E2x2na , it consists of the single term involving
[na-x ]. Therefore

f +1(”) P f (¥)=

n

-—-) (1_ K+Z_l$) [na-x]

ha 37‘
n+12 n+i
(1) 2; [(n+t)a-x] for nasxs(n+l)a

and this is seen to be wholly consistent with the expression for

f,(x) for the corresponding interval.
Setting n=1 in the general expression for f, (%) for the in-

terval O £ x £ a there is obtained
-1
i 2K
f, (x)g-,( - {(i+ K+ aa)[a—x]] .
Carrying out the indicated operations, this hecomes
f ()< 1[14k-& (a-%)], for 05x2a

and this is the f, (%) chosen at the start.
In the derivation of f ol (x) from f, (%) it was assumed that

the two forms of the operator P, namely O'P and:_lg , are com-

mutative with the operator % when applied to an operand of the
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. a 1 L
form [D-X.J . It is very easy to show that D-—- ‘[B-x), yields a result
identical with that of 1 P [B x,] and that QD.E.!’BWJ
x-B Pl
vields a result identical with that of % TJ.L B- x] , and the

space will not be taken here to give this demonstravon. The {or-
mula for fn (x) may thus be regarded as firmly established.
It has been shown that the complete expression (P n (%) is iden-

tically zero for all values of x  Therefore, if in the interval
(na-ba-a)$ x % (na - ba) the desired function f,, (c)can be

represented by the partial oxpression

fn(x)=a1—,,-(-%) {(1+K+ )[na—x] (1)(1+K ZK) (1—K+2K)[na -a-x)
(7)) (1—K+2l:)) [na-2a-x) -~

b n 2K n-b 2K b
- +(—1) (b)(i+t<+£5) (1-K+55) 7[na~ba‘-x] ,
it follows that it may equally well be represented in the same inter-

val by the negative of the remainder &f the comp‘ete expression, or
K o+

fq (x,)—-—- _p)n Z{ 1 )mi(ml)(iﬂﬂi‘; (1 K+ [na-ba-a-¥)
-(-1) ™ (brlz)(i’f*“ég " d(i-lﬂg) [na—ba-Za—x]---
e () (e 2 )1 2 )
(1) (e 35 T,

. / .
Kemembering that (7):( nr_)l), ( 2):( n?z) , etc., this last may be
rewritten

i S () o e
+(;)(1-K+‘-2—’-()n-z 1+ K+g-'-'—< )2 [)6- 20] -—————

o 4'( 1)" |H(n-b 1)(1' b+1(1+K+ )n b[zic na+ba+a]}
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where again it is understood that each term including a bracket
member of the form [x— ba] is to be assigned the value zero for
values of x which render this negative. The having of these two
forms of expression for fn (x) is very valuable in computation

work, since it limits the number of terms that have to he handled

to D—Z-z— at most.

Setting K equal to zero gives the special case of the rectangular
“distribution, and the expressions for f, (%) reduce to the forms

£, (x)= a!-"" -%’ )n-z{[na-)g]-(g)[na-a-x]+( ;)[na-Za-x] - } ,
and

o= 4(2) {[»] (7)ox-a)+(3)B-2a) ==~} -

Carrying out the indicated operations, these become

t (%) n( o { na-x]ni( ?)[na-a-x]n;l( gj[na-Za—x]'rl-——}
and

fo(0=— (n 1)'[] ( )[&-a]n_l.p(;)[x-za]'tl——-}’

This last expression is the one usually found in the literature, and
it was originally developed by Laplace as the limiting-form of an

urn problem.
Setting K equal to plus one or to minus one gives either of

the extreme cases of the “right triangular distribution” For K

equal to plus one the expressions for f, (x) reduce to
n-1

f (x)m g(h--—) [na- x]n-l 1)( dp)n-i L )[na -a-x)

(D)) (& P [ne-za-x]

£ (0 —;Tm {( ) - ( )((-1-15):""(1*_1,)[*0]“-1
(3)E)" (1L ) 1v-2al ___}

and
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The function f, (x) normally has no direct practical application,
but it is of interest to see its trend with increasing values of n .
There are shown on Figure 1 several members of the family of
curves originating with the rectangular distribution, and on Figure
2 corresponding members of the family originating with the right
triangular distribution. In both figures the interval a has been
taken as unity, and there have actually been plotted the curves
y=n-f,(nx) . This change in variable places all curves to a

common base, and at the same time preserves the property of the
total area under each being unity.

For the sum of n selections the practical worker wants to know
the minimum value x' ; or the maximum value x" ; or, most often
of all, the shortest interval x' to x" associated with a certain
probability value. The probability that the sum of n selections
will be less than x' is given by

F(x)/f (x)- dx,

and the probability that the sum will exceed x" is given by

F(x)/f(x.)dx

Noting that / [x-ba]- dx / [x-ba). dx =i[x, ba} and that
/ [na-ba-x]d:c= [no-bo-x]dx--%-[no- ba-x"],since the
%" e

bracket members are assigned the value zero for values of x which
render them negative, there may be written immediately

(=22 )"1{(1K 2 o)1) (1025 )™ Y2 ) xa)
) +() - 2 "’(1 2P [x'-ZQJ---},

Fo (%" =~—(--—) {(1 K+——) [na-x"]

(o) o2 Jraran o (s o e,
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For x'=na or for x"= 0 these last expressions respectivety should
equate to unity, the fotal area under any probability curve. It is
simple to verify that they do so, and the demonstration will be
given for one of them. For the interval ‘O £ x"¢ q the expression
for F_(x") concludes with the term containing [@-x%) Let there
be added and subhtracted a term involving [ ] to give

ey =‘Tw(“) {(1+K.+——) [na-x"]
(o o2 o2 o
ooy Y] G () (0 o))

From inspection it is seen that this may be written
v - v 1 nl "
F,(x") <P ni(_%).q)'(x)-a ) (1)(1K+ )[x,

where ¢, (x")is the expression introduced pre\ iously. Upon car-
rymg out the operations it is found that - 5 P (x')=1 ,and
D [1]=1. It follows therefore that

F(x")= 1-—“’(‘%))"-1 1) (1 K+ ) [x"] .for Os$x'¢a

and it is apparent now that for x"=0 this expression is equal to
unity. Thus 1t is seen that the function F_(x) also possesses an
end-for-end symmetry similar to that of f (x) The complete
expression corresponding to Fn (x) is equal to anity instead of
zero, however, and where the desired function is represented by a
partial expression it can also be equally well represented by one
minus the remaining terms of the complete expression.

Referring to Figure 3 it is seen that the sum of area A
plus area B. or Fa (x')+ Fa (x,"), gives the probability that

1 | v
x" na

Figure 3
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the sum of n selections lies outside the interval X' to x". In
an actual problem usually either the sum of A and B would be
assigned and it would be desired to find the interval x' to x"
associated with this expectancy, or the interval x' to x" would
be assigned and it would be desired to find the expectancy asso-
ciated with these limits. With f,(x) of the character shown in
Figure 3 and with the sum alone of A and B fixed, any number of
pairs of values are possible for x' and x". It is also clear that
the length of the interval x"-x' will depend upon the relative mag-
nitudes of A and B. There are two special cases, however, which
cover all normal demands. It is seen at a glance that the interval

x"- %' will be shortest for a given A plus B when f,,(x")=f, (¥}

Purely from the standpoint of deviations, this shortest interval
represents the optimum results of which the group is capable.
Where the absolute magnijtude is of primary concern it might be
specified that x'=na-x".

The function which is of final interest, then, is represented by

the sum F,( x')+ Fr (x") , subject either to the restriction that
f, (x') = £, (x") or to the restriction that x'=na-x" . For the
special case of the rectangular distribution fn (%) is symmetrical
about the line x = %9; and the two restrictions imply the same thing.
The symmetry of the rectangular distribution permits giving for-
mal expression to the sum ﬁ,\(x')+ﬁ'(x') as a function of (x"x')
when x'=na-x". Under this condition the sum becomes equal

to 2 F, (') and x' may be written as [."_a'_'-%‘:l’ﬁl_] and there is

obtained

w_ i '
F )+ F (%)= 2F, [L‘E-—‘z-’-‘—-’f—)J , for x~na-%
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For linear distributions other than the rectangular this simplicity
of expression is not possible.

On Figures 4 and 5 are shown graphs of the curves y = F_ (n-x)

for several values of n for the rectangular and for the right trian-
gular distribution respectively. Here again the interval a has
been taken as unity and change in variable has been made to place

all curves to a common base. The values of F, (n.x’)may be read
directly from the same curves, since F, (n-x")=1-F, (n.x') for
corresponding values of x' and x". Finally, on Figures 6 and 7
are shown curves for the sum [ﬁ) &x)+E (x ")] plotted as a func-
tion of (%),subject to the restriction that f_ (x')=1, (x "), for

several values of n for the rectangular and for the right triangu-
lar distribution respectively. The values for Figure 6 were com-
puted directly from the formula given in the paragraph above. For
Figure 7, however, the values were derived graphically from Fig-
ures 2 and 5.

Figures 6 and 7 are applicable immediately to practical prob-
lems. As a simple example, suppose there is at hand a group whose
individuals are known to lie within the limits of D and D+a and
to follow a right triangular distribution with the larger probability
associated with the larger limit, and it is desired to know for the
sum of eight selections what limits may be expected to be associated
with a probability value of 0.01. Referring to Figure 7 it is seen
that the curve for n=8 reaches an ordinate value of 0.0l at an
abscissa value of approximately 0.45. Referring now to Figure 2,
the distance 0.45 is fitted in between the two legs of the curve

] "
or n=8 , and values for —g— and —g— of 0.43 and 0.88 are found.

Consequently it can be concluded that for sums of eight selections
from this group the probability is 0.01 that the values will lie out-
side the interval 8D+3.44a to 8D+ 7. 04a.
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While this study has been concerned primarily with the linear
distribution, it is obvious that the results may find occasional wider

application. The curves for fz (%), f, (0) , etc,, are of a charac-
ter suggestive of distributions that might occur not infrequently
in engineering and physics. If any one of them, say 'Fn (x), is
found to fit the group at hand with practical accuracy, then the
sequence f_(x) , on(x ), fén (x), etc. clearly will give the distri-

bution curves associated with the sums of one, two, three, etc., se-

lections from this group.



