TRANSFORMATIONS OF THE PEARSON TYPE III DISTRIBUTION
By A. C. OusHEN
I. INTRODUCTORY

Transformations of the normal curve have been used as a basis for the repre-
sentation of skew frequency distributions by Edgeworth, Kapteyn, Van Uven,
Bernstein, and others. Various studies have been made of the distributions
obtained by replacing each of a set of normally distributed variates by a loga-
rithmic function of the variates. Among the earlier investigators along this
line were Galton, and McAllister; later, works by Jorgensen, Fisher, Wicksell,
Davies, and a more recent study by Pae-Tsi-Yuan, were added.

Rietz' restated and treated, in a general fashion, the question as to the proper-
ties of the distribution of powers of a set of variates which are known to be
normally distributed. By a suitable choice for the origin of the normal curve,
he obtained results which are applicable in answering questions which frequently
arise in the applied field concerning the properties of families of interrelated
distributions, one strain of which is known to be normally distributed. For
example, in the family made up of the diameters, surface areas, volumes, etc. of
some physical quantity, if it were known that one set, the surface areas for
instance, were distributed normally, then from his results we have the properties
of the distributions of any of the other sets.

Likewise it has seemed of interest to investigate, in a similar fashion, the
properties of the transformed Type III Pearson distribution. We shall treat
both the power and logarithmic transformations. For instance, if we knew
that any one of the physical measurements, velocity, kinetic energy, momentum,
or centrifugal force (all of which are functions of the velocity) were distributed
according to a Type III curve, then we raise the question as to the properties
of the distributions of any of the others. Similarly, if the intensity of certain
light, I, were known to be distributed according to a Type III law, we will
discuss the properties of the distribution of the brightness, B, of the light as
seen by the eye, since the two are known to be related by the law B = K log I.
The same analysis applies to the relationship between L, the loudness of a
sound, and E, the energy in the sound wave, since L = K log E.

Two forms of the Type III distribution will be considered. In the first form,
all the variates are taken positive; in the second form, the origin is at the mean
and the variates are measured in units of standard deviation.

1 H. L. Rietz, Frequer.cy Distributions Obtained By Certain Transformations of Nor-
mally Distributed Variates, Annals of Math., Vol. 23, (1922) pp. 291-300.
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In the last section, a transformation is developed which will transform the
ordinates 2of a given probability function into the ordinates of the normal curve,
—t

y = Ce®, to within certain approximations. This transformation is applied
to the Type III distribution and to the distribution obtained under power
transformations of variates of the Type III distribution.

II. PowER TRANSFORMATIONS

a. Type I1I curve with all variates positive.
Given the Pearson Type III law,

1) Y=z 0<z< o,
where

2u2 ™ o1 I
2 =—>0 = T = >~ Lo, = & — —.
( ) Y P ) Yo P(’YCE)’ M1 7’ v

The probability function (1) is a single-valued, real-valued, non-negative,
continuous function of x with ydx = 1. The probability that a variate

0
chosen at random will fall into the interval o4 to . is given by
%y
)] P = / ydz.
*1

Let us make a transformation by replacing each variate x by =/, where 2’ = 2",
and 7 is a real number on which restrictions will be placed as we proceed. When
n is such that 2’ may have more than one value corresponding to an assigned

value of z we shall consider only the principal value of z’. Then dz’ = nz"™ dz,
’

except at x = O whenn < 1, and dzx = except at 2’ = 0 when n > 1, or

n—1
nx' "
n < 0.

The frequency function of the z’ variates is given by

’Yi’— I’lT
®) J@) = Do e,
which does not represent a Type III curve when n = 1. The function (4) is

discontinuous at ' = 0 if '%x < 1. Likewise, corresponding to (3) we have

1

a? 1_5:_ e
%) p=Y | e gy,

narf

2 The expression Zmo. represents the mode, and zmq. represents the median.
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In order to study the maxima and minima points of (4) we take the derivative

do =

©) df(’) f(x')(nz')—l{—‘yz'% +vZ — n}

The derivative changes signs at

@ 2 = (a: _ g)

Thus, variates in an interval, dz’, at the mode of the new distribution (4) came
by transformation, from an interval in the neighborhood of z = & — 3, which is

to the left of the mode of (1) whenn > 1. The function (4) will be a monotone
decreasing or a unimodal continuous distribution with mode given by (7)

. . . n
according as Z is equal to or is greater than 5

It will prove convenient to discuss the properties of (4) under three headings,
accordingasn > 1,0 < n < 1, and n < 0, where n or its reciprocal is an integer.
Casel. n> 1.

When & < 3’ (4) is a monotone decreasing function, infinite at the origin and

asymptotic to the z’ axis; in this case the distribution of 2’ is similar to the
distribution arising in the corresponding transformation of a set of normally
distributed® variates, when # < 4(n — 1), where Z is the arithmetic mean of the
z’s of the normal curve. However, we are primarily interested in the case

when & > 7—", under which condition a mode exists on the frequency curve f(z’)

n
and is given by Zm, = (z - g) . Henceforth in discussing the comparative
values of the measures of central tendency, it will be assumed that the condition

i > gis satisfied. We have,

(5;__71) <(:i;..l>, Wherexm°,=:i:—-l.
Y Y Y

Thus, while variates at the modal value of z in the Type III distribution trans-

n n
form into #’ = (& — %) , the mode of the new distribution is at 2/, = (a: - f;‘)

which, when n > 1, is to the left of the positions to which variates at the mode
of the Type III distribution were transformed. Furthermore, as n increases,
Zmo. approaches the origin.

3 Cf. Rietz, loc. cit. p. 296.
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The arithmetic mean of the «"’s distributed in accord with the function (4) is
given by

00 L7 3 1

= zl“; = @ x’T 6_72’; dz’
®) ’
_ThGz+n)
y*T(yi)

Similarly the sth moment about the origin is

T T o — 1)6™
(9) z,"; - I(vz + sn) _ yz+sn—1) ‘

v I (vZ) o
But,
vz + n) <_ n—l)(_ n—2) -
——— = T x e (X
7" T'(yZ) + v + v @,
which is greater than (£)", hence £ > Z". Thus, while variates at the mean
T(vE + n)

value of z in (1) transform into (£)", the mean of (4) is at which is to

v"I(vZ)
the right of the positions to which variates at the mean of (1) were transformed.

We have

. nY n _T(yz +n)
1o (-3 <o <
hence
(11) Tmo. < &

In 1895, Karl Pearson* showed that the median of the Type III curve was
approximately two-thirds of the distance from the mode to the mean, and later
Doodson® gave similar results. The analysis of (1) along this line is given in

Section IV. However, since Ty, = & — %, we may take 2y, = £ — 1 where

¢ > 1, (approximately equal to 3). Then g, = (:i; - g—y) . Wehave

(12) ( - ’-‘) < (:c - l) < @"
Y . cY

hence from (10)

(13) Tio. < T, < E.

4 Karl Pearson, Skew Variation in Homogeneous Material, Philosophical Transactions,
Vol. 1864, part 1, (1895) pp. 343—414.

5 Arthur T. Doodson, Relation of Mode, Median and Mean in Frequency Curves, Bio-
metrika, Vol. 11, (1917) p. 425.
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Considering the case when n = 2, we have with the aid of (9),

_ 8(5y°%" + 17yz + 15)°

= DG+ DEE I

and

Bo = 3y's + 72¢°3° + 3374°%" 4 629y + 420)
i (v2)(vz + 1)(2v% + 3)? '

From the moments of (1), one readily gets

4
zBl = -

vz’

and

_3(vz+2)

==

It can be shown easily that .8, > .8, and .82 > .8: ; hence the distribution of
the squares of variates is more leptokurtic and more skew than the original
distribution.

From (10) and (12) it is evident that the mode approaches neither the median
nor the mean as n increases, subject to the condition y& > n. Each of the
ratios of the mode to the median and to the mean approaches the limit 1 as & is
increased indefinitely, the rapidity of approach to the limiting value depending
on the size of n.

Taking the second derivative to find the points of inflection of the function
(4), we have

zﬁZ

2 1

/@) f@") (nz') {7296’7 + yz* Bn — 2y — 1) + (v*& — 3nyi + 2n’)}.

dz’?

When the points of inflection exist they are given by

o — 2y —3n+1) £4/n? —6n + 1 + 4v%
2v ’

Under the restriction that yZ > n, the expression under the radical in (14)
cannot vanish, and will always be positive.
CaseIl. 0 <n<1.

We now consider the distribution obtained by taking positive integral roots
of a set of variates distributed in accord with (1). The mode of f(z’), as given by
(7), will always exist since from (2),yZ > 1 > n. We have

(z_73> <(1‘:——1—> itn>L
v cy c
(15) (i-’-‘) >(1':— 1—> ifn <1,
v cy c
n > n
(z-'-’) =<z—l> ifn ==
v c

(14)

o -
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Hence it is cvident that z..,. is less than, greater than, or equal to x,;d, according
as n is greater than, less than, or equal to 1/c. In power transformations of
symmetrical distributions® the results differ in that the modal value is always
greater or less than the median according as the value of n lies between 0 and 1
or outside of these bounds.

Here, (a’: — g) > <a’: — ’%) , hence in contrast to Case I, the mode of the new

distribution is to the right of the position to which variates at the mode of the
Type III distribution were transformed.

It has been shown’ for every set of positive values that u, > (&)” when n lies
outside of the interval 0 to 1, and that x,, < ()" when n lies between 0 and 1.
We have then

I'(yv& + n_) -
)Tz ~

The mean of the new distribution is to the left of the position to which the
variates at the mean of the Type III distribution were transformed.

In Section IV, with the aid of certain approximating assumptions, it will be
shown that & > Zmq. When Zmq, > Tumo. and conversely, &’ < Zoma. When Zmq. < Zimo.
Case III. n < 0.

Let n = —m, where m is a positive integer. Then we have

(16) = < @)™

a7) fx') = %:x’—(%i*.l) e—“’"—'lz, fi@) =0 at 2 = 0.

In place of (6) we have

’ m+1\ —1 1
(18) dj;gj) = f(@) <mx'7> {(w': + m) 2™ — 7},
and (7) becomes
AR
(19) P
But
1 m 1 m
<~‘._>‘—rz < <ﬁ,—1> |
4+ - £
Y ‘ Y
and

A=

¢ H. L. Rietz, On Certain Properties of Frequency Distributions, Proc. National Acad-
emy of Science, Vol. 13, (1927) p. 820.

7J. L. W. V. Jensen, On Convex Functions and the Inequalities between the Means,
Acta Mathematica, Vol. 30, pp. 175-193.
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Hence, as in Case I, the mode of (17) is to the left of the position to which

variates at the mode of (1) were transformed while the mean of (17) is to the
right of the position to which the variates at the mean of (1) were transformed.

Since
1 m 1 m
< 1 ,
Y cy,

’ ’
we have T, < ZTma.. Also

hence & > zma. . Therefore

(20) Tmo. < Tma, < &
As a special case, when n = —1, (17) reduces to
- 2
(21) f(xl) — yoxl—(‘rz-l-l) e ,,’

which is a Pearson Type V distribution.

b. Type I1I curve with mean zero and unit variance.

Even though the form of the Type III distribution with which we have been
dealing, wherein all the variates are positive, is more closely akin to actual
distributions that may arise in applied problems, nevertheless it will be of interest
to examine the properties of the transformed curve when the mean is taken as
zero, with unit variance.

The second and third moments about the mean of the distribution (1) are

g = %, oMz = E‘; If we write o3 for the third standard moment :";%, then
Y 2
4
(22) Y = :i"a2'

By replacing the variable, z, in (1) by the expression
(23) z=1 (1 + 92—‘)

we obtain the Type III distribution

A
a3t “?; —it
(24) 77=7701+—2— e
where
4 1
4\az"
ol 2 -
3 a < 2 L <t <, t=0, e = 1
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Equation (22) lends itself to a simple interpretation of the restriction made in
Section IIa, Case I, that yZ > = in order that the mode of (4) exist and be given
by (7). The upper bound in the values of as considered by Salvosa’ in the
computation of his tables was a3 = 1.1. Upon examination of the tables it is
obvious that in most cases the skewness of the Type III distribution, as measured
by a3, will be less than 1.1. Hence in most cases we will have 3.22 < v < .
The effect of the limitations imposed by the condition ¥ > » may be inferred to
some extent from the following table.

TABLE 1
The upper bound of a3 for the existence of a mode tn Case I, Section I1a

n‘2|345[6| s’gllo‘zs 501100

1.41' 1.15/ 1.00 .89| .82’ .76} .71| .67| .63‘ .40 .28’ .20

a3

When we make a transformation by replacing each variate ¢ in (24) by ¢’
where t' = ¢" (n # 0) and » is an integer (positive or negative) or the reciprocal

’
of an integer, then dt’ = nt" ' dt, except at ¢t = O whenn < 1, and dt = —d::l, ex-

nt’ »
cept att’ = Owhenn > 1,orn < 0. The function (24) becomes

(1 +2 t”l‘)?’—le‘«%";
” Ul 2

The distribution function, f(¢’), is infinite at = 0 when n» > 1. In place of
(5), we have

4
a 1 a_g- _it"_l
- (1 + -2-%) e
(26) P = ;0/ n—1 at’.
a:’ t' -

Here ¢; and a2 are taken to be positive or zero when 7 is even. When 7 is odd a,
and a» may be taken negative as (25) will give the frequency curve for negative
values of ¢’ that arise from setting ¢ = ¢" when ¢ is negative. Examining for
maxima and minima points, we have

27) d{;f,') = —/f(t) {nt (1 + 3 ,,n)}" {t'F + = ”“3’ + (n — 1)}

8 Luis R. Salvosa, Tables of Pearson’s Type III Function, Annals of Mathematical
Statistics, Vol. 1, (1930) pp. 191-198.
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The derivative changes signs at

(28) ‘=g (‘_;‘_“3 + 1/ ("—33)2 — 4 — 1))"

No

2
when <—§~> > 4(n — 1), and at ¢’ = 0 for certain values of n. When n > 1,

2
<n_;§) > 4(n — 1) only for very large values of n since a3 < 2. When = is odd

and positive, the derivative changes signs at ¢ = 0. If n is the reciprocal of an
odd positive integer greater than one, there is a minimum at ¢ = 0, and the
function f(¢') is zero at this point. Further properties of the frequency curves
given by (25) will be discussed under the three cases treated in Section IIa.
CaseI. n > 1.

2
When (n_;_a) > 4(n — 1), it can be shown that (28) gives neither a maximum

1

nor minimum point of f(¢') since #'» will always be less than ¢ .° Similarly,
2

when (7_‘2‘3? < 4(n — 1), there is neither a maximum nor minimum since (28)

is imaginary. When » is odd, f(¢) is infinite at the origin and is a monotone
increasing function of ¢’ from the lower bound to the origin, and a monotone
decreasing function of ¢’ from the origin. When n is even, f(') is a monotone
decreasing function of ¢/, infinite at the origin. The forms of the distributions
in this case are similar to those arising in power transformations of normally
distributed variates' whenn > 1 and #* < 4(n — 1) and also to the forms arising

in Section IIa, Case I, when & < 3

Even though we have a discontinuity at the origin, the total area under the
curve is one, which is evident since we can integrate function (25) over the entire
range of ¢’ when n is odd and positive.

CaseIl. 0 <n<1.

This case includes the distribution obtained by taking positive integral roots
of a set of variates. As in the study of the normal distribution,” we limit our
considerations to the principal real values of the functions. When 7 is odd, there
is a minimum at ¢ = 0 and a2 maximum given by each of the two signs before
the radical in (28). Hence in this case, we have one minimum and two maxima.

With the values for n and a3 in (24), tne. = —.164 and tyn,. = —.500. The
transformed distribution gives #na. = —.547 and two modes, the primary mode
tmo. = —.967, and the secondary mode t,,. = .903. In contrast to the cor-

responding transformation of normally distributed variates, the primary mode
is less than the median.

? The expression ¢; represents the lower bound of ¢ in distribution (24).
10 H. L. Rietz, Cf. loc. cit. p. 296.
1 Cf. Rietz, loe. cit. p. 297.
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TABLE 1I
Comparison of the Type III Distribution and the Transformed Distribution when
ag = .6, n=3
t 7 ¢ 1)
—3.00 .000001 —27.000000 0
—2.50 .001347 —15.625000 .000072
—2.00 .029467 — 8.000000 .002456
—1.75 .072787 — 5.359375 .007922
—1.50 .139285 — 3.375000 .020635
—-1.25 .220462 — 1.953125 .047032
—1.00 .301350 — 1.000000 .100450
— .50 .405345 - .125000 .540460
- .25 .414211 — .015625 2.209125
— .10 .406131 — .001000 13.537700
— .05 .401485 — .000125 53.531333
- .02 .398272 — .000008 331.893333
0 .395962 0 ©
.02 .393522 .000008 327.935000
.05 .389628 .000125 51.950400
.10 .382549 .001000 12.751633
.15 .374795 .003375 5.552519
.25 .357533 .015625 1.906843
.50 .307293 .125000 .409724
.75 .252971 .421875 .149909
1.00 .200493 1.000000 .066831
1.50 .114233 3.375000 .016923
2.00 .058376 8.000000 .004865
2.50 .027285 15.625000 .001455
3.00 .011836 27.000000 .000438
3.50 .004820 42.875000 .000131
4.00 .001859 64..000000 .000039
5.00 .000242 125.000000 .000003
6.00 .000027 216.000000 0
Case III. n < 0.
Let n = —m, where m is a positive integer. Then (25) becomes

(29)
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TABLE 1II
Comgparison of the Type 111 Distribution and the Transformed Distribution When
a3 = 1, n = 1/3

! " v @
—-2.00 0 —1.259921 0
—1.75 .025272 —1.205071 .11010
—1.50 . 122626 —1.144714 .482006
—1.25 .251021 —1.077217 .87385
~1.00 360894 —1.000000 1.08268
— .90 393277 — .965489 1.09998
— .75 427526 — .908560 1.05874
— .50 448084 — 793701 84683
— .27 1433958 — 646330 54385
- .08 .405678 — .430887 .22596
0 390734 0 0
.08 .374536 .430887 .20861
27 332927 646330 41723
50 1280748 793701 53058
64 1249865 861774 55669
74 1228711 1904504 56134
.90 .196904 .965489 .55004
1.00 . 178470 1.000000 .53541
1.50 .104259 1.144714 .40985
2.00 .057252 1.259921 .27235
2.50 1029989 1.357209 116572
3.00 .015133 1.442250 .09443
3.50 .007410 1.518295 .05125
4.00 003539 1.587401 02675
4.50 .001655 1.650964 .01353
5.00 .000761 1.709976 .00368
5.50 .000344 1.765174 .00322

Taking the derivative,
’ m+2 1 ~1 2 1
(30) ) _ —f@N{mt (1 4 2y [ (m + Dt'm + Doyt — 19,
1 2

dt’ 2
and in place of (28) we have

31) v = {——Z—as =4/ (7%13) ot 1)}'".
2(m + 1)

The transformed distribution has little statistical significance for odd values
of m, since f(') is a disjoined distribution. There are no values for f(¢') in the
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m
interval, (—2—(){3) < t' < 0,since —_—? <t < o. The transformed distribution is
a3

thus composed of two sections, each with its own mode. The scction for negative
m

values of ¢/, with range — o < ¢/ < (?) , has a mode given by (31) with the

negative sign before the radical. The section for positive values of ¢/, with range

0 < ' < =, has a mode given by (31) with the positive sign before the radical.
When m is an even integer, if we assign to f(t') the value 0 when ¢’ = 0, f(¢)

becomes a continuous unimodal distribution in the interval 0 < ¢’ < «, with

the mode given by (31), with the positive sign before the radical.

I¥1. LoGgARITHMIC TRANSFORMATIONS

As indicated in the introduction, numerous studies have been made of the
distributions obtained by replacing normally distributed variates by exponential
functions of the variates. 1f a variate z, with range — o < 2z < o, is dis-
tributed normally with mean zero and unit variance, then by replacing z by 2/,
where 2’ = ¢ + ¢** the range of ' becomes, ¢ < 2’ < ». Likewise if a variate
is distributed in accord with a Type III law, with range 0 < z < o, then in
making the above transformation, the range of z’ becomes (¢ + 1) < 2z’ < .
We shall now study the properties of the distribution of z’ obtained by the
above transformation applied to distribution (1). Because of the similarity of
the properties of the transformed frequency distributions, we shall take &k = 1
and ¢ = 0.

Letting 2’ = €%, (1) is transformed into

(32) f@) = yo (log 2') g/~ 1<z < w,
Then,
33) ‘—”(}f,i) = f@){z' log 2’} M(¥E = 1) — (y + 1) log '}

The derivative changes signs at

yZ—-1

(34 ' =e",

The arithmetic mean of the z”’s distributed in accord with (32) is given by
= yo / (log &) 2" da’
1
= % foo I‘Yi—le—z(‘v—l) dz
0

(35) = <~1>” if oy > 1.
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The integral is divergent when 0 < y < 1, hence for these cases we take
0 < k <, then

00
- £—1 —z(y—
= yoj g e gy
0

(56 - (7 = k)”'

Likewise in order that the first s moments about the origin be finite when

0<y S‘s,wemusthaveO <k <‘81.

The median of the distribution of z”’s corresponds to

1
x=logx’=_a':—a,

hence

1
(37) :B,lnd, = 65-?';.

yz—1 1
. ops —T -
1. The relative positions of the averages. We have ¢! < e ¢ since
v —1

<Z-— —1- Hence
cy

v+ 1
(38) Zmo. < Tma. -
Also,
vilog(;:’_—l) = i[l +—2-1;+3};,+ ] >£_cly‘

Therefore

1 k%3

SRED

and hence
(39) T, < &
From (38) and (39), we have
(40) Tmo. < Tma, < &

We shall now investigate the locations of the various averages as related to
the upper and lower points of inflection whose abscissas will be denoted by I .
and I; respectively. Taking the second derivative,

2 ’
-—~—d£§) = f@) {z’' log 2’} {(y& — 1)(vZ% — 2) — (2y°% + 3yi — 2y — 3) log 2’
+ ('Y + Dy L "
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The points of inflection are given by

(41) ¥ = P
where
oly, &) = vz — 1)@y 4+ 3) £/ (vz — Di{(vz—1) + 4(v + )(v+2)} .

2(v+ (v +2)

(a). To show zme. > I .
We have,

-1 (E-1D2y+3) - (- +1)
v+1 2+ D(v+ 2) ’

where

p+1= 1/1+4(7"‘x1)_(71+2), since 2y +4 > 2y +2 — p

Therefore

i .
PR > ew(-/.z).

(b). To show . < Io.

We have,
yE—1 < E—1D@vy+3)+ (- Dp+1)
v+ 1 2(v + (v + 2) ’
since2y +4 < 2y + 4 + p.
Therefore,

721
e EZ5) < e'Pu(‘Y;i)

From (a) and (b), we have
(42) I} < 2mo. < I.,.

(¢). To show zmq. > 1.
We have,

Tmd. > Tmo. AN Tjo. > I} .
Consequently ,
Tpa. > I}
(d). To show the conditions under which zp4. is less than or greater than I, .

Upon simplifying the inequality we find that e**"® will be greater or less
1

than "7 according as the expression

(43) —2fz+z{1(3+-‘-‘)+(7—3)}+ ¥<2+§)--}—<3+ )—2——12
¢ ¥ c ¥ c c
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is positive or negative. But (43) will be negative for all values of & if its dis-

criminant is negative or zero. Upon further examination it can be seen that the
discriminant will be negative or zero according as

2 1 1 1
(44) 7—67(1—2)+—c<6+5)—730.

The quadratic equation in vy, given by (44), factors into

Y — D) Y 2 )
where

1 2 : i
A=6(1——), B=1/36(1_1>_§(6+1)+28, B> A.
¢ c c c
Hence in order that zmq. be greater than » for all values of Z, we must have
1 1 2
Y S§{6<1 - —)-I— 1/36(1 ——1> — 4~(6+ l)+28}-
(4 c c c

When c lies in the neighborhood of 3, v must be less than 5. Proceeding further,
we can divide (43) by negative 2, reverse the inequalities, and factor the expres-

sion into
B A — BI) z A/+B/)
T4 T4 ’
where
1 4
4 = { (3+ - 3>}
c ¥
B = 1/A'“+8 l<2+§)— .i<3+2-)—2_ 1}
c Y cty Y c?
B < A’
Then
’ ’ ’ ’
(45) Tma. > I, if .z-<A‘ZB or z>A1'B,
and
(46) Ima, < I, if 4 ZB <i<d IB .

(e). To show I, < F.
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We have, I < &', since & > Tma, > Tumo. a0 T, > I;. Also, I, < # for
those values of v and # for which I, < zn4.. It remains to be shown that ' is
always greater than I, for all values of v and Z. To show that

(r.2) vy Y*
G‘Pu Y.z
< (7 - 1) ’

it will be sufficient to show that ¢,(v, %) < , since

7:Elog<—z——>=:t(l+i+i+'~-)>:i:.
y—1 v o 3y

The inequality is satisfied if
02— DIOE - D +40+ Dy +2)} < 286+ Dy +2) — (2 — 1)(2y +3)}"
This expression, however, reduces to the condition that we must have

—2 — % — 6% — 6yE — v’ — 8% < 0,

which is always true. Hence

Yz
ewu('r.i) < 7 )
y—-1"'
and we have

47) I, <&.

2. Contact at the ends of the range. We shall now investigate whether the
frequency function, f(z’), has high contact with the z’ axis. The function,
f(z"), vanishes at both limits, and thus it will be sufficient to test the derivatives.
The nth derivative can be expressed in the form of f(z")(z’ log =')™™ multiplied
by an nth degree polynomial in log ’. It can easily be shown that each deriva-
tive will vanish at the upper limit, while the nth derivative will vanish at the
lower limit provided vZ > n. Therefore, f(z') does not have high contact at the
lower end of the range.

3. Moments. The sth moment about the origin is given by

Yo [ (log )" 277 do!
1

’
z'Ms
= ¥ f g gm0 g
0
bz 3
(48) = <_‘y_> , if vy >s.

Y-
If v < s, then taking k such that vy > sk > 0, we get in place of (48),

r Y vz
(49) z' s = <‘Y — 8k> .
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We easily obtain the recurring relationship

i N
(50) ol = (Zs—l) ot

¥— S8

The sth moment of 2’ about the mean is

s = Yo [ «.{ ( ) } (log &)™~ &'~ da
[ GE e
SR S R

If we do not take the value of k to be 1, then

o e (2 ) 2 ()

IV. TRANSFORMATION INTO A NORMAL DISTRIBUTION

We shall now consider a unimodal probability function y = f(z) with range,
a < z £b, and shall seek2 to express z as such a function of ¢ as will transform
t

= f(z), into y = Ce 2. For simplicity, we assume that y = f(z) Jas its
t

modal value at z = 0, and thus each of the curves y = f(z) and y = Ce ? hasits
one maximum value at the origin.
Iny = f(z) let log y = V, then equating densities,” we have,

V —log C + 5
Then
Y iz,
d2

(53) g T1=0

av

= >
7 0, n 2> 3.

12 If f(x) is a probability function or density of a distribution, then f(z) dz is, to within
infinitesimals of higher order, the probability that a value taken at random will fall into
the interval dz at z.
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Under the assumption that z is a function which can be expanded in a Maclaurin
series in powers of ¢, we shall use equations (53) to determine the values of
d'z . .
in the series
tex(

dir
t2
(54) x=A0+A1t+A22~'+°
% . dV
Let v, represent ,n=0,1,2.... Theny = logC,and v; = 0, since ——
dz™ im0 dz
and dy vanish when z = 0, that is when ¢ = 0, since 4, is taken to be zero.

dt
Taking the second derivative,

2 2 2 2
dV_dV(d_x) +dx(dV>= _1,

dz T det \dt de \dz

and

av 2
EF],-O = ndi = -1

Therefore we have

(65) A, = (—-vg)_*, when v, < 0.
Also,
a&v
d_ta_]g-o = 0341 + 304, 4, = 0,
and we have
U3
(56) A, = 3v§'
Similarly,
_ 505 — 3040, 3
A= Tagy (W)
_ — (4003 — 45050304 + Yvivg)
(67) A= 4508 !
— {38505 — 63002020, + 2102 (Busvs + 505) — 240508} (—v9)!

‘?“ - 1444} '

Tllough the procedure is straightforward, the work becomes somewhat
involved in determing A, as n gets larger. For this reason, we proceed in the
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following manner. By the use of Burmann’s® theorem we can write (54) in
the form

T d(z\\ ¢ d x)a} £
©8) == {z},.o t+ {azz (z) },-o it {z»; (z 03T
But
r_z _
;= \/2(logC V)7,
where V is a function of x. We have,

lOg C = V]z-o’ -a—x- =0 at x = 0,

and we may write

+ ...

v 7’ daV] z*

Hence,
T_F 2 s 4
;= 2@t tartad+ )

Un

1 2 -
=\/§(a¢+a3x+a4x 4+ ...)™", where G = =5

We can now write,

(59) ("tf) = ;{2‘3 a,+2x‘}- .

e

But
n—1 n
4, = d— p = (n — 1)! multiplied by the coefficient of 2" in (59).

dx""l t om0

Hence,

i (DG (o)

= (n—=1)!

0) An=(n—D1Qa)" D, .

<>l( >z(>a( 2)"
2 (23 (L33 a
where the summation is over all values of X, such that

Zs)\s =0, and p =.Z)\,.

s=1 s=1

13 A, De Morgan, Differential and Integral Calculus, (1842) page 305.
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This expression can be written in the form,

n n—2
A= (n—-1)!(2a) 2 Z( 1)‘“"3."_1_'_2.7%}

(61) I
n—+2s D" a3t

2D an 0 "7
where D is the derivative operator of Arbogast.™
If we take expression (1) as our function of z, we obtain,
_ e
Uy = ( 1) (7x n—l’
which gives
- i1, 2 ¢ 1 £ 4 t
_Ga-1_ a-1', 2 ¢ O ST S
(62) ¥ ¥ 3y 2! 6y(yz — 1)43!  45y(yz — 1) 4!
1 2
BRI
where 4, = (n — 1)1 2= — o2 — ) multiplied by the coefficient of

22

- 9] n (S e 11){7)13}_1;

This series is known to diverge for large values of . However, the series is

defined for those values of ¢ that correspond to z for the interval 0 <z < 2(5: — %)

With the aid of (22) and Salvosa’s™ tables we give in Table IV the percentage of
the total population which is included in this interval.

TABLE 1V

The percentage of the population, characterized by (1), which is included in the interval
0 < z< 22 — 1/v), for different degrees of skewness

7] 6] 5 4] 3 2 l 1

as 1.1 | 1.0 .9 .8

Percent of (79.386|84.880|89.781(93.908(97. 021 98.959:99.805{99.990{100.000{100. 000‘100 000
Population ’ ‘ i

Thus, in dealing with samples as large as 10,000, with modecrate degrees of
skewness, the probability of getting a value that falls beyond this interval

1* Augustus De Morgan, On Arbogast’s Formulae of Expansion, Cambridge and Dublin
Mathematical Journal, Vol. 1, (1848) pp. 238-255.
15 Cf. Salvosa, loc. cit. page 2.
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becomes negligible. Hence it may be expected that with the use of a compara-
tively few terms of series (62) we may transform the ordinates of a moderately
skew Type III function to within close approximations of the ordinates of the
normal function.

Baker" considered the transformations of a non-normal frequency distribution
represented by f(f)df, where the origin is taken at some central point and the
scale is the standard deviation of the distribution. By equating probabilities
he found a function ¢, such that by setting ¢ = ¢(u), he obtained

flo@). ¢'(u) du = e du.

It seemed of interest to compare the results obtained by applying transformation

(62), which is found by equating densities, to the illustration treated by

Baker,” where the transformation giving equality of probabilities was used.
The example treated was

99
(63) &) = 9929 (1 +it6> e,
This is a Type III distribution of form (24), with a3 = .2. From (22),
vE = 2= 100, and from (62) we obtain the series
3

64 z = ?73 (1 + .1005038z + .0033670u® + .0000282%° — .0000004u' + - - -).

We shall utilize only the first four terms and rewrite (64) in the form
vz = 99(1 + .1005038u + .0033670u* + .0000282u").

However, from (23),

which gives
vz = 7:5(1 + “—;‘) = 100(1 + .19).

Therefore,

t = .1(yz — 100).

16 G. A. Baker, Transformation of Non-normal Frequency Distributions into Normal
Distributions, Annals of Mathematical Statistics, Vol. 5, (1934) pp. 113-123.
17 Baker, loc. cit. page 117.
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With the aid of Salvosa’s™ tables, we obtain the following results.

TABLE V

Compartison of the ordinates of the normal function, the function with skewness.2,
and the skewed function transformed by

t = 9.9 (—.0101010 +.1005038 u +.0033670 u* +.0000282 u?)

: : Transformed

u Normal Curve | TSRO IR | Ckew ourve | thew curve
—2.0 .053991 .049243 .054226 .000235
—-1.8 .078950 .076810 .079291 .000341
—1.6 .110921 .112956 .111393 .000472
—-1.4 .149727 .157043 .150359 .000632
—-1.2 .194186 .206951 .195003 .000817
—1.0 .241971 .259120 .242986 .001015
- .8 .289692 .308958 .290905 .001213
- .6 .333225 .351538 .334618 .001393
- 4 .368270 .382453 .369811 .001541
- .2 .391043 .398583 .392678 .001635
0 .398942 .398610 .400615 .001673
.2 .391043 .383157 .392682 .001639
.4 .368270 .354545 .369811 .001541
.6 .333225 .316273 .334621 .001396
.8 .289692 .272360 .290905 .001213
1.0 .241971 .226714 .242984 .001013
1.2 .194186 .182641 .194999 .000823
1.4 .149727 . 142563 .150353 .000626
1.6 .110921 .107939 .111383 .000462
1.8 .078950 .079354 .079277 .000327
2.0 .053991 .056702 .054214 .000223

The ordinates of the transformed distribution are more symmetrical and
approximate the ordinates of the normal curve more closely than the values
obtained by Baker even though we have used only four terms in the transforming
series.

Returning to the general case, we may write

b 0 t2
ﬁ ydr = /_w Ce ? %;dt

© t2

2 3
=C 6_?(A1+A2t+A3%+A4§-—'+--*)dt,

—00

(65)

18 Salvosa, loc. cit. pp. 64 et seq.
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provided the series converges for all values of ¢. Under the assumption that the
integrand satisfies conditions for the term by term integration of the series,
we get

66) 1= /yd:c_C\/z-,r{A1+ +3A5+...+A"‘+‘+...}.

27n!

The area to the right of the modal ordinate is

’ ® - At
/ yd:c=Cf e 2<Al+Ag::+ i +...>dt
Zmo. 0

. © 12 ta A t2n—1
— 1 2 o ik
2 +Cj; € (A2t+A43!+ (2n_1)!+ )dt

(67)

+C<A2+ + - )

Hence the area from the mode to the median is
(68) ¢ (Az +Ay )

Let us consider distribution (1) again. The coefficients in series (62) are
functions of the skewness, and become smaller with smaller degrees of skewness.
Indications are that with moderate skewness, the series converges sufficiently
to be used for certain formal purposes. If we assume this and proceed in a
formal manner we obtain some interesting results that are consistent with
approximations that have been obtained elsewhere.

Thus, it is interesting to note that using the coefficients of series (62) in equa
tion (66), we obtain

T(vE) = V2r(v% — 1) (y& — 1) e

1 1
{1 + 12(vz — 1) + 288(yz — 1)? T }

which is Stirling’s asymptotic form for I'(yZ).”
From (68), the area from the mode to the median in the Type III distribution.
characterized by (1) is approximately

2 4
(69) 0(5 ~Beai-n Tt )

where

1)7:’;——1 e——(‘yz—l)

I'(yz)

o T —

9 E. Czuber, Wahrscheinlichkeitsrechnung, Volume 1, (1908) pp. 23-24.
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Since (yZ — 1) is large when the skewness is moderate, and since the terms of (69)
are rapidly decreasing, the area from the mode to the median is approximately

equal to % But ! is the distance from the mode to the mean and C is the
- Y

ordinate at the mode, hence the area from the mode to the median is approxi-
mately equal to the ordinate at the mode multiplied by 2/3 of the distance
between the mode and mean. Therefore with moderate skewness the median is
approximately 2/3 of the distance between the mode and mean, which conforms
to the approximate result first obtained by Karl Pearson™ for the Type III
distribution. We may, for all cases resulting in (68), take A4, as being approxi-
mately equal to the distance from the mode to the median. This becomes
somewhat more apparent by finding the arithmetic mean of distribution y.

Thus,
© t2 3
C/ 6—7<A0+A1t+A2t + As +>
b
m o= = ;
/ydx c /2W(A1+ +3A“+--->
A4y +(3ilf12 + 24‘314—)+ 3(A ods y Sy 5A2A3>+ e
_ 4! 213l
Ao ¥
(70) =Ao+3“2+li§1f+...,

Remembering that Ay is the abscissa of the mode, it becomes apparent that the
mean is, in general, approximately equal to the mode plus 3/2 of the distance
from the mode to the median.

Though series (62) is known not to converge for large values of ¢, it is interest-
ing to note that if we use distribution (1) for y, we have from (70)

' 1 3(2 1
w = (22 +3E) - st

the first two terms of which give Z, which is 1, and hence if (71) were an exact
formula, the sum of the terms beyond the second would be zero.

For example (63), it can be seen from the following that A, furnishes a close ap-
proximation to the distance from the mode to the median. Here, ¢ = .1 (yZ — 100);

putting z = & — %, we have fn,., = .1(y& — 101) = —.1. Putting

20 Karl Pearson, loc. cit.
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z = (a‘: — %) + 3—2‘—7, where A, = 3%, we have as our approximation to the
median
bma, = .1(7:2 - :?—gl)
= —.03333.
Interpolating in the Salvosa tables, we find for a3 = .2, fna. = —.03331 approxi-

mately. Hence it is seen that the interpolated values checks very closely with
that obtained by using the A, criterion.

We shall now consider briefly the transforming series, when for y, we take
distribution (4). Then, corresponding to (54), we obtain the series

2) g o OE =" nld — n" 4 mBn = DOz — )™ £

" " 3y 2!
i n(6n’ — 6n + N(y% — n)"* £
67” 3!
L n5n’ — 90n" + 450 — HE — ™"
454" 4!

When n = 1, (72) reduces to the series given by (62). Suppose we are primarily
interested in the cases for which 0 < n < 1. For these cases the coefficients of
(72) decrease more rapidly than. do those of series (62). Under the same
assumptions as to convergence which were made in working with the latter
series we have, from (68) and (72), the area from the mode to the median given
approximately by

- n—1 3 2 - n—2
@3 ¢ {n(3n - 1;(790 —n) + n(45n° — 90n® + 451 — 4)(v& — n) 4. }
" 135y™

When 0 < n < 1 we always have y& > n; then A, > 0if n > 1/3,and 4, < 0
if n < 1/3. Therefore, if A, is taken to be approximately equal to the distance
from the mode to the median, we have Tmo. > Tma. ifn < 1 /3, and Too. < Tmd.
if n > 1/3, since A, is positive or negative according as = is greater or less than
1/3. Combining these results with (70), we have & > Zpq. if Zmo. < Zma. , and
& < Tuma. if Tmo. > Tma. , which are the relations given in Section IIa, for case II.




