ON CERTAIN DISTRIBUTIONS DERIVED FROM THE MULTINOMIAL
DISTRIBUTION'

By SorLomMoN KuLLBACK

1. Introductlon. With the multinomial distribution as a background, there
may be derived a number of distributions which are of interest in certain prac-
tical applications. Several of these distributions are here presented and the
theory is illustrated by specific examples.

2. Preliminary data. In the discussion of the distributions to be considered
there are needed certain factorial sums whose values are now to be derived.
In the following discussion only positive integral values (including zero) are
to be considered.

There is desired the value, in terms of N, =, r, of

(2.1) SNy =y N

21!zl - v !
where the summation is for all values of z;, 22, - - , T, such that z; 4+ 2, + - - -
+z, = N and no z is equal to r.
Let us first consider the case for » = 0;i.e., we desire a value for the sum in
(2.1) for all values of 1, 22, ---, 2, such that z; + z, + -+ + z. = N and
no z is equal to zero. By the multinomial theorem, we have that?

N! -

N Zn
(22) (a1+a2+--~+an) =Zmal A2" *** Qp
where the summation is for all values of z;, 23, - - - , z, such that z; + 2z, + - - -
+z.=N. Ifay=a,= +-- = a, = 1, then
N N!
(2.3) n = m, $1+x2+“‘+$n=N.

The sum in (2.3) may however be rearranged into the sum of a number of
terms as follows:

(Z"——L: T4+ 24 T =N, noz = 0;

ol zp! - z,!
N!
nle!x2!"‘$n_1!’ x1+x2+“'+xn—1=N, noz = 0;
24
R I N! _N _o:
2 z1! o! Tns!’ Tt o+ t+Z2=N, nozx=0;

...............................................................

|
(n>2~—iv———, 2422+ - + 2. = N, noz = 0.

r 171!132!"' xn_,!

! Presented to the Institute of Mathematical Statistics January 2, 1936.
2 H. S. Hall & S. R. Knight, Higher Algebra, MacMillan & Co., 4th Ed. (1924), Chap. 15.
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128 SOLOMON KULLBACK

Thus we may rewrite (2.3) as
n" = fo(n, N) + nfo(n — 1, N)

2.5 -
@5) + 20D 2 W) 4 (D)= W)

Replacing n by n — 1 in (2.5) there is obtained
(n = 1)" = fo(n —1,N)

2.6
®0 +(n—1)fo(n—2,N)+-~+(n:1)fo(n—r—1,N)+°“

Multiplying (2.6) by n and subtracting the result from (2.5), there is obtained
2" —n(n — 1)V = fo(n, N)

Replacing » by n — 2 in (2.5) there is obtained
(n — 2)” = fo(n — 2,N)
(2.8) n— 2
+o=Din 3N+ (2T —r = LN 4

Multiplying (2.8) by n(n — 1)/2 and adding the result to (2.8), there is obtained

W —nn— "+ "0V 9y = pia, ) 4 2= = D)

(2.9) -1
r(r — n
pin =38 4 47D Vi r -1, W) 4
Continuing this process, there is finally obtained the result that
2100 foln, N) = 0" — ntn — " + "0 D g — o a1

It may be shown® that the right side of (2.10) isA"z" for £ = 0. The author
has elsewhere obtained (2.10), but by a special procedure not applicable to the
general case.*

We may readily verify (2.10) for example, for n =3, N = 5. If z; + =
+ z; = 5 and no z = 0, then the sets of solutlons are (3,1,1), (1,3,1), (1,1,3),
22,1), 2,1,2), (1,22), 3nd fu(3,5) = -5 0 + 30 = 150, From (2.10)
there is obtained fo(3,5) = 3° — 3.2° + 3.2/2 = 150.

3E. T. Whittaker & G. Robinson, The Calculus of Observations, Blackie & Son Ltd.
(1924), p. 7.
4 8. Kullback, “On the Bernoulli Distribution,’”’ Bull. Am. Math. Soc., December, 1935.
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For the general case, we return again to (2.3) and rearrange the right side
into the sum of a number of terms as follows:

4

N!
Zm, fi+ 2+ - +2.=N, noz=r;
n N!
;‘,Em, 424+ Ta=N—-r, noz=r;
(2.11)
"("_I)Z T+ T+ +Tae=N—2r, nozx=r,

2! (7‘!)2 xl'xz x,.,_z!,

...............................................................

k
(Z)(l) ZL, T4+ 2+ + Zak=N-=kr, noz=r.

r! xl!xz!---x,,_k

Thus we may rewrite (2.3) as

n —fr(n)N)+7i]l("‘)'fr(n—l N-—7)

(2.12) aln — DN

T =31y

where N® = NN — 1)(N — 2) -+ (N — k + 1). _
Replacing n by n — 1 and N by N — r in (2.12) there is obtained

(n - l)N_' = fr(n -1,N - 7’)

(2.13) (n _ 1)(N _ r)(r)
r!

- feln — 2, N — 2r) + -

fr(n"2,N"2r) + -

(r)
Multiplying (2.13) by 1—”—:'— and subtracting the result from (2.12), there is

obtained

n(n _ l)N(Zr)

Wfr(n —2,N—2r)—

n
(2.14) n" — ’iﬁ’,— (n — D" = fi(n,N) —
By continuing this process, in a manner similar to that used for the case r = 0
there is finally obtained

(r) - -1 (2r) o
S

By setting r = 0 in (2.15), there is of course obtained the value already
found in (2.10).

We may readily verify {(2.15) for example, forn = 3, N = 5, r = 2. If
21 + 72 + 23 = 5 and no x = 2, then the sets of solutions are (5,0,0), (0,5,0),

(2.15)
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(07075)7 (4’170)7 (1)4’0)7 (1’0)4)) (4’0)1)’ (07174)7 (0’4)1)’ (371’1)’ (17371)’ (1)1’3)
and f»(3,5) = 3-5!/5! 4 6-5!/4! + 3.5!/3! = 93. From (2.15) there is ob-
tained f2(3,5) = 3° — 3-5-4-2°/2! + 3-2.5-4-3-2/21(2))* = 93.

‘The same method of procedure may be applied to evaluate

N!
(2.16) fr....,(n, N) = Z

el oy atatoc+a=N,

nor=r,s, --,ort
Thus, there is derived the result that

(r) __ 1\N—r (s) _ 1)N—
ff.(n,N)=n"—n(N (nr! Y +N (ns! 1 )

N(2r)(n _ 2)N—2r N(H-l)(n _ 2)N—1-a
+nln — l)( p1Hca) R Y )

N(2a)(n _ 2)N—2a N(ar)(n _ 3)N~—3r

gt —) = e = (TR
N(2r+a)(n _ 3)N—-2r—-l N(r+2c)(n _ 3)N—r—2¢ N(aa) (n _ 3)N—3a

T 3 X ) B ¥ = ) e M V¥ ) )

We may readily verify (2.17) for example, forn = 3, N = 5,r = 0, s = 2.
If 2, + 22 + 23 = 5 and no z = 0 or 2, then the sets of solutions are (3,1,1),
(1,3,1), (1,1,3) and f02(3;5) = 3-5!/3! = 60. From (2.17) there is obtained
fa(3,5) = 3° — 3(2° + 5-4-2°/2) + 3-2(1/2! + 5-4/2! + 5-4-3-2/(2))*) = 60.
It will be shown later (see section 8) that

(2.17)

(8)
51, M) = fultn, W) + "2 fuln = 1N = 9)

(2. 18) ( l)N(2n)
2 e - =2
(r)
fl(n, N) = fn(n, N) + n——iv'—‘ fr.(n —_ ].,N bl 'I')
(2.19) )

n(n _ I)N(2r)
MTIC)E

From (2.18) and (2.19) there may be derived, by a method similar to that
employed in deriving (2.15), that

()
n];" fr(n - lyN - 8)

filln —2,N — 2r) 4 -+~

fra(n, N) = fr(n; N) -
(2.20)

n(n _ l)N(za)
T 2T

This latter result also follows from (2.17 and (2.15).

fln —2, N —25) — -
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Let us now consider the following generalization of (2.1). There is desired
in terms of N, n, 7, a1, a2, -+ , @x, the value of

!

(2~21) Fr(n)N’al’a27 e ’an) = Za’:‘ﬂ‘;;!]\é“faa?a? . a:v:u"
where a;, az, ---, a,, are constants and the summation is for all values of
Ty, Tz, -+ ,Tysuch thatzy + 2 + --- + 2, = N and no z = r. The method
of procedure is the same as that for the case already considered, viz when
G =G = -+ = a, = 1.

The sum in (2.2) may be rearranged into the sum of a number of terms as
follows:

N!
Yoy e dl, mtmd 4 z=N, noz=r;
N
z1 Zn—1
——————————— .. a al DY a _l
rl <zl -z, " Z xu—l' e
T+ T +x,._1=N—r,etc., nozr=r;
@22 B R RRCLLEERRRREERLLLLEES
ai - ag N! Thi1 =
2 ; Q1 G
o.ox"
-i-a:‘_k+1 “.a:‘Z N ait - a
(rhy* rARERE nks

o+ a+ -+ 2ok =N—kryete., noz=r;

...............................................................

For convenience, let us write

A(n,N) = (@1 + az + -+ + a.)¥

Ain — 1, N) = (a1 + -+ + air + asn + -+ + an)¥
Aiin—2,N)=(a1+ -+ aia+ain+ - +ai1+aa+ - +a)¥

...............................................................

Gr(n" N) = Fr(n’ N’ ai, az, * - - ’aﬂ)
G,-(n bt 1, N, a;‘) = F,-(n - 1, N, a1, A2, *** , Qi—1y Qig1,y **° )a'ﬂ)

(2.23)<

G(n—2,N,a:,0;) =F:(n—2,N, a1, -+, @i1,Gi41, "+, 8j1, 851, * * *, Gn)

...............................................................

so that (2.2) may be written as

(r) n
A(n,N) = G(n,N)+N— a.G(n—-lN T, a;)

(2.24) an
N T, n ) )
+ T (rl) 2 aiajGn — 2,N — 2r,a;,0;) + --- (i #j, ete.)

1,7=1
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From (2.24), there are obtained n equations
(N _ r)(r)

Ain —,N—-r)=G(n—1,N —r,a;) + i

(2.25)

n

Za,G(n—2N—-2r,a,,a,)+ =1,2:--,n,j#1)

=1

Multiplying (2.25) by aiN’/r! and subtracting the result from (2.24), there
is obtained

a;N?
Amm E'TA@,LN—ﬁ=mmm

=1
(2.26) N
T T () 4 Z a;a;G(n — 2,N — 2r,a;,a;) — -+ (i # j, ete.).
Continuing this procedure, there is finally obtained
(r)
G.(n,N) = Fi(n,N, a1, 03, -+ , 0,) = A(n, N) — N
kid (27) n
(2.27) Z; a;din —1,N —r) +21'V( P Z ajajd;n —2,N — 2r) —

(2 # j, ete.)

Similar results are obtainable for

N' z z Z,
(228) G,-,...g = F,,...,(n, N, Ay1,0z, -, an) = Z PR S —— al'azz e apt
)zl z,!
where the summation is for all values of z; such that z; + 2 + -+ + 2, = N,
andnozxz =r,s, ---,ort.
Thus, it will be shown later (see section 8), that

(8) n

G.(n,N) = G(n,N) + A;' > aiG(n — 1, N — s,a;)
i=1

(2.29)
N(2a) n
+ 21 (sN2 4 Z aia;Gn(n — 2,N — 2s,a,a;) + -+ (7 5 j, ete.)

Corresponding to the derivation of (2.27), there is obtained from (2.29)
the fact that

(c) n o,
Za,G(n 1,N —s,a:)

Gn(n; N) = Gr(n) N)

(2.30) .
N 8 n ) )
+ 3 2T (sNE & Z aia;G{n — 2, N — 2s,0a:,a;) — -+ (i # j, etc.)

3. The problem to be studied. Consider a trial in which one of » mutually
exclusive events may occur, with the respective probabilities of occurrence -
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D1, P2, **:, Pn Where py + po + -+ + pa = 1. The probablhtles of the
various combinations of events Whlch are possible in N trials are given by the
terms of the expansion of (p1 + p2 + - -+ + Pa)¥.

In the N trials some of the possible events may not occur, others may occur
one, twice, etc. It is desired to study the distribution of the number of events
which do not occur; the distribution of the number of events which occur once
each, etc. The simultaneous distributions of the events above described are
also to be studied.

For example, the possible event may be the occurrence of a digit. A study
of a sequence of random digits, in sets of ten, yielded the following three
sample sets.

o|1]2(3]|4|5]6]|7]8]09

Tlolz|1l1]z2|1]olo]|2

111|111 ]|2]o|1]1

olo|l2|1|2|1|2]|1]0]1
Fi16. 1

In the first set three events do not occur, four occur once each, and three occur
twice each. In the second set one event does not occur, eight events occur once
each, and one event occurs twice; etc.

4. Distribution of the number of events not occurring. To obtain the distri-
bution of the number of events which do not occur, there is applied to the
expansion of (p1 + p2 + -++ + pa)¥ a procedure similar to that employed
in section 2.

Thus, if 0 represents the probability for r events not occurring, then

( N! z Z Zn
roo=2_‘—_x,,‘zp1‘pzz~-pn, Ti4 2+ -+ 2. =N,

1121! Itz! e
noz = 0;
N! Zn
o=, x'———,m A R Z 'pl R
2
(4.1) x1+'x2+--~+x,,_1=N,etc., noz = 0;

N! N! -
T = Z—“—,f}—,pfﬁ‘ R 4 SR +le|—,,,5—,1’f’ ce PRI,
i e . n—re
42+ - + &= N,etc., noz=0;

................................................................
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Employing (2.21), we may write (4.1) as

70 = Fo(n, N, p1, D2, -, Pn)
7r10=Fo(’n—1,N,p2, D) e + Fo(n — 1,N,p1,pz, “t ) Paot)

..............................................................

1r,o=Fo(n—T,N,pr+1, "‘;pn)'F te +F0(7P_7',N’Pl, T :p"—f)
Since py + p2 + -+ + p, = 1 there is found from (2.27) that

4.2)

.
n 1 n

1roo=1—zl(l—l’i)N+'2—' ‘Zl(l—pi—Pi)N
. = L=

1 n
—57, 2 QU=pi—pi—p)" + -
. 1,7,k=1
T = Zl (1 —p)" - .El(l —pi — )"
1= 1,0=
1 n
(43) +35i.2 O=pi—pi—p)" — .-
e 4,7,k=1
1 n n
T = 579 2 (1 —pi—p)" — E (I—pi—pi—p)" + -+
2! 5= i,f =1
1 n
Ty = g{z (1= pi—pi—p)" — }
o \%,7,k=1

....................................... (z‘ P j, etc‘)

The factorial moments® of the distribution given by (4.3) are easily derived.
The first factorial moment is given by o1 = my9 + 2 + 370 + - - - +rro4 -
and the summation of the proper terms in (4.3) yields

(4.9) =2 1-p)"

In general, the r-th factorial moment, given by o, = > k(k — 1) ---
k=r

(k= 7+ Drois

@5 o= 3 (—pi—p—- =), (a=b,etc).

Indeed, (4.3) illustrates the fact that, if f(z) is the probability that a discon-
tinuous variate takes the value z, then®

n—x

(4.6) @) = %,; (=1) 0upn/k!

¢ J. F. Steffensen, Interpolation (1927), p. 101.
8J. F. Steffensen, ‘‘Factorial Moments and Discontinuous Frequency Functions”
Skandinavisk Aktuarietidskrift, Vol. VI (1923), pp. 73-89.
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The moments about any constant of the distribution given by (4.3) may be
derived from the factorial moments by the relation’

@47 E@—a) =1+ ald+ od/21+ -+ + 6,A7/r)-£ (¢ = —a)

where A is the difference operator of the calculus of finite differences, and ¢
is replaced by (—a) after the indicated operations have been performed.

Of special interest is the case when p; = ps = -+ = p, = 71&’ for which (4.3)

oo = (%)Nfo(n, N) = (%)N N
o = (1>N nfoln — 1,N) = (%)NnA"_ION

n

..........................................

o= (- (o

..........................................

where fo(n, N) and A"0" are as defined in section 2. The probabilities in (4.8)
N
are the respective terms of the expansion of (%) 1+ a)"-0".

becomes

(4.8)

For this case the r-th factorial moment becomes
4.9) o-,=n(n—-]_)...(n_r+l)(n_r)N/nN

There is presented an example of the distribution (4.8) for the case n = N = 10.
It is found that®

(A0® =1 A" = 16435440
A" = 1022 A'0" = 29635200
(4.10) {A%0"° = 55980 A%" = 30240000
A%0"° = 818520 A%0" = 16329600
(4% = 5103000 A"0" = 3628800
o = .000362880 me = .128595600
mo = .016329600 meo = .017188920
(4.11) {mp = .136080000 o = 000671760
T = .355622400 T = .000004599
(im0 = 345144240 T = .000000001
£12) o1 = 3.486784401 m = 3.486784401
{* o; = 9.663676416 o = 0.992795358

n
7 This result is derived as follows: (z — a)* = (1 + A)*-(—a)"; E(z — a)" = Z (x —a)r
z=1

(e = (Z (1 +A)’-f(x))-(—-a)' = (Z (1 + 28 + z(z — 1)ay/2! + ---)f(a:))-(—a)'. For

z=1 z=1
a bivariate distribution it may be shown similarly that, symbolically, E((z — a)*(y — b)*)
= {exp(o1. A1 + 0.1 As)} - (—a)"(—b)* where 01.™0.1* = oms and A; operates only on a and Ay
operates only on b. A similar result may be derived for a multivariate distribution.
8 cf. Whittaker & Robinson, op. cit. p. 7.
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The observed distribution was obtained by distributing 200 sets of ten digits
each, the digits being found in Tippet’s Random Sampling Numbers." The
results obtained are given in Fig. 2. Three of the 200 observed sets were
illustrated in section 3.

The agreement between observed results and theoretical values is gratifying.

5. Distribution of the number of events which occur once each. Let m,
represent the probability that there are k events which occur once each. Thus,
the various probabilities, obtained by rearranging the terms of the expansion of
(p1+ p2 + -+ + p.)", are as follows:

N! - s
oL = Empll‘“Pn", T+ 2+ - +2.=N, nozx=1;

T
N! Zn AT! z Zp—
1r11=p12mp;2 ...p” + cee +p"2mpll ...pn_ll’
T4+ 2+ -4+ 2paa=N—1,etc., nox=1;
570 I
N! Tk+1 Zn
1rk1=p1pz"'pkzmpk+1 o Pu At Prkgr ctPn

N! Z1 Zn—Fk
Z 171! e :c,._,,!pl Pk,

Zi+ 22+ -+ Tk =N —k,etc., noz=1;

Y

No. of event Ob: d .
not occurring| frequency | Jheoretical | 21y | Observed
x
0 0 0.08 0 0 5 = 3.46
1 8 3.26 8 0 5, = 9.61
2 22 27.22 44 44 £ = 3.46
3 72 71.12 216 432 & = 1.0984
4 72 69.02 288 864 " Theoretical
5 21 1 25.72 105 420 Parameters
6 4 3.44 24 120 o = 3.49
7 1 0.14 7 42 o, = 9.66
8 0 0.00 0 0 m = 3.49
9 0 0.00 0 0 o =0.99
200 200.00° 692 | 1922
Fi1a. 2

* L. H. C. Tippet, Random Sampling Numbers, Tracts for Computers, No. XV (1927),
London.
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In view of (2.21) and (2.27), it is found that (5.1) becomes

( < 4 NN -1) & -
Tor = l—NZlP-'(l—Ps)N 1_,__%_2.211,’.?7.(1_1,‘,_1,7.)” T
t= . $,jm=

(62){™ = N{Z pi(l —p)" " — (N —1) Z pipi(l —pi—p)" P 4 - }
=7 p==] =1

NN —-1) ¢ .
T = N - 1) 30 ){“Z_:l Pipi(l — pi — )" " = -+ }
R R R R R R AR (1: 3 j, ete.)
From (5.2) there is readily derived the fact that

o=NN-1)---N—-r+1)

(5.3) n ’
b;_lpapb"'pr(l—pa—pb—.......pr)N"’ (a;éb,etc.)
For the case in which p; = p, = -+ = p, = %, the distribution in (5.2)
becomes
4 1 N
To = (7—) filn, N)
1 N
Ty = (1—)) naNfiln — 1, N — 1)
N —_— —
(5.4) 4 - 1\" n(n — YNV — 1) fn—2, N —2)
n, 2!
Tl = 1 Y(n N(r)f(n_r N-—r)
rl = n ’ 1 y

where fi(n, N) and N have been defined in section 2. For this case (5.3)
becomes

(5.5) o = nON(n — r)" /0¥
Evaluation of (5.4) and (5.5) forn = N = 10 yields,
701 = 00811639 ma = .27052704 ma = .01632960
5.6) m = .04794633 m = .15621984 m = .00000000"
’ T = .14082336 me1 = 12700800 mn = .00036288
m = .21089376 T = .02177280
BN = 3.87420489 m = 3.87420489
"o = 13.58954496 o = 2.45428632

10 For the case n = N = 10 there cannot be 9 events occurring once each, since then the
tenth event must also occur once.
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The observed distribution, given in Fig. 3, was obtained from the 200 sets
previously considered.

The agreement between the observed results and theoretical values is
gratifying.

6. Distribution of the number of events which occur » times each. Let
mir Tepresent the probability that there are k events occurring r times each.
Thus, the various probabilities, obtained by rearranging the terms of the ex-
pansion of (p1 + p2 + -+ + p,)", are as follows:

No. of events Observed .

Sourng | froquency | Theotiall g7 | geny | Qbserved,
z
0 1 1.62 0 0 s = 3.905
1 10 9.58 10 0 2 = 14.000
2 30 28.16 60 60 £ = 3.905
3 37 42.18 111 222 s2 = 2.656
4 62 54.10 248 744 Theoretical
5 27 31.24 135 540 Parameters
6 22 25.40 132 660 o1 = 3.874
7 3 4.36 21 126 o2 = 13.590
8 8 3.26 64 448 m = 3.874
9 0 0.00 0 0 o2 = 2.454
10 0 0.08 0 0

200 199.98 781 2800
F16.3

©.1)¢

N! , n
‘“'°f=ZTHP1""Pn, n+2+4+ - +2.=N, nozx=r,

4 N! Znm
1l'1r=%lz:—-—'172 "'pn Z 'pl pn—l‘,

x1+xz+---+x,._1=N—r,etc., noz =r;

_PIPEPI:Z N! pzkﬂ :u+

zl k1 P

e T .
+p k?;!)k P Z |p11 pf\—kk!

1! Ta!
T+ 2o+ - + Tox =N — kr,etc., nozx=r;

...............................................................
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In view of (2.21) and (2.27) it is found that (6.1) becomes

( N ” & r N—r N @n - r r N—=2r
mr =1 —"— 3 pi(l — p)"" + 2 pipi(l— pi— p)¥ ¥ — ...

rl & 2'(7")2 $,5m=1
N(r) n . . N —r (r) = . . 2
62){™ =7 {Z:lp‘(l — P (*r!)‘.-,-z-l”"p"(l_p‘_”")‘v ke

N @n = r_r N—2r
Tor = 5,—(—;,)2{‘};_,1 pipi(1 — pi — p;) - }
L T T T T (1: # j, etc')
From (6.2) there is readily derived the fact that

(kr) n

(6.3) or = ](\;—')k- . Zk_l abs Pkl —pa—po— -+ — )", (a5 b, etc.)

*r

For r = 0,1 (6.2) and (6.3) reduce to the values previously derived.
For the case in which py = p» = -+ = p, = %, the distribution in (6.2)

becomes
1 N
_ (ﬁ) Si(n, W)
N (r)
Tir = (l) %fr(n - l,N - r)
(64) n ri

o = (}L)N(Z) %Vr:—;,: filn — b, N = kr)

..................................

where f,(n, N) has been defined in section 2. For this case (6.3) becomes
(6.5) ox = N n®(n — fyV=4r /¥

7. Simultaneous distribution of the number of events not occurring, and of
the number of events occurring once each. The probabilities for the simul-
taneous occurrence of the various combinations of the number of events not
occurring, and of the number of events occurring once each, are given by rear-
ranging the terms of the expansion of (p, + P2+ -+ + p.)", and are given
as in Fig. 4.

In Fig. 4 none of the subscripts take on equal values simultaneously, and Gy
has been defined in section 2. Summation of the values in the k-th column
of Fig. 4, yields the probability that there are (k — 1) events not occurring.
Comparison with (4.2) yields

FO(n:N;plyp?; e :pn) =Go(n,N) = GOI("";N)+N;I)€G01(7&— l,N— l,p;)
(7.1) -

@ =n

+ 57 2 PepiGuln — 2N —2,p,p) + -, (6 j, ete.)
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Number of events not occurring

0 1 r

0 Gbl(ﬂv, N) Z GOI("' - 1: N: p")

t=1

n n
1 szeGox(‘n—l,N—l,p;)N Z PiGn

=1 $,j=1
(n-2,N-1, D, D;)
N & No &
2 (5 y 2y 2 Ga T psP'Gol
2! i,iz—l 2! $.7 k=1 ’

(ﬂ—z:N—2,PfPi) (”_3!N_-2r Pi> Piy Pk)

N @ d

Tl 8’ a, b, *8,a,B,° '/',p-l

p-pb"'paGOI(ﬂ—f—Q,
N —38,Day **+, Day
Day *** 5 D,)

Number of events occurring once each

Fic. 4

Summation of the values in the k-th row of Fig. 4, yields the probability
that there are (k — 1) events occurring once each. Comparison with (5.2)
and (2.27) yields

Fl(n’N:phpz: e ;p») = Gl(n;N) = GOl(n,N) + ;GM(n - l,N,p.')
(7.2) B

n

1
+2-,,

D=

lGol(n —2,N,ps,pi) + -+, (i j,ete.)

If we use z to represent the number of events not occurring, and y the number
of events occurring once each, then it is found that

EJ;(') (2) = '=N(a) = a oo (1 —pg — o —
(73) ( v ) o a.b.n-,:.az.ﬁ.'".p-lp P P ( p P
— Pa— o — )", (a%b,ete.).

If ¢%i1 represents the average number of events not occurring, when there
are k events occurring once each, then from Fig. 4 there is found that

;Gol(n -1,N,p:) +2

+3 E GOI(n - 3’N’p‘)pi)pk)/3!+ et
@4) oo = = (¢ # j, ete.)

G01('n, N) + Zl GOI('n - 1’ N) p‘)

- iGOI(n— 2)N’p")pi)/2!

=

+ Z Gu(n — 2,N, p;, p))/2! + - -

4,7=1
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In view of (7.2), (7.4) reduces to
.5 oo = (3 60, N,20) / 610, W)

A similar procedure, yields, in general
6) bZ“lpapb---kal(n—k—l,N—k,pa,pb,"',pk,pz)
7.6) Ty = 2=

n

abuz-:kélpapb Ut kal(n - k’N - k)pa’pb’ e ’p")
(a 5= b, etc.)

If 1§ represents the average number of events occurring once each, when
there are k events not occurring, then from Fig. 4, there is found that

N{Z piGun — 1,N — 1,p,) + 2(N — 1)

=1

i;; i p; Gu(n — 2,N —2,p;,p;)/2! + -- }

(7.7 1700 = - p (7 # j, ete.)
Gu(n,N) + N ‘;l PiGu(n — 1, N — 1, p;)
+ N® Z‘l PipiGuln — 2, N — 2, p;, p;)/2!
$,7=

In view of (7.1), (7.7) reduces to
(7.8) 1900 = (NZ1 piGo(n — 1, N — 1, pi))/Go(n, N)

A similar procedure, yields, in general

N > pGln—k—1,N—=1,pa,0, , 0, 11)
(7.9) 1Gro = —Zbiwki=l (@ =D, etc.)
ab-‘z-k-l Go(n — kyN,Da, D5, """ ’ D)
For the case in whichp, = py = --- = p, = 71&’ as may be found from Fig. 4,

the probability for the simultaneous occurrence of r events not occurring, and
s events occurring once each, is given by

N (r+n)' (3)
(7.10) (l) n N i—r—s N —s)

n rls!
For this case (7.1), (7.2), (7.3), (7.6), and (7.9) yield respectively

rary 20 W) = fal, W) + njutn = 1N = 1) + (3Nt — 2
N—2+ .-
(7.12)  fu(n, N) = fa(n, N) + nfu(n — 1, N) + (g)fm(n —2,N)+ ---

(7'13) Tre = N(')n('“)(n - r - S)N_’/nN
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Let us consider again the case whenp, = ps = - = p, = %and n =N = 10.

Evaluating (7.14) and (7.15) by means of (2.15) yields
ofn = 5.71 ofs1 = 3.02
oIun = 5.21 oZer = 2.10

(716) ﬁoil-izl = 451 oInn = 2.00
05;31 = 4.10 oflu = 100
go.’Eu = 328 0»'591 = 000
(1500 = 10.00 o = 1.83
o = 8.00 1Je0 = 0.89

(717) 11920 = 6.16 1J10 = 0.27
11730 = 4.50 1'.1780 = 002
\1“1700 = 3.05 1',1790 = 0.00

The 200 sets of observations already considered yielded the simultaneous
distribution given in Fig. 5.

Number of events occurring once each

Number of events not occurrir_ig

1 2 3 4 5 6 7 8 z
o0 1 | | | 1]7.00
1 1 |6 |3 10 | 5.20
2 16 (13 |1 30 | 4.50
3 35 | 2 37 | 4.05
4 42 |20 62 | 3.32
5 27 27 | 3.00
6 19 |3 22 | 2.14
7 3 3| 2.00
8 8 8| 1.00
9 0
10 0
8 22 12 l12 |21 4 1 | o 200
g 8.00 6.16| 4.46 3.03) 1.81/1.25/0.00

Fi1a. 5
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The distribution in Fig. 5 yields 61 = 11.89, (7.13) yields o1y = 12.07959552.
The agreement between the observed results in Fig. 5 and the theoretical
values in (7.16) and (7.17) is gratifying.

8. Simultaneous distribution of the number of events which occur r times
each, and of the number of events which occur s times each. The probabilities
for the simultaneous occurrence of the various combinations of the number of
events which occur r times each, and of the number of events which occur s
times each, are obtained by rearranging the terms of the expansion of (p1 + p2
4+ -+« 4+ p)". If w1 is the probability for the simultaneous occurrence of
k events which occur r times each and I events which occur s times each, then

N(Icr+ls) n
®1) T RIIGDE (s a,b,-...mz,;,.‘.,x=l Pa"" PePa
mn—k—=1N—kr—18,Da, ", Dk, Pay "+, D), (a7b,ete)

PGy

where G, is defined in section 2. .
From (8.1) and (6.2), there is derived, in a manner similar to the derivation
of (7.1) and (7.2), the result that

(a) n

Z pz ra(n -8, p,)

F.(n,N,ps, -+ ,pn) = G:(n,N) = Gy(n, N)-|-

(8.2) .
N 2] n s . .
+ 51 21 (st % Z PipiGr(n — 2,N — 25, pi, p;) + ---, (i 5 j, etc.)

and a similar result by interchanging r and s in (8.2).
For the distribution given by (8.1), it is found that

N(kr+ls) n
®3) 0T GhEGY bkz,,m Pa " PkPa " Pr
Q=pa— ot —pr—pa— - —2) 7, (aDb,etc)

If ,&;, represents the average number of events which occur r times each
when there are [ events which occur s times each, then from (8.1) and (8.2),
in a manner similar to the derivation of, (7.6), it is found that

(N—=19" > piph-mGn—1—1LN—7—1spa,Da, ", )
~ a,a, ", A=1
rLls = Py e -

(8.4) Pl > phe piGln = LN = s, pa, e, DY)
a, s \=1
{a # 8, ctc.)
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If .- represents the average number of events which occur s times each
when there are k events which occur r times each, then by interchanging % and i,
and 7 and s in (8.4), there is found

n

(N —kr)® ;ﬁ_lz’; o piPaGi(n—k—1,N —kr —8,pa, "+, Pk, Pa)

.?71" =

(85) P; s Pl:Gr(n - k: N - kr, Pa, ", pk)

(a > b, ete.)

ab, - k=1
For the case when py = ps = - = p, = 71—7-/, it is found that (8.1), (8.2),

(8.3), (8.4), and (8.5) respectively yield

1 N n(k+l)N(kr+la)
(8-6) Tkr,ls = (;,,) miﬂ(n -k - l,N — kr — ls)
(s)
fn, N) = fuln, N) + ”1;7, frln — 1,N —s)
1 '
+%—f"(n—2,zv—2s)+
(88) on = n(k+1)N(lcr+lt)(n —k - l)N-kr—lc/(r!)k (3!)1 nN

89) F=mn—-—DWN—=18)"fn—-1—=IL,N—r—1Is)/rlf(n —1,N —ls)
(8.10) gir = (n — k)N — kr)?fo(n —k — 1, N — kr — s)/s!f.(n — k, N — kr)

For r = 0, s = 1, the results derived in this section of course reduce to those
already derived in section 7.

9. Conclusion. It is clear that the same method of procedure may be em-
ployed to study the simultaneous distribution of the number of events which
oceur r, s, - -+ , t, times each. However we will not continue the discussion
any further.

We have thus seen that the multinomial distribution serves as the back-
ground for the study of a number of distributions which have certain practical
applications.

The theory discussed herein has been illustrated by several examples which
yielded gratifying agreement between observed and theoretical results.

WasHINGTON, D. C.



