A MODIFICATION OF BAYES' PROBLEM
By R. v. MisEes

The classical Bayes problem can be stated as follows. We consider an urn
which contains white and black balls (or balls designated by 0 and 1). The
probability p for drawing a black ball is unknown. But there is given a proba-
bility function F(z) representing the a priori probability for the inequality
p = z. We draw n times from the urn (returning each time the extracted ball)
and get a black ball m times and a white one n — m times. Now, after this
experiment, we ask for the a posteriori probability P,(z) for the relation p < z.

The solution proposed by Bayes can be written in a slightly generalized form:

(1) Pus) = K / p"(1 = p)" " dF (p)

where K is a constant to be found by means of the condition
1" P.(1) = 1.

We are interested in the behaviour of P,(z) if n tends to « under the condition

) lim 2 = a.

n—o N

Laplace found in the case of a priori equipartition F(z) = z, and I proved in 1919"
for any derivable F(z), that P,(z) tends to a normal distribution:

(3) lim [Pn(x) - \—};_r ﬁ : e du:] =0

with u=H,(z— A4,
1 a(l — a)
4 A =a, o =l-a
@ 77 n
It is easily seen from (3) and (4) that
. 0 fr<a
) lim P - {1 s

Let us now consider a slightly modified form of the problem.” Instead of one

! Mathematische Zeitschrift, vol. 4 (1919) p. 92. Cf. my textbook Wahrscheinlichkeits-
rechnung und thre Anwendungen, Wien-Leipzig 1931, p. 158. Later I proved the Laplace-
Bayes theorem for a more general class of F(z): Monatshefte fiir M athematik und Physik,
vol. 43 (1936) pp. 105-128.

2 This modified problem has been treated by S. Bochner, Annals of Math., Vol. 37, 1936,
p. 816.
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urn we suppose there are given n urns each containing white and black balls.
The probability p, for drawing a black ball from the vt urn is unknown, but is
subject to an a priori probability function F(z) which furnishes the a priori
probability for the relation p, < z, independently of ». We assume that on

drawing one ball from every urn a black ball appears m times and a white ball
n — m times. Putting

ptpt -+ pa
n

(6)

=D

we ask for the a posteriori probability P,(z) for the relation p = «
The Bayes formula (1) must now be replaced by

Puz) = K / f / pipe - Pl — Py (L = Prse)
(7) p1tpet:  pasSnz

+ (1 = pa)dF(py) - - - dF (pn)

where K’ is a constant determined by (1’). It is very easy to examine the
asymptotic character of (7). We shall prove the following
TurorEM: If the first three moments of the a prior: distribution F(zx)

1
(8) b, = f o dF (z), y=1,2,3
0

éxist and if the dispersion by — b} is different from 0, the a posteriors probability
P.(x) tends for n — co under the condition (2) to the normal distribution (3) with

A=af+ (-0 2P

1 _ 1| bibg— (bg — bg)(1 — by) — (b1 — by)
[+ =6y ]

(9

2H: n

In order to prove the theorem we write

Vv(pv) = I-} /p”:vdF(x), ifV = 1, 2’ ceem
(10 '

Then formula (7) becomes

a1 r@=c [ [ [av@iavie) - av.on.

p1tpet - pasSnz

Each V,(p,) is a distribution function, i.e. a non-decreasing function with
V,(— ) =0, V,(x) = 1. Therefore the constant C in (11) is equal to 1 and



258 R. V. MISES

the integral represents the distribution function for the arithmetical mean
(p1 + p2 + -+ Ps)/n. According to the Central Limit Theorem of the theory
of probability P.(z) will converge towards a normal distribution when certain
conditions are satisfied. In every case, if a,, s; denote the mean value and the
dispersion associated with V,(z), then the mean value A, and the dispersion
S2 associated with P,(z) will be defined by

1 2 1 2
(12) An-";‘llzav; Sn—"'?zsv-

v=1 v=1

We find from (10)

1 1
a,=[de,(x)=Bl—[;x2dF(x)=Z-2, ifr=1,2,---m
1
(13) , ‘
=———1—-/ :c(l—:z;)dF=bl_-b2 fr=m+1,---n
l—bl 0 l—bl, !
1 b b2
sf=/x2dV,(x)—-af=-b—3—B—§, = 1,2, m
0
(14) o

_be—bs _ (b — by)*
1—b (1 —0b)?

We supposed the dispersion of F(z) to be different from zero. It follows that
(15) by 5 0,1 — by 5 0, beby — b3 # 0, (b — bs)(1 — by) — (br — )" # 0.

For b, = 0 would imply that dF(z) = Oforallz > 0and 1 — b, = 0 that dF(z)
= 0 for all z < 1; in both cases the dispersion would be zero. On the other
hand, it is easily seen that the relation bsb; — b3 = 0 is not compatible with the
condition of a non-vanishing a priori dispersion and that the same is true for
the relation (b — bs)(1 — by) — (by — by)* = 0.

The total dispersion =s? is equal to the sum of m times the value (bsb; — b3)/b3
and n — m times the value [(b2 — bs)(1 — by) — (b — b2)"1/(1 — b))’

Thus we see that under the condition (2) the sum Zs; tends to «, while the
ratio s;/=s: tends to zero, if n increases infinitely. These are sufficient conditions
for the validity of the Central Limit Theorem.® The values given for 4, and
H2 in (9) follow from (12), (13), (14) and the well known relation 2H2S% = 1.

S. Bochner in his previously quoted paper found, in a more complicated man-
ner, the value of 4, and only showed that P,(z) tends to zero if z < A4, and to
lifz > Aa.

Exampres. If we assume the a priori probability to be uniform, i.e. F(z) = z,
we have

fv=m+1, - ---n

o[

bh=3% b=3% b=

and therefore from (9)

3 Of. H. Cramér, Random Variables and Probability Distributions, Cambridge Tract in
Mathematics and Mathematical Physics, No. 36, 1937, p. 56.
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1 1
= 1 — | e
A, = 3a+1), oHT = T8
A more general case is that of a more concentrated a priori probability func-
tion

Fl(z) = C*(1 — ), C = (ff%__;'l)'
Here we find
poo kF1 b B+ D+ 2)
'TEFIF2 T kIt 2k +1I+3)
by (k + 1) + 2k + 3)

T EFIFOERFIFRFIF D)
and the values of A, and H? are

_atk4l 1 _al=k) + (k4 D1+2)
E+1+3 oL nk+I+dNE+I+D

By introducing the moments of F(z) relative to the mean value, i.e.

1
Bz=£ (x — b))*dF = b, — b3,

An

(16) .
B; = ﬁ (@ — b)*dF = bs — 3by b, + 2b3

we can transform the general formulas (9) into

.47; = bl + bm (a bl)
1 1 a—bh 2 b§ + a(l — 2b1):|
17 B4 2= _patal= o))
(7) 2H?, n[ A= bi(1 — b))’

The first of these equations shows that the a posteriori mean value A, (for
all n) is equal to the a priori mean value b, , if the experimental mean m/n or
coincides with the latter. On the other hand, in the case of a symmetric a priori
distribution (b, = %, B; = 0) the second equation is reduced to

1 1
On the whole it is remarkable that the influence of the a priori probability does
not vanish for n — o, in the case of our modified Bayes problem.* The ex-
planation of this fact is to be found in a more generalized theory of the inverse
problems in probability.

UNIvERsITY OF IsTANBUL, TURKEY.

¢ Cf. my papers quoted in footnote 1.



