GENERALIZATION OF THE INEQUALITY OF MARKOFF
By A. WaLp

1. Introduction. Denote by X a random variable and by M, the expected
value E| X — x| of | X — zo|" for any integer r where 2, denotes a given
real value. M, is also called the absolute moment of order r about the point x, .
For any positive number d, denote by P(—d < X — 2o < d) the probability
that | X — 20| < d. The inequality of Markoff can be written as follows

) P(—-d<X—xo<d)21—%'

The inequality (1) is also called, for » = 2, the inequality of Tchebyscheff.
The inequality (1) can be written in the following way:

P(—¢/M, < X — 2 < tv/M) > 1 —él;.
/M,

Substituting in the above inequality s for r and & for ¢ we get
g q y \,/E g
I o 1 (/LY
@ P(-EV/IT, < X — 2 < 0/i) 21— L (VLY
F\VM,

where r and s denote any integers and £ denotes uin arbitrary positive value.'
Substituting in (2) 2k for s and 2 for r, we get the inequality of K. Pearson.?
By other substitutions we get the formulae of Lurquin, Cantelli, etc.’

As is well known, the inequality (1) cannot be improved* for d > /M, .
That is to say, to every ¢ > 0 a random variable Y can be given such that

E|Y —af = E|X —m| and P(—d <Y — 1 < d) <1—%{:+e.

If the absolute moments M;, = E(| X — 2 |"), --- ,M;; = E| X — z [ % of
a random variable X are given (and no further data about X are known), then
we shall say that aq is the “sharp” lower limit of P(—d < X — x, < d) if the
following two conditions are fulfilled: . '

(1) For each random variable Y, forwhichE |Y — o |" = E | X — xo [, - -,
E|Y — 2|7 =E|X — 0", the inequality P(—d < Y — 2o < d) > aqholds.

1 The formula (2) has been given by A. Guldberg, Comptes Rendus, Paris, Vol. 175, p. 679.
2 Biometrika, Vol. XII (1918-1919) pp. 284-296.
3 E. Lurquin, Comptes Rendus, Paris, Vol. 175, p. 681. Also Cantelli, Rendinconti delle
Reale Academia deir Lincei, 1916.
4 See for instance, R. v. Mises, Wahrscheinlichkeitsrechnung, Leipzig, Vienna, Deuticke,
1931, p. 36.
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GENERALIZATION OF INEQUALITY OF MARKOFF 245

(2) Toeach e > 0, a random variable Y can be given such that E | Y — x, | =
E| X—x|"@=1.-..,)and P(—d <Y — 2y <d) < ag + e

In other words, as is the limes inferior’ of the probabilities P(—d <
Y — zy < d) formed for all random variables Y for which the 7,-th absolute
moment about the point x, is equal to the 7,-th moment of X about the point

To (" = 1::.7)

ProBrLEM: The absolute moments M;, , M., , --- , M;; of a random variable
X are given about the point xo , where i1, %2, - - - , 1; denote any integers and M,
denotes the moment of order 1, (v = 1 - .- k). It is required to calculate the “sharp”

lower limat of the probability P(—d < X — z0 < d) for any positive value d.

If only a single moment M., is given, our problem is already solved, because
the inequality (1) gives us the “sharp” lower limit for d > ~/M, and for
d < /M, the “sharp” limit is obviously equal to zero. But the case in which
even two moments M, and M, are given has not yet been solved. The formula
(2) gives us a limit for P(—d < X — x, < d), but this limit-is not “sharp,”
53 can easily be shown.

We shall give here some results concerning the general case, and the com-
plete solution if only two moments M, and M, are given. We shall see that
the “sharp” limit is considerably greater than the limit given by (2).

2. Some Propositions Concerning the General Case. We shall call a random
variable X non-negative if P(X < 0) = 0. Since the absolute moments of
the non-negative random variable ¥ = | X — 0| about the origin are equal
to the absolute moments of X about the point xy and since P(Y < d) =
P(—d < X — x, < d), the following proposition holds true:

(I) Denote by M, , ---, M;; the absolute moments of order i, ---,%; of @
certain random variable X about the point xo. The limes inferior of the proba-
bilities P(—d < Y — xy < d) is equal to the limes inferior of the probabilities
P(Z < d), where P(—d < Y — =z, < d) is formed for all random variables Y
Jor which the 1,-th absolute moment about xo vs equal to M;, (v = 1, ... ,j), and
P(Z < d) s formed for all non-negative random variables Z for which the i,-th
moment about the origin is equal to M;, (v = 1, --- , 7).

On account of the proposition (I) we can restrict ourselves to the considera-
tion of non-negative random variables and of the moments about the origin.

A random variable X for which k different values z;, - . ,:i;, exist such
that the probability p(z:) of «; (! = 1, ..., k) is positive and le(:c.') =1,
is called an arithmetic random variable of degree k. A random variable X
will be called ¢-limited, if P(—t < X <) =1 We shall prove the following

proposition.
(IT). Let us denote by M , M;,, ---, M;, the absolute moments of order
%1, -+, 1; of a certain non-negative random vartable X, about the origin. Denote

by Q(k, t) the set of all non-negative t-limited arithmetic random variables of
5 The limes inferior of a set N of numbers is the greatest value y for which the inequality
y < z for each element x of N holds true. This is also called greatest lower bound.
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degree < k, for which the i,th moment about the origin is equalto M;, (v = 1, - - . , ).
Q(k, t) is supposed to be not empty.® Denote further by a(d, k, t) the limes inferior
of the probabilities P(Y < d) formied for all random variables Y of the set Q(k, t).
Then we can say: There exists in Q(k, t) a random variable Z for which P(Z < d) =
a(d, k,t). If0 < a(d, k, t) < 1 and Z is a random variable in Q(k, t) for which
P(Z < d) = a(d, k, 1), then there exist at most j — 1 different positive values
Ty, -, i such that x; 5 d, x; # t and the probability p(x:) of x; is positive
('L = 1) 2; yj - 1)

At first we shall prove that there exists a random variable Z in Q(k, t) such
that P(Z < d) = a(d, k, t). Since a(d, k, t) is the limes inferior of P(Y < d)
formed for all random variables Y in Q(k, ¢), there exists in Q(k, t) a sequence
{Z:} i = 1,2, ..., ad inf.) of random variables, such that lim P(Z; < d) =

a(d, k, t). Arranged in ascending order of magnitude, the values of Z; which
have a positive probability are denoted by z:1, Z:2, -+ -, Tix, . Since Z; is a
t-limited non-negative arithmetic random variable of degree < k, we have
ki<kand0 < z,<t(r=1,---,k). Itfollows easily from this fact that
there exists a subsequence {Z;} (v = 1, 2, --., ad inf.) of {Z;} with two
properties: First, that the variables Z; , Z;,, -.. are of the same degree
(say s), that is to say ki, = s (w = 1, 2, ..., ad inf.); and second, that the
sequence {z;,.} (» = 1,2, --., ad inf.) converges for each integer r < s.
Let us denote lim z;,, by z. (r = 1, 2, -.. ,s), and the probability that Z;,
takes the value z;,. by p:,... It is obvious that there exists a subsequence
{Zn,} (v = 1,2, ... ad inf.) of {Z;,} such that the sequence {p.,..} converges
with increasing ». Let us denote lim p,,. by p., * = 1, 2, --- s). Since

Pia+ oo+ pi,r =1, Z pr = 1 must hold true. We consider the random
r=1

variable Z for which the probability that Z = z,isequaltop. (r = 1,2, --- s)
and for which no values except z;, - - - , z, are possible. The random variable
Z is obviously an element of Q(k, t) and P(Z <. d) = a(d, k, t).

Let us consider the case in which 0 < a(d, k, {) < 1 and denote by Z a random
variable of Q(k, t) for which P(Z < d) = a(d, k, t). We shall prove that there
exist at most j — 1 different positive values z;, ---, z;; such that z; # d,
z; # t and the probability p(z;) of «; is positive (: = 1,2, -..,5 — 1). In
order to prove this statement we shall suppose that there exist j different posi-
tive points z;, - -+ , zjsuch that z; # d, z; # tand p(z:) >0t = 1,2, -..,7).
Then we can write

’gxz"p(xo - M, - 3 p(@)

.............................

L i i
El zip(z) = My, — 20 2 p(2),

¢ This is certainly the case, if we choose k and ¢ great enough.
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where the summations on the right hand sides are to be taken over all values
of z which are different from z, , - - - , z; and for which p(z) > 0.

Since P(Z < d) = a(d, k, t) and 0 < a(d, k, t) < 1 by hypothesis, there
exist two non-negative values b and ¢, such that b < d, ¢ > d, p(b) > 0, and
p(c) > 0.

We define a new arithmetic random variable Z’ as follows: p’(b) = p(b) — ¢,
p'(c) = p(c) + ¢ and for all other values p’(z) = p(x), where p’(x) denotes
the probability that Z’ = z, and € a positive number less than p(b). 2’ is
obviously a non-negative arithmetic variable of the same degree as Z. The
moments about the origin of the order 7, 72, - -, ¢; of Z’ will in general not
be equal to the corresponding moments of Z. However this can be obtained
by a small displacement of the points z;, -- -, z; into a system of neighboring
points &, ---,&;, provided that e is small enough. In order to show this,
we have only to prove that the functional determinant

o —ty—1 o =t1—1

', e, uZ;!

¥ jiz_l PP y x'.:g_l ’ ’
A= Bt Rt ) g () - p!(3)

................

of the functions fi(%, -- -, &;) = iif‘p’(x. y oo, filE, - &) = i :i::‘p’(:c,)
y=al pm=]

does not vanish at the point # = 2, ..., & = ;. Since p'(z1), p'(z2), - - -
p'(z;) are not equal to zero, we have only to show that

1,1

.............

...............

x:i_‘l, e x’:
where 7 — %, -.-,%; — 7 can be assumed positive by denoting by ¢ the
smallest of the integers ¢;, 72, -+, %;.

Let us consider the polynomial in = given by

1, cee, 1, 1
t9—11 t9—%] ta—1]
R(x) =T " &1, 7T
=11 e $—41 $;—11
xJ‘ ’ y Ti=1 5, T

According to a well-known algebraic proposition; the number of positive roots
of R(z) is less than or equal to the number of changes of sign in the sequence of
coefficients of R(z). Since the number of changes of sign in R(z) is obviously
less than or equal to j — 1, the number of positive roots of R(x) is also less
than or equal to j — 1. On the other hand z = z;, ---,2 = zj,arej — 1
positive roots of R(z). Hence for any positive value £ # z;, # ., ---,
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# z;.1 the polynomial R(x) does not vanish. Thus R(x;) and therefore also
A* and A are not equal to zero.

Let us denote by Z* the random variable which we get from Z’ by a small
displacement of the points z,, --., z; into a system of neighboring points
Zy, ---,&;, such that the moment of order 7, of Z* about the origin becomes
equal to M;, (v = 1, 2, ..., j). By choosing e small enough we can obtain
the values &, - .-, Z;as near to z;, - - -, x; as we like. In particular, e can be
chosen so small that &, --. , &; are positive numbers less than ¢, and %; > d
or < d accordingly as z; > or < d. Then Z* is obviously an element of
Q(k, t). But for Z*

P(Z*<d)=P@Z <d) =PZ<d) —e=ald k1) — e

holds true, which is a contradiction because a(d, k, t) is the limes inferior of
P(Y < d) formed for all random variables Y contained in @(k, ¢). Hence our
assumption that there exist j different positive numbers z; , - - . , z;, for which
2z #Zd,z; #tand p(x)) > 0@ = 1,2, ... ,7), cannot be true, and the propo-
sition II is proved in all its parts.

It follows from the proposition II that a(d, k, t) is independent of k. On
account of this fact and of the fact that any random variable X can be arbi-
trarily well approximated by arithmetic random variables, we get the prop-
osition:

II1. Let us denote by M, , ---, M, the moments about the origin of order
i1, ,1%; of a certain non-negative random variable. Denote by Q(t) the set
of all non-negative t-limited random variables, for which the 7,-th moment about
the origin is equal to M;, (v = 1, --. ,j). Denote further by a(d, t) the limes
inferior of the probabilities P(Y < d) formed for all random variables Y con-
tained in Q(t). Then we can say: There exists in Q) a random variable Z for
which P(Z < d) = a(d, t). If0 < a(d,t) < 1 and Z is a random variable for
which P(Z < d) = a(d, t), then there exist at most j — 1 different positive numbers
Zi, -+, X1, such that z; # d, z; ¥ t, and the probability that Z = z; , is posi-
tive (1 =1,2,...,5 —1)

It is obvious that a(d, t) decreases monotonically with increasing . Hence
lim a(d, t) exists and it can be easily shown that:
t=00

a(d, t) converges towards aq if t — .

3. Solution of the Problem if Only Two Moments are Given. Let us denote
by M, and M, the absolute moments respectively of order r and s about the
point z, of a certain random variable X, where r and s (r < s) denote any
integers.

Let us first consider the case

(o) <=

It follows from (1) that

M, M,
dr ds
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adzl—%

We shall show that as = 1 — %’ if %’ < 1. For this purpose let us consider

the arithmetic random variable Y3 of degree 3 defined as follows:

M, ¢ € d Y
petd =2t para+n = §(;5)

p() =1 —p(mw+d) —plxo+d+b)

where € is a positive number and p(w) denotes the probability for ¥, = w.
The r-th moment about z, of Y is obviously equal to M,. On account of (a)
the s-th moment of Y, about z, is less than or equal to M, for b = 0. On the
other hand the s-th moment of Y, about z, will be greater than M, if b is suffi-
ciently large. Hence there exists a non-negative value b, such that the s-th
moment of Y3, is equal to M, .

Since P(—d < Yy, — 29 < d) =1 M'+f _é(_d_>’<1_£'+§

T T2 d+ b dr
and since e can be chosen arbitrarily small, we have
M,
Qg = 1 - ?.
If ];—{’ 2> 1, then a4 is equal to zero, because ay decreases monotonically with
decreasing d and aq = Oford = /M, .
We have now to consider the case
M, M,
® FoT
First we shall show that
M,
3) = <1

In fact, if % were > 1, then making use of (8) we have (%[7'); > ];—{' > %‘ ,

and hence (M,)* > M,. But this is not possible, because according to the
well-known inequalities between moments, (M,)" is less than or equal to M, .
It follows from (3) and (8) that

4 =<1

In order to calculate as, we shall apply the propositions found in section 2.
On account of the proposition I, a4 is equal to the limes inferior of P(Y < d)
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where P(Y < d) is formed for all non-negative random variables Y for which
the r-th moment about the origin is equal to M, and the s-th moment about the
origin is equal to M,. Hence we can restrict ourselves to the consideration of
non-negative random variables and of the moments about the origin.

We shall show that 0 < a(d, t) holds for any positive value . In order to
prove this, it is sufficient to show that a; > 0 since a(d, t) > aq. It follows

from the inequality (1) that ag > 1 — %{—’ Since, according to (3), — M <1,

we have ag > 0, and therefore also

5) a(d,t) >0
Let us see whether a(d, t) < 1. If M, = (M,)", then, as is well-*nown, only
a single non-negative random variable X exists for which the r-th moment

about the origin is equal to M, and the s-th moment is equal to (M,)", namely
the arithmetic random variable X of degree 1 for which the probability that
X = /M, is equal to 1. Since v/M, < d, as can be seen from (3), we have
P(X < d) = 1, and therefore a; = 1. Hence in this case our problem is
already solved and we have to consider only the alternative:

(6) M, = M} + o* (6* > 0)

We shall show that a(d, t) < 1for ¢ > ~/M, + d.. For this purpose let us
consider the non-negative arithmetic random variable Y, of the degree 3 defined

as follows:

M, M,

P(\/M)-—l—e,p(t)=e——-<et <e

p(©) = 1 - p(/I) - p() = e — ¢ 2,

where p(u) denotes the probability for ¥, = u, and e is a positive number < 1.
The r-th moment of Y, is equal to

Mp(~/M,) + tp(t) = M,
The s-th moment of Y, is given by the expression

A = Mip(/TE) + tp®) = (1 — OM: + of -3

On account of (6), A is less than M, for e = 0. For ¢ = 1 we have
A=t"M >d M.

Since from (8) d° "M, > M,, we have A > M, for e = 1. Hence there exists
a positive value e < 1 for which A = M,. Thus the r-th moment of Y, is
equal to M, and the s-th moment of Y,, is equal to M,. We have
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M.

P(Y.o<d>=p<o>+p<</m=e—e%{—'+1—e=1—57<1.

Hence
©) a(d, t) < 1.

On account of (5) and (7) it follows from proposition III, that there exists a
non-negative arithmetic random variable X belonging to the set Q(f) such that
P(X < d) = a(d, t) and there exists at .most one positive value 8(#d, #t)
with positive probability. Hence a(d, t) is equal to the limes inferior of the
probabilities P(Y < d) formed for all non-negative arithmetic random variables
Y which have the following two properties:

(1) The r-th moment about the origin is equal to M, and the s-th moment

about the origin is equal to M,

(2) There exists at most a single positive value §(>#d, #t) with positive

probability.

Denote by Z a non-negative ¢-limited random variable with the properties
(1), (2), and for which P(Z < d) = a(d, t). The following equations hold

p(0) + p(8) + p(d) + p(®) = 1
8) ()8 + p(d)d” + p@)t = M,
p(8)8° + p(d)d’ + p()t' = M,

where p(u) denotes the probability that Z = u.
From the last two equations of (8), we get

@ o) = M —&zzl.‘ + f<g _[f) — ]

(10) (@) = M, — 5“;{1@: f(?,_[f;‘s’_' -t

Since %’l[r—' > % and ¢ > d, the numerator in (9) is positive. Since 0 < p(8) <1,
the inequality

(11) 0<s<d

must hold. Hence
(12) ‘ p) > 0.

We shall show that p(f) = 0 if ¢ is sufficiently large. For this purpose let
us make the assumption p(f) > 0. We define a new random variable Z’ as

follows:

P'(t) = p(t) — e where 0 < ¢ < p(t)
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Q) = p(d) —e L8 =t
p (d) - p(d) € dr(dc—r — 50—1)
et — t'd™)

p'() = p(d) — (@ = o)

p'0) =1—p'() — p'd)-p'(®)
and
p'(2) = 0 for all valuesz # 0, #5, #d, #t.
p’(u) denotes the probability that Z’' = wu.

The equations (8) remain satisfied if we substitute p’(0), p’(5), p’(d), and
p’'(t) for p(0), p(8), p(d), and p(¢) respectively. Hence the r-th moment of Z’
is equal to M, and the s-th moment is equal to M,. We have to show that Z’
is in fact a random variable, that is to say, that the defined probabilities are
>0 and <1. It is sufficient to show that the defined probabilities are non-
negative, because the sum of them is equal to 1 and therefore they must be <1.

Obviously p’(f) is >0. Since ¢ > d and according to (11) d > §, we have
p'(d) > p(d) > 0. According to (12), p(d) is positive. Hence for e sufficiently
small p’(3) is also positive. We have to show that also p’(0) > 0. p’(0) is
given by

pP'0) =1-p'@) —p'@ -9

1‘63—' — 8 8 —_ r —T
1 - p(&) - p(d) - P(t) + € [1 + drt(da—r — ‘yt—r) + 5r2da-—r f_d‘ac—r)]

I

draf( 18—1 —_ 68—") + tO(dr — 61‘) — tr(dl — 68)
= p(O) + e d"ﬁ"(d"" — 50—') :

Since p(0) > 0, ¢ > 0, d > & and s > r, this last expression is positive if ¢ is
sufficiently large. We may assume ¢ so great that p’(0) > 0, because we want
to calculate only

aq = lim a(d, t).

=00
Now we shall show that
p'(d) + p'(t) > p(d) + p(®).
In fact

p'd) + ') — p@d) — pl) = ¢ [d%if_‘__"a;_') _ 1]

tr tu—r —_ 6c—r 1 O
= € d—'d:—r_ac-—r_ > 0.



GENERALIZATION OF INEQUALITY OF MARKOFF 253

Then
p'(0) + p’'(8) < p(0) + p(®) = a(d, t)

must follow. Since p’(0) + p’(6) = P(Z’ < d), we have a contradiction and
therefore the assumption p(f) > 0 is reduced to an absurdity. Hence p(t)
must be equal to zero and a(d, {) = as. If we substitute zero for p(t) in (8),
(9), and (10) we obtain:

p(0) + p(®) + pd) =1

(13) p(®)8 + p(d)d’ = M,
p(©)d + pldd” =M,
MJdT — M,
(14) p(®) = F(d — o)
(1) pd) = Mo = ML

dr(da-—r — ac—r) ‘

We shall prove that p(0) = 0. For this purpose let us make the assumption
p(0) > 0. Denote by & a positive number <& and let us consider the arith-
metic random variable Z’ of degree 3 defined as follows:

Md7 - M
') = - T°¢
PO = e =
, s — M8
p'@d = .

dr(dl—-r —_ 6;-—1‘)
p'(0) =1 —p'(6) — p’'(d).
The r-th moment of Z’ is evidently equal to M, and the s-th moment to M, .
Since p(8) > 0 according to (12), and p(0) > 0 by hypothesis, p’(0) and p’(5)
will be greater than zero if §; is sufficiently near to 6. The derivative of p’(d)
with respect to 8, is given by

1 —M(s — )8 d™ = 877) 4 (s — et (M, — M,817)

dr (dc—-r _ 6:—r)2
(8 - r)ai_r_l 8—r°
=" (M, — M, d"™).
dr(du—-r — 6;—r)2 ( )
. M, M, . . ,
Since a > ok the above expression is negative. Hence p’(d) decreases

with increasing 8, . Since & < 4§, we have
p'(d) > p(d) 2 0

and therefore
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1 -p'(d<1-p@d=
Since 1 — p’(d) = P(Z’ < d),, we have a contradiction and the assumption
p(0) > 0 is proved an absurdity. Hence p(0) = 0, and p(8) + p(d) = 1.
From (13), (14) and (15) we have

L Md - Md A+ M5 — M
q(a) + p(d) - érdr(da—r — 6:—1‘) = 1.

Hence
(16) Md — Md +§M, — d&) + 8 — M,) =0.
The equation (16) in & has at most two positive roots, because the derivative
of the left hand side of (16)

(M, — d°) + s8N(d — M,)
has exactly one positive root in §. Since § = d is a root of (16), the value of é
which we are seeking must be the second positive root of (16), which we shall

denote by & .

It can be easily shown that & < +/M, < d. In fact, for 6 = 0 the left
hand side of (16) is positive on account of the assumption (8) and for & = v/M,
it becomes equal to

MM, —d) — Mi(M, — d) = (M, - ME)(M, —d)
Since M, > M; and recalling from (3) that M, < d’, the above expression is

less than or equal to 0. Hence & lies between 0 and v/M, < d.
Hence a4 is given by the expression

M, — M5 "
dr( 8~r 88—1’) *
For s = 2r the root & can be easily calculated. We get

(18) ,‘/ My —__d'd,

If we substitute in (17) 2r for s and the right hand side of (18) for 6 , then
we get

(17) aa=1-—pd =1-—

M, — d'M,
a=1- e~ M'<'W>
o d (d' _ My — d ‘“ir)
M, —dr
_ 1 _ (Mr - dr)M2r - Mr(Mzr - drM,-)
= T, — &) = My, + M, ]
=1 dr(Mf - M2r)
=1 T FRM.d — & — My
=1— M? - Iu-2r

2M,dr — d¥ — M,
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Let us denote the non-negative number M, — M ? by ¢, then we obtain’

(19) ag=1-— (6 = Ma, — M?).

g
Let us compare the “sharp” limit given by (19) with the limit given by (2). If
we substitute, in (2), 2r for s and d for £+/M, we have
M., M\

as a lower limit of the probability P(—d < X < x < d). We see that for
small values of ¢°, by is considerably smaller than a. .

Our results may be summarized in the following

TueorEM: Denote by M, the r-th and by M, the s-th absolute moment of a
random variable X about the point zo, where r < s. For any positive value d
denote by P(—d < X < 2 < d) the probability that | X — o | <d. The “sharp”
lower limit ag of P(—d < X — x < d) is defined as the limes infertor of the
probabilities P(—d < Y — zo < d) formed for all random variables Y for which
the r-th moment about o is equal to M, and the s-th moment about 2o vs equal to
M,. We have to distinguish two cases.

M, M, . M, . .M, oMy
I.E;g—fd‘—. In this case ag = 1 -g;zf—dTSI,andad_Ozf?>l.
II. % > ]:ii“ In this case a4 is given by

(17) aqg = 1 — Ma — Mrao

where & is the positive root #d of the equation® in 4.
Md — Md + M, — d) +8d — M,) =0.

For s = 2r we have

80 = /‘7 M, — darM,
°T M, —d
If we substitute in (17) 2r for s and the above expression for & , we obtain

2
[

ad——-l—m;

2
where o° = My — M; .
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7 The case s = 2r has been treated also by Cantelli. He demonstrated the formula (19)
in quite another way, which cannot be generalized for the case s % 2r. Cantelli’s formula
and its demonstration are given in the book of M. Frechet, Generalities sur Probabilities.
Variables Aleatoires, Paris, 1937, pp. 123-126.

s As has been shown, there exists exactly one positive root # d of the equation con-
sidered.



