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If we apply to the preceding the calculus of probability in accordance with-

Neyman,' we find that (5) may be written as
(6) x(E) = P{O(E) < 61 < B(E) | 61} = «

which, with the conditions stated for (5) is identical with formula (20) on page
348 of Neyman’s paper.
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¢ J. Neyman loc. cit. pp. 333-343.

A NOTE ON A PRIORI INFORMATION

By C. EISENHART

A survey of recent literature on mathematical statistics is sufficient to reveal
the fact that in approaching certain types of problems some writers assume
more information known a priori than do other writers. Indeed, it soon becomes
evident that great care is necessary in wording (and in reading) propositions in
mathematical statistics. Furthermore, propositions which are true and power-
ful when certain information is known a priori may become either useless or
irrelevant according as more, or less, information is available a priori. Once
this situation is appreciated some apparent contradictions are resolved, and
certain exceptional examples can “be reasonably regarded as bearing out the
principle to which formally they are anomalous.”

So far as I know it was Bartlett [1, p. 271] who first clearly pointed out how a
slight change in the amount of information known a priori can greatly alter
the complexion of a problem. He was indebted to Neyman and Pearson
[5, p. 122] for his problem, which was to develop a test of the statistical hypothe-
sis, Hy , that 8 = By and v = v, for a random sample from the distribution

Be“ﬁ(z—'r) forz > v

® pla) = [0 forz < «.

If (1) expresses all the information (about the distribution of z) that is to be
considered as known a priori, any value of 8 > 0 and any finite value of vy
being admissible, then it follows immediately from a result of R. A. Fisher’s
[2, p. 295] that no uniformly most powerful test, in the sense of Neyman and
Pearson [4; 5, p. 115), can exist for Ho, since Ho involves the simultaneous
testing of two unrelated parameters.'

1 Since Fisher’s wording is important it will be well to quote him here: “It is evident,
at once, that such a system [of maximum likelihood relations needed to insure the existence
of a uniformly most powerful test] is only possible when the class of hypotheses considered
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By assuming that in addition to (1) the a priori information includes the
knowledge that 8 > B, and v < v, constitute the only admissible ranges of
values of these parameters, Neyman and Pearson [5, p. 122] have succeeded in
showing that a uniformly most powerful test of Hy does exist when the ad-
missible values of 8 and v are restricted in this way. At first this appears to be
in contradiction to Fisher’s statement referred to above, but Bartlett [1, p. 271]
points out that the restrictions on the admissible values of 8 and ¥ reduce the
problem effectively to one of testing a single parameter: In the first place, no
statistical test is necessary if an observation less than , occurs, since this
refutes the hypothesis Hy immediately. Therefore, a statistical test of H, is
needed only when none of the observations are less than vy , and for such observa-
tions the distribution law is .

(2) p(x) = ﬂe*ﬁ(z-‘y) /e—ﬁ('vrv) - ﬂe—ﬁ(z—'yo), z 2 Yo,

and is independent of v. In consequence, the test reduces to testing the single
parameter 8 in (2), for which the arithmetic mean, Z, is a sufficient statistic.
The discovery of a uniformly most powerful test of H,, when the above restric-
tions are placed on the admissible values of 8 and v, is, therefore, reasonably
consistent with the full meaning of Fisher’s statement.

The preceding example makes quite clear how a little additional a prior:
knowledge can affect the solution of a problem in mathematical statistics.
The a prior: knowledge employed by writers in mathematical statistics usually
falls into one of the following categories:

(i) The elementary probability law is taken to be continuous or discrete,
as the case may be, but its mathematical form is left unspecified.

(ii) The elementary probability law is taken to be of a definite mathemati-
cal form involving one or more parameters the value(s) of which is (are) not
considered as known a priors, and any value(s) of this (these) parameter(s)
consistent with the non-negative character of a probability law is (are)
admissible.

(iii) Here the information assumed known is as in (ii) except that the
admissible values of the parameter(s) form (a) restricted sub-set (or sub-sets)
of the values admissible in (ii), such subsets, however, being comprised of
more than a single value.

(iv) The information is so complete that the admissible values of the
parameter(s) have (a) known a priort probability distribution(s)—if a param-

involves only a single parameter 6, or, what comes to the same thing, when all the param-
eters entering into the specification of the population are definite functions of one of
their number. In this case, the regions defined by the uniformly most powerful test of
significance are those defined by the estimate of the maximum likelihood, 7. For the test
to be uniformly most powerful, moreover, these regions must be independent of 6, showing
that the statistic must be of the special type distinguished as sufficient.”” (Words in
square brackets are mine.—C. E.)
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eter 6 is known to have a definite value 6’, then the a priori probability law

of 6 can be taken as (Prob. 6 equals 6’) = 1, (Prob. 6 not equal to §") = 0.?

As statistical theory advances it may become necessary to classify problems
according to the amount of information which may be assumed known a priors,
when proceeding to their solution. No claim is made here that the above
categories are the best to choose, but it may prove fruitful to study the extent to
which results obtained with a certain amount of information assumed known are
useful when more, less, or perhaps different, information is taken as known
a priori. In particular, as the preceding example shows, it may be well to
investigate exactly what are the implications of restricting the ranges of the
admissible values of parameters.

It is unwise to attempt to predict the outcome of such research at this time,
but it is probably safe to say that an increase in a priors information will gen-
erally render possible better tests of significance—better in the sense that, for a
given probability of rejecting the hypothesis tested when true, the probability of
rejecting it when false will be greater—and narrower confidence intervals for a
given confidence level. The example already given, concerned with a test of
significance, supports this conjecture. As a further example, from the point of
view of estimation, we may recall that it is possible with a level of confidence
equal to .96875 to assert [3, p. 4] that the true median of the population from
which a random sample of 6 was drawn lies within the observed range of the
sample, and this without any assumption about the population except that it is
continuous. If, however, the population is known to be of normal form with
unknown mean, m, and standard deviation, ¢, then Student’s ¢ will provide the
narrowest confidence intervals for the median of the population, since ¢ provides
[6, p. 378] the best available confidence intervals for the mean, m, (which isalso
the median) of a normal population when ¢ is unknown—if the population is
normal and ¢ is known, then the normal deviate (£ — m)+/6/¢ will supply still
narrower confidence limits for m.

In conclusion, the circumstances under which it may be desired to apply
methods of statistical inference may differ considerably in the amount of knowl-
edge available to the research worker a priori, and the most efficient tests of
significance and methods of estimation applicable to a given case will depend
upon the nature of the available information as described in the above classifica-
tion. In comparing the procedures of different writers, therfore, it is most
important to examine their premises and see how much information each is
considering as known at the start.
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A NOTE ON COMPUTATION FOR ANALYSIS OF VARIANCE

By Morris C. BisHOP

The method of computation for analysis of variance commonly favored is one
which involves obtaining the total and total sum of squares in a single operation
on a computing or card-punch machine,' in which case a check on the accuracy
of the work requires complete recomputation. But the best tools available
to the student, and sometimes to the experimenter, are a table of squares and
perhaps a listing machine. In such a situation, a simple algorithm which
embodies checks on the computations is urgently needed. The method here
presented reduces the arithmetic to repeated application of a single procedure,
with adequate checks; it reveals rather than obscures the sample variances,
which may or may not be of primary importance; and it provides an intuitively
logical portrayal of the step-by-step improvement of the estimate of population
variance.

The data items and their squares may be merged into a single table by setting
them down in staggered fashion, as shown in Table I. If only a single criterion
of classification is to be used—classified into columns, say—the columns are
summed down, and then these totals across (obtained as two sets of subtotals
and totals on a hstmg machine). This yields the grand total (7)) and total
sum of squa,res (Z Z X; ) Summing across and down verifies the addition

=] jmm]
and provides material for two-way classification. The total sum of squares of
deviations is obtained by the familiar formula

() EE(X.f—X)” ZEX Nk

fm=] gl fm=] je=l

where Nk is the total number of observations in N rows and % columns.

1See George W. Snedecor, Analysis of Variance and Covariance, and Paul R. Rider,
Modern Statistical Methods.



