ON AN INTEGRAL EQUATION IN POPULATION ANALYSIS
By ALFrED J. LoTKA

I

A fundamental equation in population analysis rests on the following con-
siderations: Of the persons born @ years ago a certain fraction p(a), ascer-
tainable for example by means of a life table, survives to age @, and forms the
a-year-old contingent of the existing population. A similar remark applies
to every age of life. If, therefore, we denote by N(f) the number of the popu-
lation at time ¢, and by B(f) the annual rate of births at the same time, and if
we are dealing with a closed population, that is, one exempt from immigration
and emigration, then, evidently,

) No = [ " Bt — a)p(a) da.

In general p(a) may be a function of ¢ also, but we shall here consider primarily
the case where p(a) does not contain ¢ explicitly.

The function p(a) being known (from a life table), if B(t) is given as a func-
tion of ¢, then N (¢) follows by direct integration of the right hand member of (1).

If, on the contrary, N(f) is given, and B(f) is to be determined, a special
problem arises. On a former occasion' I have given a solution for cases in
which the function N(¢) is given or can be expanded in the form of a series pro-
ceeding in ascending powers of ¢", where r is constant; and, more particularly,
for the case in which N(¢) is the logistic function

N,
1+e

Although N(¢) is expanded in an exponential series in the process of obtaining
the solution by this method, in the final result these terms are reunited, and
only the original function N(f) as such, together with its derivatives, appears.
This suggests that it should be possible to obtain the result by a more direct
route, retaining the function in its original form throughout the process. This
is indeed the case, as will now be shown, by a method which at the same time
frees us from the assumption that N(f) can be represented by ‘an exponential
series in powers of €.

This is accomplished as follows:

2 N@) = = N (" - 4 = -).

1 A. J. Lotks, Proc. Natl. Acad. Sci., 1929, vol. 15, p. 793; Human Biology, 1931, vol. 3,
p. 459.
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Let us put
3) N(®) = «(?)

and assume that B(f) can be expressed as a series in ¢o(f) and its derivatives,
thus

@ B(@) = copolt) — cron(t) + 2

1) — 5@ + -

B — a) = eo{inl) — an() + B n) = Byl + -}
" —a{ e - w® G — )

+2ﬁl{ erlt) — a os(t) + }

where ¢,(t) denotes the nth derivative of ¢o(t).
Introducing (5) in (1), and carrying out the integration, we obtain

() = comogn(t) — {ermo + coma}en(t) +§-! {camo + 2eemy + coma}ea®)

(6)
— & eamo + Bcamy + Beyma+ comalea(®) + -

where m, denotes the nth moment of the function p(a) about the origin of a,
that is,
)] M = l a"p(a) da.

Equation (6) is satisfied by putting

1 =com

0 =com + cimo

0 = come + 2c1m1 + camy

0 = coms + 3cxms + 3comy + csmo

@®

the numerical coefficients being those of the corresponding binomial expansion.
Now consider

B(r) = —o— = lm
© fo e "pla)da my — mur + 2 -
—C—Cr+ 8-

ﬁr
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This gives
1 = Como
0=Comi+ Cimyg
10 = Coma + 2C1my + Camy
[0 = Comz + 3C1mz + 3Camy 4 Csmo

(10)

from which it is seen that the coefficients ¢ in equation (6) are identical with
the coefficients C in equation (9), that is, they are the coefficients of successive
powers of r in the expansion of

ﬁ(r) = —Q—l—_

(11) ‘ﬁ e “pla)da

as a power series in r.
These coefficients can also be conveniently expressed in terms of the Thiele

seminvariants A of the function p(a), which are defined by

¢ “pla)da

2 3
e-—)\lr+)\, gr—Magte

(12)
me 2 ms a+

r — —

=™ —mir + 37 31"

Differentiating the right hand member of (12) we have

N N rt \ ‘—x.r+x,5_x,_;_"+...
mo (A1 — a7 + 39—!—"')0 !
rz 7'2
(13) =<)\1—>\2?+7\3§~!—"' Mo — mar + my gy — -
2
=m1—m2r+m3;—!—
Hence
(mo = mo
m = MMy
(14) 1Mz = Mmy + Ao

ms = Mimg + 2\emy + Asmo
my = Mms + INamz + 3hsma + Aamo

\

again with binomial coefficients.
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The M’s being thus defined, we now have

1 _ 1 e).;r—)\g%;+)\;;—;—~--
15 T me
(15) j; ¢ "“p(a)da o
2
(16) =Co—017'+02-2—!—'”

from which it follows, as in the case of cquations (12), (13), that
(1

Co = —

mo
1= —MCo
@an {C= —MC1 — MNCo
3 = —MCz — 2\2C1 — N3Co
€t = —MC — 3hC2 — 3Nsc1 — MGo
Cs = —NiCs — dh\2cs — BAsca — dNsc1 — NsCo

\

once more with binomial coefficients. The coefficients ¢ are, in fact, related
to the negative seminvariants —\ in the same way as the moments m are related
to the direct seminvariants.

Considerable simplification in the coefficients ¢ can be effected by a change
in origin of ¢. This is most easily accomplished by reverting to equation (1)
in which we write, instead of B(f — a), the equivalent expression

(18) Bt —a) = B{(t — M) — (@ — M)} = B(6 — a).

In place of the moments m of the function p(a), taken about a = 0, there then
appear in (6) the corresponding moments taken about the mean age \;, and
in the equation corresponding to (17), for the new coefficients ¢ , ¢;, ¢s, - - - the
seminvarfants A are now defined in terms of these new moments. According
to a well-known property of the Thiele seminvariants this leaves all the \’s
except \; unchanged, while reducing this latter to zero.

The coefficients ¢’ are therefore obtained by a set of equations identical with
those for the coefficients ¢, in which, however, the substitution A\; = 0 eliminates
all terms containing either A, or ¢, , thus

(., 1
co = co = —
my
c{ =0
(19) Jer = —hco
cs = —M\sCo
0; = -‘()\4 - 3)\2)00
Lcé = —(\s — 10A\2Ns)co
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With this choice of constants the solution (4) of the fundamental equation
(1) finally takes the form

(20) B@) = "l‘o{:po(l?) 2 @) + 33 n0) - 9‘%!3&) oul0) + }

It is thus seen that if the population, as a function of the time, is represented
by ¢(t), and expansion by Ta.ylor s theorem is applicable to ¢(t — @) within the
range 0 < @ < w where w is the highest age attained by any individual, i.e.,
the highest age for which p(a) has a value other than zero, then the annual
births B(f) under the régime of a constant life table can be represented by a
series (20) proceedmg in successive derivatives of ¢. The constant coefficients
of the successive members of the series are known functions® of the Thiele semin-
variants A of the function p(a), the probability at birth of attaining age a.

II. ALTERNATIVE SOLUTION

1. In the special case of a population growing at a constant rate r under the
régime of a constant life table, the constant birth rate per head is given by

1

(21) Br) = 50—
j; ¢ “p(a) da

This suggests that when r is variable we may still have as a first approximation
1

™ = ﬁ(rt)
./o. e "“*pla)da

(22) B(t) =

and that this expression may form the first term in a series expansion of some
kind. Evidence of this has, indeed, been shown® in the case of a population
growing according to the logistic curve, but the formal Justxﬁcatlon of the
supposition was not fully established, nor was the law of the series expansmn
determined. We now proceed to establishthe series for the general case, using
as a starting point the result obtained in Part I.

We revert, then, to equation (4), and, dividing by N(¢), we have

B(t) o) | ae) _ ae®
NG o® T 2 " 3leo®) T

2 An obvious extension of this result is that this representation of B(t) may still hold
approximately when the life table is variable, and the seminvariants A are accordingly
functions of . We may expect this approximation to be serviceable when p(a, t) changes
but slowly with ¢, a condition that will usually be satisfied in practice. See A. J. Lotka,
Human Biology, 1931, vol. 3, p. 481.

3 A. J. Lotka, Proceedings Natl. Acad. Sci., 1929, Vol. 15, p. 796.

(23) =b(t) =c—a
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But ‘018 is the rate of increase per head at time ¢, which we have denoted by r;,
@0
that is

(24) a1t) = repo(t).

To systematize notation, let us write r; instead of r;, and denote by r2, 75 - - -
successive derivatives of r, with respect to . With this notation the following
scheme, homogeneous as regards the weight of the terms in the right hand
member, results

(00 = oo
Y1 = T1¢0
(25) 192 =To1+ T2

o3 = 1192 + 2rs01 + T390

¢4 = T1¢3 + 3r2e2 + 3131 + rago

again with binomial coefficients.
Eliminating derivatives of ¢ from the right hand members of the set of equa-

tions (25), we find

(ﬂ =n
(4]
g = T: +
(26) 3
B tnun+ n
0
g—: =i + 6rirs + drirs + 313 + 14

Introducing the expression (26) for £" b " in (23), and rearranging terms, we find

2
031'1

b(t)=co—-c1r;+%—l— -3rt+-

+2l(0: ar 1+c‘r‘—— )

01h) ;1( ey 4 &1 cm B )
+ 1',3“) (04 — e + 31 “’3 - )

_ (7'6 + 107‘27‘3) (c 017‘1 . )
51 :
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It will be seen that the factors s, 73, (re + 373), (rs + 10rsrs), etc., by which,
in successive terms, the power series in r, are multiplied, are obtained by the

formal substitution 7, = 0 in the corresponding expressions (26) for $n , as for
(]

example,
4
£°= £a=1‘:-’-31'11'2+1‘;
%o Yo
f_l =71 ﬂ] = T3
$o L¥o_l0
(28) 1 [@] =0 P =1t +6rire+ s + 32 + 1,
$0_l0 ®o
Q=r¥+7‘g ¢‘:|=3T;+T4
(4] L ®o_l0
[f_’ —n
\L¥o
With this interpretation of the symbol I:%‘] , we may therefore write
0_]0
1 ¢»] " B(ry)
29 b(t) = —| =
(29) ® ,gn![m b orf
with the understanding that
3"B(r)

= B(r) = B(r.).

81'2

Furthermore, since £ = 1 and [ﬂ] = 0, equation (29) can also be written
0

®o (4]
in the form
(30) b0 = 8 + 35 4] 22] LB
n=2 NiL@o_j0o 0dr

which establishes the desired result, namely, that b(¢) is expressed in terms of a
~ fully defined series, in which the first term is

1

(22) Br) = .
j; e "“*pla)da

It will be observed that equation (23) can be written

b)) = Zl[anﬁ (’)] g

nlL o™ oo
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so that, in view of (29), we have

i[I8] = - 51 s ]

n! o n! " Leo

a somewhat remarkable relation.

Analytically, our problem must thus be considered solved, but for purposes
of computation, as well as on account of a certain analytical interest of their
own, it is desirable to examine certain properties of the various characteristics
that appear in the treatment of the problem.

2. Successive partial derivatives of 8(r). In the application of the formulae
(29) or (30), it is necessary to obtain successive partial derivatives of 8(r) with
"B
arn
(9), but more exact values are obtained by taking advantage of certain special
properties of these derivatives. With this in view, it is desirable, first of all,
to consider certain properties of the moments M, and the seminvariants A,
of the function

(31) J() = ¢ p(a)
We note that

respect to r. The values of the derivatives

can be computed directly from

(32) M, = _[ ) a"e " p(a) da
We o [ & p(a) da
(33) = —Mnp.
Now the seminvariants A of the function ¢ "p(a) are defined by
M, = MM,

M; = MM, + AsM,
M; = MM + 2A: M, + As M,
M= MM; + 302 M, + 3A:s M1 + AM,.
On the other hand, in view of (33)
M, = MM,
(35) Ms = MM, — A1 M,
Ms = MMs — 201 My + AY Mo

(34)

where the primes denote derivatives with respect to r.
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Hence
A= —Ag
(36) { O,
Ay = —A = Ay
and generally
@7) Aua = =2

that is, if successive moments are successive negative partial derivatives with
respect to r, the same is true of successive seminvariants.
Furthermore, we have

f ) ae "p(a) da

(38) B gy 2
_£ ¢ “pla) da
39) = M1B8(r).

Hence, in this sense, and denoting successive partial derivatives of 8 by sub-
scripts

B1 = A1fo
(40) B2 = A1f1 — As2f
Bs = A1B: — 2A2f1 + Asfo

a set of equations from which ‘successive partial derivatives of 8(r) can be ob-
tained if the seminvariants A are given.

In actual computation the seminvariants A are calculated according to (34)
from the moments M, which themselves must first be computed as functions of r.
If the entire computation is required for only one particular value of r, the
moments M may be calculated directly by numerical integration of (32). But
if their values are required for a series of values of r, direct computation would
be very laborious. Unless r is rather small, merely expanding the exponential
under the integral sign and integrating term by term is unsatisfactory as the
series converges too slowly. Much more rapid convergence is secured by ob-
taining a series development not of the moments themselves, but of the ratio
between two successive moments, thus:

. T’
Mn+l 3 Mat1 — TMay2 +2"‘"!'mn+3 — .

M,. r2
(41) Mn — TMny1 +§'i'mn+2 — e

r’
= A1 — TAn2 + é‘i')\na -
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where \,; is the jth seminvariant of a"p(a), that is,
My = My
Mat1 = Ap1Mn
(42) no .
Mpy2 = A1 Mnp1 + Anatn

Mnis = An1Mniz + 2NaMas1 + AnsMin

Furthermore, according to (33)

aMn = _Mn+l
Mpor M,
(43) .
= —()ml — e + g—-l)\na - )
Hence
(44) M, =m, e—')m1+;-;ln:--"

—ra

a formula which enables us to compute directly the moments M of e p(a)
from the moments of p(a) and seminvariants of a™p(a). The seminvariants A
and the derivatives 8;, B2 - - - then follow according to (34) and (40).

3. Recapitulation. By virtue of the various properties of the moments and
seminvariants thus developed, the following routine may be followed in the
computation of the successive derivatives 8,. By direct computation, deter-
mine the moments m, of p(a). Then obtain in succession the several char-
acteristics as follows, the numbers over the arrows indicating the pertinent
equation in the text:

42 44 34 40
N (. NG W (U NG AN 1 BN W (I

4. Numerical example. By way of illustration the results obtained in pre-
ceding sections were applied to a logistic population for which a series expansion
of the annual births B(t) in terms of the logistic and its derivatives was avail-
able from a previous computation' carried out by a method less general than
the one here presented. Of special interest in the numerical results now to be
shown is the comparison between the two representations, on the one hand B(?)
in terms of o(t), the logistic in this case, and its derivatives; on the other hand
b(?) the birth rate per head, in terms of S(r¢) and its partial derivatives with
respect to r.

The data on which these computations are based are derived from the actual
growth of the population of the United States, which from 1790 to 1930 followed
rather closely the logistic function

¢ Human Biology, loc. cit., J1. Soc. Statistique, Paris, 1933, vol. 74, pp. 336, 341.
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ANNUAL BIRTHS IN LOGISTIC POPULATION
BASED ON GROWTH CURVE FOR U.S. AND LIFE TABLE 1919/20

MILUONS MILUONS
4.0 4.0
3.3 3.8

wmmmee  Total Births -
. Fund tal C v |47
3.0 x 3.0
G
4’
2.5 {, 2.5
2.0 2.0
s 1.8
Y
1.0 - o7 1.0
l‘/
s —15 s
st
o - o
1700 1750 1800 1850 1900 1950 2000 2050 2100
CALENDAR  YEARS

THOUSANDS THOUSANDS
+90 +90
+80 P +80
+70 A +70
+e0 |4 ;hrdJ Component +60

ooem Thi mpons

+50H " TTTT poirth N +50
+40H crereeeees Fifth +40
+30 +30
+20 = - +20

AT N
+10 Py =m +10
L] iR d.
o = > = o
I~ i § +di4l--F-F _

-0 B 10
-0 J -20
-30 A -30
-40 7 -a0
-so0 -s0
-e0 -6o
-710 -70
-s0 ‘::
= ®%00 150 1800 1050 1900 1950 2000 2050 2100

CALENDAR YEARS
Fia. 1
N@ = 197498000 _ N,
1 F e~ tua@E—1910) 1 + e~
(45)
= N_a()

where ®(t) is used to distinguish the special case of the logistic function, from
the general case ¢(f), and where ¢’ denotes the calendar year.

This was combined, in the computations, with the life table for white females,
United States 1919-1920, supposed constant throughout the period.’®

§ This is, of course, an arbitrary assumption made here simply for illustrative purposes.
The life table for white females was used because of related computations regarding the
intrinsic rate of natural increase, which have been reported on elsewhere.
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BIRTH RATE PER HEAD IN LOGISTIC POPULATION
BASED ON GROWTH CURVE FOR U.S. AND LIFE TABLE 1919/20

PER 1,000 PER 1,000
80 $0
40 40
"t
(3
N
~\
-
30 S 30
\\‘: <
\§.~
20 %_ 20
| | =—— Total Births

== Fund Va1 G P 'Y r‘ tion [22)

10 10
) i 0
1800 1850 . 1900 1950 2000

CALENDAR YEARS

PER 100,000 PER 100,000
+25 +25

— =TT | g "~-s~ -~

i —"a T °

S ‘1'*\-_ L ’/
~25 \ -25
-850 - 4 ~-50

\ /
-15 A : / / -1s
N\
| — 2M(~ P Y \ /
- om e 27d
—— iu. Eom”"e"} Equation [30]\\ ) /
-100 — 5
00— .. gth com'r;omnt \ 7 -100
i~
<125 -128
1800 1850 1900 1950 2000
CALENDAR. YEARS
Fre. 2

With this basis, the fundamental data are as follows:

1. Quantities depending solely on the life table, namely, m,, A\n;. These
are exhibited in the first section of Table I.

2. Quantities depending on the life table and also on 7¢, namely, M., Aa,

[g?l , B . These are exhibited in the remaining sections of Table I.
0
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5. Comparison of the representation (20) of the annual births B(f) and the
representation (30) of the annual birth rate b(¢). It is interesting to make this
comparison, as applied to the case of the logistic population, for there are certain
points of marked difference. The graphs Fig. 1 and Fig. 2 show this at a glance.
In both cases the fundamental component alone yields a very fair approximation
to the full solution, but the second component is of very different character
in the two cases. In the composition of B(t) it starts from a vanishing value,
diminishes through negative values to a minimum, then, passing through zero
at the “center,” it rises to a maximum positive value, and finally approaches
zero asymptotically from above.

The second component of b(t), starting also from a vanishing value, forms
a single downwardly convex loop, and then approaches zero asymptotically
from below.

The higher components in both cases are relatively insignificant.

III. APPENDIX

1. Symbols used. It may be convenient to assemble together here certain
of the symbols used in the text:

My = f a"p(a) da = nth moment of p(a)
o

M, = j; a"¢ ™ p(a) da = nth moment of ¢ ™ p(a)

Anj = jth seminvariant of a"p(a)
Xo; = A; = jth seminvariant of p(a)
A; = jth seminvariant of ¢ "“p(a)

o) =
£ ¢ “p(a)da
_ I8
Bn = et
Ti4n = %t:‘l

[fl'] For definition of this, see equations (25), (26), (28)
@0 lo

2. Derivatives of ¢(t) and properties of the Logistic Function. In the par-
ticular case that o(f) is the logistic function ®(f), the successive derivatives
&, &, - - - may be obtained step by step by equations (25), (26), taking ad-
vantage of special properties of that function.
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20 + (0 =
(46) _ 1 + e x
IT+ex " I+ex
=1
Hence, putting
(47) V() = &(—t)
We have
(48) P+ T =1
(49) r=1-9o

Denoting the nth derivatives by the subscript », it follows at once from 49)
that

(50) Y, = —&,

_ @1 '—Kt /
(61) n= ‘;o a + e/ 1 ex

K

St KN
(52) Tny1 = Kv,
Hence, in the case of the logistic, the algorithm (25) takes the form
(53) ‘1’1 = K‘I’o\lfo = KCIJo(l i q)o)

&, = K{&¥; + &1V}
= —K&{® — (1 — &)}
(54) = K'®(1 — &)(1 — 2&;)
& = K{®V; + 28,V + &7}
= K’&(1 — &) (1 — 63 + 637)
(55) = K(1 — &) @ + _\B/_?_’ - q>°> (% - i3 _ q>o)

It is seen that all derivatives vanish at & = 0 and at & = +1, that is at
t = do. Furthermore, ®, vanishes at & = %, that is at { = 0; and,®; vanishes

at & = % + = \/_ , that is at ta,nhE = —\/——, since

(56) Bo(t) = & + ! tanh Ii‘
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Successive derivatives of ® can thus be computed successively according to
(563), (54), (55), etc. For purposes of record, however, it may be convenient
to note here explicit expressions for these derivatives, and a simple algorithm
by which the numerical coefficients occurring in them can be written down at
sight. It is found, by carrying out the differentiation directly, thav

f re, 1
(1 + er‘)ﬂ
_ e, 1 - 8"
A e
".l — 43" + ezn
1+ e
R ".1 - 118" + llezﬂ —- elﬂ

$ = re

67 { & = r’e

b=71¢ A F &y
s 1 — 268" + 6662"‘ — 268’" + elrl
b = 1re a + 7y

\

The numerical coefficients can be obtained by the modification of the Pascal
triangle shown in Fig. 3. Its use is most easily explained by an example.
Thus the coefficient —4 in the third line is obtained as the sum of the two im-
mediately adjoining figures in the line above it, each multiplied by the rank
of the oblique row in which it appears. This rank is indicated by the cor-
responding number written above the ruled line forming the “roof” of the
triangle. Thus the second coefficient in the third horizontal line from above is
obtained as (1 X —2) 4+ (—1 X 2) = —4. Similarly, the third coefficient
in the last line of the diagram (which must be regarded actually as extending
indefinitely) is the sum of (—57 X —5) + (302 X 3) = 1191.

+

+66

-57 4302 -302 +57
=120 +1191 -2416 +)191  -120

+1

. F1a. 3. Scheme for computing numerical coefficients in successive derivatives of log-
istic function.

2. Construction of coefficients in (26). The numerical coefficients appearing
in equation (26) are constructed according to the following rules:

(a). The expression %‘ contains all possible products of the form raryr. - - -
0
the sum of whose subscripts is n, due regard being had to powers of r. Thus

for example %‘ contains ri , that is ryryryry ; also rirs, rars, 73 and 7, .
0
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(b). If a, b, c are all different, the coefficient Qu.... of rersr. - - - is formed
according to the following pattern, in which C, denotes, in the customary

notation, the binomial coefficient z

Qabe = ”Cn-(a«HH—c) a+b+ch+e b+cCc
(58) n!
T [n—(a¥b+o)lalble!
If some of the subscripts are equal, that is if some of the factors occur as the
sth power of 7, then the formula for @ is modified by the introduction of the

corresponding factorial s! in the denominator, according to the pattern of the
following example:

If b = ¢, so that raryre = 741t

then the corresponding coefficient is

+2by 2
"Crtatary " C2 > Ch

(59) Qus =

89

_ n!
" 2l{n — (a + 2b)}1al(b])?

More generally, the coefficient of ryr3r% - . . is

(ump) _ n!

(60)

(61) e = @)D e - wlolwl -
where

(62) a>b>c

and

(63) au+t+bvt+ecw+---=n

Formula (59) may be found more convenient than (60) if a table of the bi-
nomial coefficients is available; for in the case here exhibited for example, formula
(59) requires only 3 tabular values to be looked up, whereas formula (60) calls
for 4.

It may be noted that coefficients of this form occur in certain formulae re-
lating to seminvariants,’ also in the theory of partitions.”
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