ON THE POLYNOMIALS RELATED TO THE DIFFERENTIAL EQUATION
1 dy a + aiz _ N

BY Frank S. BEALE

Introduction. In a previous issue of this Journal' E. H. Hildebrandt has
established the existence of a general system of polynomials P,(k, x) associated
with the solutions of Pearson’s Differential Equation

ldy N

ydr D’

N and D being polynomials in x of degrees not exceeding one and two respectively
with no factor in common.

It was shown that the polynomials P.(k, z) = P, themselves satisfy certain
differential equations and a recurrence relation. The classical polynomials of
Hermite, Legendre, Laguerre, and Jacobi are special types of P,(k, ). Since
the classical polynomials are employed rather extensively in statistical theory,
certain of their properties are of special interest.

It is the purpose of this paper to determine from Hildebrandt’s general equa-
tions some new properties of P,(k, z) and to apply these properties to the
classical polynomials. The paper consists of two parts. In part I some
theorems are established concerning common zeros of D and P,,. In particular,
a theorem is established to exhibit the conditions under which the zeros of P, ,
which are not zeros of D, are simple. In part II a method is outlined for the
classical polynomials by which one can determine the number and location of
the real zeros in the various segments into which the zeros of D divide the z axis.
The points of inflexion and the degree of the polynomials are also considered.

A new feature of the method employed is, we believe, its being based upon the
use of differential equations of first order, for most part, while other investi-
gators® have employed differential equations of second order. As to the results
obtained, the author believes them to be partly new. They have points in
common with the results of Fujiwara, Lawton and Webster.
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1. Theorems Concerning Common Zeros of P,(k, z) and D
The following equations will be employed later:
) Pk, z) = [N + (k — n)D'|Pa(k, ) + DP,(k, ).

2 - n D"] P.(k, 7).

@ Plh, ) = (n + 1) [N' +
Pn+1(k) 18) = [N + (k - n)D,] Pn(k’ x)

+ n[N’ + 2’““—;""-1 D"] DP._y(k, ).
These are not explicitly given in Hildebrandt’s Paper but the method of obtain-
ing them is outlined there in detail.

We shall make use of the following lemma which we state without proof.

Lemma (1). Let P.(z) be a polynomial of degree n. If both P, and P, contain a
factor (x — a)™, m < n, then P, contains the factor (x — o)™

We also need an expression for P\2,(k, z). By repeatedly differentiating (2)
and eliminating P, (k, z) we get,

@)

g-1 .
PO = [T +1-9) [N' + ﬂ“—“-}i?z)"] Pognlk, 2),

@ g=1,2 - (a+1)

Theorem I,. If D is a perfect square, D' is not a factor of Pny (k, x), n =
0,1,2 ...

Proof: Assume D’ to be a factor of P,y;. From (1), D’ is either a factor of
P,orof N 4+ (k — n) D’. But D' is not a factor of N + (k¢ — n) D’ as this
implies that D’ is a factor of N contrary to hypothesis on (R) that D and N
have no factor in common. Thus, D’ is a factor of P, , and by a repetition of the
reasoning a factor finally of P, which as it was just pointed out, is impossible.

Theorem I,. Set D = (aux + Bi)(cax + B2), D not a perfect square. If
ax + Bi,t = 1 or 2, is a factor of P, , then (aix + B:)? is a factor of Prig,
¢=12 3’ e

Proof: From (1), a;x + B: being a factor of P, and D, is also a factor of
P,.,. From (2), a;z + B is a factor of P,,;. From Lemma (1) it follows
that (a;x + B:)° is a factor of P,,,. Continued repetition of the reasoning
establishes the theorem.

Corollary. If both ayx + 1 and asx + B are factors of P, , then D? is a factor
Of P ntg—1 +

Theorem Iy. Assume D of the same form as in Theorem I,. If ax + B;,
t = 1 or 2, is a factor of P.y1 and no higher power of ax + B; s such a factor then
ax + Bi s a factor of N + (k — n)D’.

Proof: From (1), a;z + B; being a factor of P,y and of D is also a factor of
either N 4 (k — n)D’ or of P,. But aiz + B; a factor of P, requires, from I, ,
that (a;z + B:)° be a factor of P,; contrary to hypothesis. Thus, a;z + B;is a
factor of N 4+ (k — n)D'.
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Corollary. If (asz + Bi)(cax + Ba), (ar, o = 0), is a factor of Pny1 and no
higher power of either anx + By or ast + Bs is contained tn Priy then N+ (k- n)
D' =0. ForfromI;, N + (k — n)D’ contains (cux + B1)(aex + Be) as a factor
which implies N + (k — n)D’, being linear, vanishes identically.

Theorem I. If (az + B:)° and no higher power of ax + B; is a factor of
Piq1 then asz + Bi and no higher power of aix + B is a factor of P, .

Proof: Let us write,

(A) Prig1 = (@ + B:)? ¢n1, $a1 = & polynomial of degree < n — 1 which
does not contain the factor aix + B;. Taking the (g — 1)** derivative of (A)
by Leibnitz Theorem, we get,

<! J —1—i
— g—1\ d d?
(B) Psfﬁ-qlll = .Z,% < z ) a-;, (a.-x + B")q d—x;:_l—_,- ¢n—-l:
On setting ¢ = ¢ — 1in (4) there results,
g2 .
©) P&L, = -Ho(’“”" 1 _i)[N,+2k—n_2q+z+2D,,:|P”_

From (B) we see that azz + B: is a factor of P%2,. No higher power of

a;x + Biis such a factor. From (C) our theorem now follows.

Corollary (1). Under the hypotheses of Theorem Is, ax + Bi is a factor of
N + (k — n + 1)D’. This follows at once from Is and I5 .

Corollary (2). If D* = (asz + B1)° (e + B2)%, (oa, a2 # 0), vs a factor of
P..o1 and no higher powers of either axx + By or sz + B are factors, then N +
(k — n + 1)D’ = 0. For the linear expression N + (¢ — n + 1)D’ contains,
from Corollary (1), the quadratic factor (csz + B1) (cez + B2).

The following lemma can be easily established and is given without proof.

Lemma (2). Assume D of the same form as in Theorem I . Then there s only
one value of s for which N + sD’ contains a;x + Bi as a factor.

Theorem Is. Assume D of the same form asin Theorem I, . If N + (k — n)D’
contains aix + Bi, 1 = 1 or 2, as a factor, then Pny1 contains o + Bi and no
higher power of ax + B; as a factor.

Proof: From (1) we see that P, contains a;x + B: at least to the first power
as a factor. Again from (1), if P, contains a higher power of ax + 8: as a
factor, this means that both P, and P! contain oz + B; at least to the first
power as a factor and from Lemma (1) it follows that P contains a;x + B; at
least to the second power as a factor. By corollary (1) from Theorem I, it
follows that aux + Bs is a factor of N + (k — ny) D’ for ny < n, contrary to Lemma
(2).

Theorem Is. If axt + B1 and asx + P: are factors of N + (k — n)D’ and
N + (k — ny)D’ respectively, (a1, oz 5 0), then Py = 0, p > m + ns .

Proof: From Theorems Iy and I, we see that (az + B)™ (anx + B2)™, of
degree n; + m2, is a factor of Pnyyn,, of degree n + m1 at most. Similarly,
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(az + B)™" (aux + o)™, of degree np + n; + 2, is a factor of Pnyyny41, of
degree me + m; + 1 at most. This implies P, 40,41 = 0. Hence, P, = 0,
w > m + ne. Infact, (1) shows that P, = 0implies P, = 0, » > p.

Theorem I;. Assume D of the same form as in Theorem I.. Then P,1 = 0,
P, &£ 0, implies either N + (k — m)D’ = 0, m < n, or there exist two values of
m, (my, mg), such that N + (¢ — m)D’, N + (k — m)D’ contain as factors
az + B1 and axx + B2 respectively, (my , my < n).

Proof: Setting P, = 0in (1) gives,

(1 [N + (k — n)D'] P, + DP, = 0.
If P, = const., 1° shows that N + (k — n)D’ = 0 and our theorem is verified.
Suppose P, # const. We get from (1°),

[N + (k - n)D’]Pn.

’
P, =— 5

Thus, D is a factor of the numerator, and our theorem now follows from Corolla-
ries (1) and (2) of Theorem I, .

TheoremIs. IfN + (k —m)D'#0,m = 1,2, ... n,and if N + (k — m)D’
contains neither aux + By , nor asx + B as factors, then P,y and D have no factors
in common. This follows at once from Theorems I and I, which constitute a
necessary and sufficient condition that P, and D have factors in common.

Theorem Iy . If N = const. and if D is linear, all P, are constants, n = 1, 2, 3,

This follows directly from (2).

Theorem I,. If N' + 2k ; ™ p #Z0,m=12 ... (n—1),all zeros of P,

which are not zeros of D are simple.

Proof: Suppose P, has a multiple zero z = « which is not a zero of D. Then
(1) shows that o is a zero of P,;;. From (2), a is a zero of P,,;. From
Lemma (1), « is at least a double zero of Ppy1 . 'Furthermore, (3) shows that o
being a double zero of P, and of P, is also a double zero of P,_,. By a con-
tinued application of (3), it follows that « is a double zero of P; which is impos-
sible since P; is of degree < 1.

II. Concerning the Zeros of P,(k, z)
The polynomials P,(k, ) are defined by Hildebrandt® as follows: P,(k, z) =

1 . d"
~prk 2
y dz»
equation

D*y where y is a non-identically vanishing solution of the differential

dy a + a1z

ldy _ ataz _N
ydz bt iz + bzt D

3 L.c. pp. 400-401.
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The Jacobi Polynomials are defined as follows:

o d

e [xn+a—1(1 _ x)n+ﬁ—1], @, B

Tn(e, @, 8) = 2 7*(1 — )"
real. It follows that J.(z, a, B) is a special type of P,(k, z) with N = (—f—a)
z+4+ o D=zl — z),n =k + 1, whence,

N = —B8—aq, D =1 — 2z, D" = —2; D(0) = D(1) = 0,
Py(k, z) = N + kD' = 0 for

a+k ’
x—m, vPl(k,x)-——B—a—zk.

In determining the number and location of the real zeros of the Jacobi Poly-

nomials we employ the following notations:

P,~(k,x)=0f0r:c=a;,k,,-, 1= 1,2,-~-k+1;k=0,1,2,~~~;j=1,2,~-~1:.

Qik,j S Qip1,h,q

2k — n

0=N+ =

D'= —B—a—2k+n n=12--k

p=IN+ & —n)D)mo = a+ (k - n),
v=I[N+ (& —n) Des = - — (k — n).

We proceed to determine the number of real zeros of the Jacobi Polynomials
on the intervals (— %, 0), (0, 1), (1, =) into which the zeros of D divide the
z axis. The proofs proceed by mathematical induction. We first determine
the location of the real zeros of P,(k, z), n = 1, 2, --- k + 1, by successive
applications of (1) and (2). We then use the relation Py (k, ) = Jes1 (2, 2, B).

Several cases concerning possible values of « and 8 should be considered. In
order to bring out the method of procedure only two such cases will be fully
discussed here. The results for other possible cases will be merely listed.

A :a<0,8<0,|a| <|B|,a B, &+ Bnotintegers.
Let k; be the greatest integer contained in «,

(13 k2 13 13 (13 13 13 113 B,

“ ks be the greatest integral value of k for which &« + 8 + 2k < 0. Then

0 <k <hks<kh.

4 In the case o, 8 > 0 these zeros all lie, as is known, on (0, 1).
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Ap:0<k<k . Wethen have§ > 0, < 0,» > 0,0 < oy <1, P; > 0.
(1)* + (=1)*
Then Jru(z, a, B) has —

Proof: Consider first Py(k, ). Its only zerois at o;,x,1, where 0 < g1 < 1.
Furthermore, P{ > 0. Also P; > Ofor z > o1 8nd < Oforz < ayzy. From
(1) we see that Pay(k, a1,x.1) > 0, (since Pi(k, on,5.1) = 0, D(ay 1) > 0and P; > 0).
From (2) it follows that Py(k, z) < 0forz < ayea, Ps(k, ay k1) = 0, Pa(k, z) > 0
forz > a1 1. These conclusions follow from remarks concerning the sign of 6,
the fact that Py(k, ey ,x1) = 0, and from remarks concerning the sign of P; to the
left and to the right of # = ey k1. Thus, Pa(k, ) > 0 for all real z and hence
has no real zeros. By employing (2), it is now evident that P;(k, z) > 0. From
(1) and remarks concerning u and » we see that Py(k, 0) < 0 and Ps(k, 1) > 0.
Thus P;(%, x) has a single real zero as,x1, 0 < azkq < 1. The reasoning from
P; to P, is analogous to that from P; to P,. By continuing this procédure we
finally conclude that Pyy(k, ), (= Ji1 (2, o, B), has but one real zero, (in 0, 1),
if k is even and no real zeros if k is odd.

Ap: by <k <ky. Setk=k+q9=1,2,.-.,ks — k. Here > 0,
u>0n=12 ...¢g—Lu<0n=qq+1,---,9+k. »>0 a1 <0,
Pi(k,z) > 0. Ji, + ¢ + 1 (z, «, B) has q distinct zeros in (— =, 0) and
" + (=p~

2

zeros tn 0, 1. These are the only real zeros.

zeros in 0, 1. These are the only real zeros.

Proof: First consider the sequence P,(k, ) n = 1,2, - - . g, since the conditions
on 6, u, and v do not change over this range of n. Now Py(k, c1,x,1) = 0, a1 51 <
0. Furthermore since P; > 0 we have P; > 0 for z > arky and < 0 for z <
k. Passnow to Py(k, z). Since D(a 1) < 0 and Pi (K, a1,k,1) > 0, we see
from (1) that Py(k, a1,.1) < 0. Moreover (2) shows P; (k, ayx1) = 0, P; (k, z)
< O0forz < eqrgand > 0for z > age1. Thus Py(k, ) < 0 and a relative
minimum at £ = oy 1. Since | Po(k, £ )| = «, we see that Py(k, ) has two
real zeros of which the left most, asy,is in (— 0, 0). Again u > 0 together
with (1) assures Py(k, 0) > 0. Thus ez is in (a1,k,1, 0), hence in (— «, 0).
By continuing this reasoning on the successive Pn(k, ), n = 1, 2, --- g, we
conclude that P,(k, ) has ¢ zeros in — «, 0 and P,(k, agx.1) < O.

Next, consider the sequence P,(k, z), n = ¢+ 1, ¢ + 2,--- ¢ + k1 + 1.
Over this range of n we have § > 0, u < 0, » > 0. From what has just been
shown, Py(k, agis) = 0, — ® < ages < 0,2 =1,2,--- ¢ Also Py(k, ags.s),
1 = 1,2 ...¢q, is alternately negative and positive. Suppose ¢ odd, (similar
reasoning holds for g even). Thus, we suppose Py(k, ag.1) < 0, Py(k, cagr,d) <
0, P,(k,z) > 0forz < agiiand < 0forz > agug- (1) shows Pyyi(k, ag.r.s),
1 =1,2, ...q, to be alternately positive and negativé. Thus, the zeros agx,:
are separated by ¢ — 1 zeros of Pgyi(k, z). Since from (1), Pgi(k, agr1) > 0
and from (2) Pyyi(k, ) > 0 for £ < g, there exists a zero agyie,1in (— ©,
agx1). Thus far, we have established the existence of ¢ zeros of Py (k, z) in
(= =, 0). ¢ being odd, we have from (1), Pgui(k, agr.q) > 0. Also from (2),



212 FRANK 8. BEALE

Pyi(k, z) < 0forz > agk.- Again from (1) and assumptions regarding x and
J it follows that Peu(k, 0) > 0, Poa(k, 1) < 0. Thus, Peu(k, z) has a zero
g1,k,qs1 in (0, 1). There being no extrema for Pg1(k, x) other than the agu,i,
i=12---¢ (as (2) shows), we have thus proved that Pg(k, z) has ¢
distinct zeros in (— «,0) and a single zero in (0,1). Reasoning similarly from
Pk, x) to Pga(k, x) we establish the -existence of ¢ distinct zeros agiz.k.i,
i=12--¢qin (— ,0) with agazs in (- =, ogrka) and agy2ki, t =
2, 3, --- g, separating agti,k,i, ¢ = 1,2, ---q. From (1) we see that P2k,
aﬁil,k,q) < 0 and Pga(k, agiiken) < 0. The only extrema of Pgya(k, %),
(as (2) shows), are located at agi1k.i) i=12---q+ 1. Again, by (2),
Poia(k, z) < 0for z > ogi1kett 5 hence there can be no real zeros of Pgy2 except
the ¢ zeros in {— «, 0) already found. The reasoning from P,z to Pgys is
similar to that from P, to Poy1. Thus, Pojkiy1 = Jy+on1 has g distinet zeros in
(— =, 0)y together with one zero in (0, 1) for k, even. For k; odd, there are ¢
distinct zeros in (— w, 0) only. The results are the same whether ¢ is odd or
even.

The results for the remaining sub-cases under case A, are given in the table
which follows. For completeness, the results for cases Ay and Ay, are included
in the tabulation. A few words of explanation are necessary to clarify the
conditions under which the various sub-cases in the table occur. Let |a| =
ki4q |8l =k+hhq<l Igt+h < 1,then | a + 8| = ki + k2 and we
have either,

A : k1+kgeven,2k3=k1+k2£k3_kl= ko — ks .

A1sztk1+k20dd,2ka=k1+kz‘—IEks—k1=kz—k3—1-

Againif1 < g+ h < 2,then|a+ B[ =k + k: + 1 and we have either,

A133!'k1+k2+161)8'n,2k3=k1+k2+1Eka—k1=kz—k3+ 1.

At k1+k2+10dd,2ka=k1+k25ka—k1=k‘z—ks
In cases Agy and A we assume |a + 8| =k + k + P, P < 1, while in cases
Awand Az, e+ Bl=k+k+p1<p<2 The complete results for

case A, follow. (See page 213.)

A :a<0,8<0,]al|< |8, a, B not integers, « + B = tnleger. Define &, ,
ko, ks asin A;. Then 0 < ky < ks L k2. In Case- Ay, 8 + a is odd while in-
Case Az, B + aiseven. (See page 214.)

Aj:a<0,8<0,a= —ky , integer, B not an integer, | a | < |8]. Define
ki, ks, ks as in A;.  Then 0 <k < ks < k. There are two sub-cases, Ag : the
greatest integral value of « + 8 is odd, As : this integral value is even. (See
page 215.)

A a < 0,8 <0, anot an integer, B = —ki, integer, | @ | < |B|. Define
ki, ks, ks asin A;. Then 0 < ky < ks < k2. There are two sub-cases, Ay :
the integral part of @ + Bis odd, Ae : this integral value is even. (See page 216).
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A:a<0,8<0,|al<|B]|,a= —k integer, B = —k; integer. Define
ki, ks, ks asin A;. In cases Ay and Ag , @ + Bis odd and even respectively.

Cases Polynomial Range of Sub-3cript Zeros in
(—,0) z=0 , 1)
1 k -1 k
Ao, Awt; Jia; 0 < k< ky 0; 0; le(—’-;
Astz, Ase; " Jky+at1; g=20,1,2 -, kg — ky; 'H k1+1; 0
Agis; Jkata+1; ¢=12 -k —ks—1; ks—Fki—q; ki+1; 0
Ages; Jkatgt1; 9=12 - ke—ks—1; ks—ki—g+1; k+1; 0
Ay Ass; Jraterr =0; ¢g=0,1,2 ... k.
Agis, Agzs; Jrithater1 =0; ¢ =1,2,3, ...
If assumptions are identical with those of A; except |a| = |8 |, then for

0 < k < k1, the results agree with Asy; and Ji, 4041 = 0,¢ = 0, 1, 2, ...
As: a>0,8<0,|a|>|B]|,Bnotan integer. Let k, be the largest integer

in 8.
Case  Polynomial Range of Sub-Script Zeros in
o, 1) @, «)
Ag Jr 0<k<hk 0 (1—),"'-2(*‘1)"
O R R )L
A7 : Same assumptions as in As except B = —ky , integer.
Case Polynomial Range of Sub-Script Zeros in
0,1 =z=1 1, =)
An  Jem 0<k<k—1 0 0 W
Ay Jrrtet1 ¢g=20,1,2 ... q k41 0

As:a>0,8<0,|a|=|8|. Ji = a and results for J,, n > 1 are
identical with those in A7 and As respectively according as 8 is or is not an integer,
Ay:a>0,8<0,|a|<|B]|;B a+ B, not integers.
Let k; be the greatest integer in « + 8.
[£1

13 k2 {3 {3

43 k. €@ {3

{3

{1

(13
B.
“  for which a + 8 + 2k < 0.
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Then 0 < ks < ky < ks

Case Polynomial Range of Sub-Script Zeros in
(_ «©, 0) (Oy 1) (1: °°)
Agi; Jiy; 0<%k < ks; k+1; 0; 0
Agi; Jkstent; ¢=1,2, .-, ks; k1 even; ks—g+1; 0; 0
Agor; Jkgtent; q=1,2, -+, (ks+1); kiodd; k3—qg+2; O; 1
1 k1+gq -1 k1+q
ADB; Jk1+Q+l; q= 17 2; %y (k2 - kl); 0; O; (_)——_-tzu—
1)F2 4 (—1)*
Aw;  Jkrten; ¢=1,2,3, -5 0; q; (—)—tz—(——L
Ay : Same assumptions as in Ag but now |« | = |B|. Then ky = ks = 0,
J1 = a, and results for J, , n > 1 are the same as in Ag; and Ay, .
Ay : Same assumptions as in Ag except B = —ks , tnteger.
Case Polynomial Range of Sub-Script Zeros in

(—,0(0,1) =z=1(1,x)
An, Sameas Ag
Ane Sameas Ag,
Ans SameasAsg
Ans  Jrgtest; ¢g=123,..; 0; q; ke+1; 0
Ap:a>0,8<0,]a|<|B]|, B not an integer. a + B = odd integer.

Define k, , k2, ks as in 4, .
Az : Same assumptions as in Ay excepl o + B = even tnteger.

Cases Polynomial Range of Sub-Script Zeros in
("" @, 0)
Ap,i1, As1; Same as Ag
Y/ WPIH q=1,2 .-+, ks; ks —gq+1
Aps;
Joy+s = const. > 0;
Jrytet; =12, ks+1; ks—q+2
Az
Jox,+3 = const. > 0;

Ans,Aus; Same as Ag

Aps,Ass; Same as Ay
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Aw : Same assumptions as in A, except B = —k, integer. Cases Ay, ,
Ay and Ay have the same results as Ay, Az, and Ay respectively.
Aus,4 has the same results as Ay 4.

Ass : Same assumptions as A except B = —kz, integer. Cases A1, Ass,
and A;s,3 have the same results as Az, A, and Ay s respectively. Aj;,4 has
the same results as Ay; 4 .

Aw:a=0,8<0,8— notan tnteger.

Let k: be the largest integer contained in 8.
ks be the largest integer for which 8 + 2k < 0.

Case  Polynomial Range of Sub-Seript Zeros in
(==,00 z=0 (0,1) 1, )
A1 Jrt1; 0 <k <ks; k; 1; 0; 0
As2;  Jkstat1; g =1,2, -+, ky — ks; { B i O; 0 Fu even
ks—qg+1; 1; 0; 1; k1 odd
A3 Jitet; ¢=1,2,3 0; L 94 (l)i-i—T(_Lh

Ap:a=0,8= —k — odd integer. Define k; as in Ags .
‘ As:a=0,8= —Fk — even integer. Define k; as in Ay .

Cases Polynomial Range of Sub-Script Zeros in
(=«,0) z=0 (0,1) =z=1

A1, Ag1; Same as Ajg,;

Anzs; Jkgta+1; ¢4=12 -, ki—ks—1; k3—g; 1; 0; 0
Age; Jksta+1; =12 ---,k3+1; ks—g+1; 1; 0; 0
Jky+1 =0
A1r,3, Ag3;
Ty +q+1; ¢=1,23, .- 0; L, ¢-1; kh+1

A19:a=0,ﬂ=0. JIEO
Ji41 has k — 1 zerosin (0, 1), 1 zero-at z =0,1zeroatz =1,k =1,2 3,

From the definition of J.(z, a, 8) it is readily seen that J.(z; &, 8) = (—1)"
Ju(l — z, 8, @). Thus, a transformation of z to 1 — z interchanges « and 8.
The interval (— =, 0) is transformed into (1, =) and vice-versa. The points
z = 0 and 2 = 1 are interchanged. Consequently, in all previous results we
may interchange properly a and g.

In the foregoing results, the only real multiple zeros that can occur are at
either = 0 orz = 1. In the process of determining the degree of multiplicity
of such zeros use was made of Theorem I, .

Points of Inflexion. By taking (4), setting k = n, and replacing N’ and D"’
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by their values for Jacobi polynomials, we get: Plaln, z) = (n + 1) (n)
B+ a+ nl[B8+ a+ n+ 1] Poy(n, z). From definitions of Pa(k, z) and
Ja(z, @, B) we easily verify that,

P.(n % q,2) = Ja(x,a = ¢ + 1,8 £ ¢ + 1), whence,
Jo@z,a,B) =+ )@ B+atnB+tatn+1]Joa(@a+28+2).

We conclude that if neithera + 8+ nnora +g+n+1 vanishes, the points
of inflexion of J.11(2, @, B) are at the zeros of odd order of Ja(z, a + 2, 8 + 2).

The Degree of J+(z, @, ). In analyzing the results of cases A; to A inclusive,
it is noted that in some cases the number of real zeros of J, is less than n. The
question naturally arises whether the degree of J, is n or less, for then we can
determine the number of its imaginary zeros. The explicit expression of
Ja(@, o, B) is known from which the degree of J, can be found for various « and
B. However, the degree of J, can be found from (4).

Since Jo11(z, @, B) = Pna(n, ), let us replace k by » in (4) and at the same
time replace N’ and D"’ by their values for Jacobi Polynomials. Thus, we get:

q—1
Jstq-l)-l(x, a, ﬁ) = LIO (n +1- ’I«')[—ﬁ —a—"n— i]Pn—a+l(n’ x)’

(5)
n=012---;¢=0,1,.--,(n+1).

We may establish the following results.

C) If « + B is not an integer, the degree of J.u (z, &, Bisn+1,n=0
1,2 ..

In fact, in order for Ji}: to vanish, we see from (5) that either some factor
— B — a — n — % vanishes or Pp_gy1(n, z) vanishes identically. We first show
that the latter is not possible. Now Py(n,2) = N +aD' = (- 8 — a — 2n)
2 + a + n 5 0since B + « is not an integer. Consequently, if P,(n, z) = 0,
u> 0, < n+ 1 there will be a first value of p, (u = v), for which P,(n, z) = 0
but P,i(n, z) # 0. By virtue of Theorem I7 this means that either N 4
n—pD=[-B—a—2(n—-plzt+at+n—p = 0, p < v, or else there
exist two values of p, (p1, p2), suchthat [— 8 —a — 2(n — p)lz +a+ 7 — P
and[—- B —a—2(n —p)]2z+a+n— ps are divisible by z and 1 — 2
respectively, p1, P2 < v — 1, p1 # pa. Since, however, « + B is not an integer
we see that, [— 8 —a — 2(n — p)lz+a+n—p#0,n and p being integers.
This eliminates the first possibility that P,(n, z) = 0, » < n + 1. Again, if,
[-B—a—-2n—p)]lzc+a+n— p1is divisible by 7, wehave a + n — ;1 =
0 or « an integer. For (a +n — p2) — [B+ a+ 2(n — p)lz = (a+n — ps)
[1 _(etn—p)+B+n—p) z]tobedivisiblebyl _ zrequires +n —

(¢ +n— p) -
p2 = O or B, an integer. aand B are therefore both integers contrary to hypoth-
esis. Thus, in (5), no polynomial P4k, z) = 0 and J (z, a B) # 0.
Replacing ¢ by n 4 1 in (5) leads to,
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(6) Js::l-l) (x)a’B) = ]::Io(n-"'l_z) [_ﬁ_a"n"i] Po(n,x):

n=2012....

Thus J3HP # 0, (since Po(n, ) = 1 and no factor — 8 — a — n — ¢ can vanish)
and the degree of J,y; is precisely n 4 1. From similar reasoning we prove:
C;) If a + 8 > O thedegree of Jppisn+1,7n=0,1,2, .- .
C) f a4+ B =0, then (I) J1 = aand (II) J,41is of degreen 4+ 1, n = 1,
2,3, ...
C) If a + 8 = —M — integer, M > 0, 8, o not integers, then,
(I) For n < M, the degree of J,41ismin. (n + 1, M — n).
dI) n = M, Ju.1 = const.
(III) n > M, the degree of J,y1is n 4 1.
Cs) fa+ 8= — M — integer, M > 0, o, 8 integers, a > 0, 8 < 0, then,
(I) For n < M, the degree of J,41is min. (n + 1, M — n).
(In n = M, Joa = const.
{II1) n > M, the degree of Jp41isn + 1.
Ce) If a+ 8= — M — integer, M > 0, « = —k-integer, 8 = — ks-integer,
k1 < k; then,
(@) For n < ke, Jny1is of degree n + 1.
(8] n 2k, Jop =0
C) lfa+ 8= — M — integer, M > 0, « = 8 = —k-integer, then,
(I) For n < k1, Jp4 is of degree n + 1,
(II) n Z kl, Jn+1 = 0.
The Laguerre Polynomials. These are defined as follows:

L,=1L, (x, o) = %" -d_ [e™ a:"+°‘_l], n=20,1,2,...;

dan

a — real. We see that L, is a special case of Pa(k, z) With N = — 2 + «,
D=z,n=k+ 1 Itfollowsthatd = -l,u=a+k —n,0mu =a+k,
and Pj(k, z) = 1. These can be used in determining the location of the real
zeros of L, , as was done for J,. The discussion here is somewhat simplified
since L, has but one parameter, «, and the z-axis is divided by the zeros of D(z)
into two segments only, namely, (— «, 0) and (0, «).

The following results are easily obtained.
B;: a > 0, L,(z, o) has n distinct zeros in (0, ©), n = 1, 2, 3, ... . This
‘result is well known. ‘
B:: a=0. L,.(xz, o) has n distinct zeros in (0, «) and a simple zero at x = 0,
n=2012....
B;: a <0, a, not an integer. Let k; be the largest integer contained in a.

k k
(I) Len(z, o) has (1)—_%(:& zeros in (— , 0), 0 < k < ki,
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zeros in

k1 k1
(IT) Li,+o11(z, @) has ¢ distinet zeros in (0, «) and (l)——-l-z—(i
(— °°’0);q= 0:172; ]
Bi: a <0,a = —Fk — integer.

k k
(I) Len(x, o) has (_1)—4-’2—(;1)— zeros in (— 0, 0),0 < k < k.

(IT) Li,+e41(z, @) has g distinct zeros in (0, «) and a zero of order k; + 1 at

2=0,¢=01,2....

The Degree of L,(x, ). We show first that here Pu(n, ) # 0,4 = 1,2, -
n + 1. By definition, Py(n,2) = N + nD’ = —x + a + n # 0. Let us
rewrite (2) for our present situation thus:

(2°) P,(n,z) = —pPua(n, z). If, now, Py(n, ) = 0, then from (2°) it follows
that P,i(n, ) = 0. Continuing this reasoning, we finally arrive at a contra-
diction, namely, Py(n,z) = 0. Ifin (4) wesetq=n+ 1 and replace N’ and D"’
by their values we get:

L@ a) = (=)@ + D! P, 2) = (=1)""(n + 1)!

Hence, L1 is of degree n + 1. Note that this holds regardless of the value of
« contrary to what was found for Jacobi Polynomials.

Points of Inflexion. By a procedure analogous to that used for Jacobi Poly-
nomials we can show that the points of inflexion of La41(2, «) are located at the

zeros of odd order of L,(z, a + 2).
The Polynomials P,(0, z). If we set k = 01in (1), (2), and (3) we obtain the
following relationships for P,(0, z)° = P.(z) = P

(7) Pana(@) = [N — aD’] Po(z) + DP,(2).
(8) Phu(@) = (n+1) [N' — gp"] P.(2).

©) Pons(®) = [V — nD] Pa(a) +n (N' _nd D") DPs(a).

Theorems I; to Iy inclusive, with ¥ = 0, hold for P,(z). In addition, the

following theorems hold for P, .
Theorem Hy. Suppose N linear and D(z) > O for all x. Furthermore, let

N — ﬁ D" <0,m=123,.... Then P, has n real, distinct zeros which

separate the zeros of Py .

Proof: Denote the zeros of P, by an,:,t =1, 2, .- N, ani <anip. Suppose
N’ > 0. N being linear has a single zero ay . Furthermore, since P = Ny,
then P, < Oforz < ey and > Oforz > ay;. We pass now to P,. From (7),
we see that Ps(a;;) > 0, (since D > 0 and P! > 0). Also (8) shows Ps(z) > 0

s E. H. Hildebrandt, loc. cit. pp. 399.
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forz < apand < 0forz > ay;. This follows from what was noted concerning
the sign of Py for z > ay and z < oy, together with the hypothesis that N’ — g

D" < 0. Thus, there exists a zero of P, in (— «, a1;) and a zero in (o, ©)
and our theorem holds forn = 1. Assume that the theorem is true for n = h.
The sequence Pi(ans), v+ = 1,2, --- h, is alternately positive and negative.
Since, from (8), the only extrema of Py, are at as,;, 4 = 1,2, - - - h, we conclude
that there are h — 1 zeros of P, separating the asi, ¢ = 1,2, --- h. Since
Pi(an1) > 0 we conclude that Py < 0 for z < a1 . This fact, combined with
(8), shows Pr(z) > 0 for z < oy . Py y1(an,1) being positive, it follows that
there exists a zero of Py in (— «, as,;). Similar reasoning establishes the
existence of a zero of Py in (as,, ©). Our theorem is thus established for
N’ > 0. The case N’ < 0 can be similarly treated.

Theorem H, : If D(z) > 0 forallz, D" < 0, N’ — D” <O0,N =0,N £ 0,

then P, mn = 2,3, .-, has n — 1 real, distinct zeros whz'ch are separated by the
2eros of P .

Proof: Since P, = N = const., we see from (7) that P, is linear. The reason-
ing of Theorem H, applies where we now start with P, .

Theorem Hy : I f D(z) > 0 for all z, except x = B, where D has a double zero and

if N £ 0, N — 3 "D < 0,n=1,2,3, .., then P, has n real, distinct zeros

which separate those of P,y .

Proof: Theorem I, with k = 0 assures us that P, and D have no zeros in
common. The proof now follows the line of reasoning of Theorem Hj .

Theorem Hy : If D(x) > 0 for all x except x = B where D has a double zero and

ifN'=0,N#0 N — §D" <0,m:=1,23, ..., then P, hasn — 1 real,

distinct zeros which separate those of Pnyy,n = 1,2,3, ... . This theorem follows
Jrom H; as did H, from H, .
Points of Inflexion. Setting k = 0 in (4) leads to,

Pia=(+1) (n) [N’ "] [N’ _

This shows, under the assumptions of Theorems H; to H, inclusive, that the
points of inflexion of P, are at the zeros of P,_; .

Hermite Polynomials. Theorem H; and statement immediately above con-
cerning pOiIzltS of inflexion apply directly to Hermite Polynomials where N = —z
and D =

Leniecr UNIVERSITY.
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