ABSTRACTS OF PAPERS
(Presented on December 27, 1939, at the Philadelphia meeting of the Institute)

On the Unbiased Character of Certain Likelihood-Ratio Tests when Applied to
Normal Systems. JosepH F. Davy, The Catholic University of America.

Consider a random sample of N observations on a set of variates z!, ---, 29, where
z!, .-, z*¥ are assumed to be normally distributed about means which are linear functions
mi = Zbiz’ of the fixed variates z¥*1, --- , 22. Oneissometimesrequired to decide whether
the sample tends to contradict the further hypothesis, H, , that the coefficients b} belonging
to a certain subset of the fixed variates, say #**1, --- , z**» have the specific values b}, .
Such a situation occurs, for example, in the generalized analysis of variance. In this paper
it is shown that the Neyman-Pearson method of the ratio of likelihoods yields a test of Ho
which is (at least locally) unbiased ; in other words, this test is less likely to reject Ho when
the sample isin fact drawn from a normal population in which b} = b%, than when it is drawn
from a normal population in which the b} are different from but sufficiently close to b, .
In the special cases £ = 1 or b = 1 the proof goes through even without the restriction that
the true b} be close to b}y, a result which is also implicit in the papers by P. C. Tang and
P. L. Hsu (Stat. Res. Mem. Vol. 2).

Similarly with respect to the hypothesis Hy that the deviations z* — =biz” fall into
certain mutually independent sets the A-test is at least locally unbiased; and it has the
additional property that the expected value of any positive integral power of VA is greater
when H; is true than when the sample is drawn from any other normal population.

The Product Seminvariants of the Mean and a Central Moment in Samples.
C. C. Cra1g, The University of Michigan.

The method used by the author in calculating the product seminvariants of a pair of
central moments in samples is not adapted without modification to the present problem.
In the present paper the necessary modification is developed which gives a routine method
for the calculation of these sampling distribution characteristics. The calculation is a
little he4dvier than in the previous case but the results for the mean and the second, third,
and fourth central moments are givgn up to the fourth order except in one case in which the
weight is 13. Itis planned to follow this with a further study of the distribution of Fisher’s
¢t in samples from a normal population.

A Method for Minimizing the Sum of Absolute Values of Deviations. ROBERT
SiNGLETON, Princeton Local Government Survey.

E. C. Rhodes (Philosophical Magazine, May 1930) presented a method for the estimation
of parameters in a linear regression where it is desired to minimize the sum of absolute
values of the deviations. In this paper the structure of the deviation surface is analyzed
and a method of steepest descent is developed which for computational purposes is an
improvement over Rhodes’ method. The process is finite and leads to an exact solution.
The method and the formulae used are such as to permit the successive additions of new
observations or sets of observations to the original data, or the exclusion of an observation
from the original set, and the determination of the parameters for the sets of data so de-
rived, with little additional labor.
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On Certain Criteria for Testing the Homogeneity of ¥ Estimates of Variance.
C. E1sENHART AND FrIEDA S. SWED, University of Wisconsin.

Given k variance estimates s? , s}, --- , s? with n,82, (r = 1, 2, .- , k), independently
distributed as x%¢? for n, degrees of freedom, tests of the hypothesis, Ho, that ¢ = o2,
(r=1,2, ---, k), where ¢? is unknown, have been based to date on one or the other of the
quantities

k
Q= 2 mals? — s0)7/26t
&
Q: = wlog (ns?/w) —'ZI w, log {n,s/w,}

k k k
where the w, are weights, w = Z Wy, N = z; n,, and ns? = z; n,82. A.E.Brandtand
r= r= =

W. L. Stevens have advocated the use of @, , referring an observed value of @, to the x2
distribution for k¥ — 1 degrees of freedom. J. Neyman, E. S. Pearson, B. L. Welch, and
M. 8. Bartlett have advocated tests based on Q. , Bartlett definitely proposing the use of
degrees of freedom as weights, i.e. w, = n,, and recent work of E. J. G. Pitman and others
has shown that unless w, = n, tests based on Q;arebiased. (A statistical test of an hypoth-
esis H is said to be unbiased when the probability of rejecting H by its use is a minimum
when H is true; obviously a desirable property.) When w, = n, Bartlett has suggested that

1
the distribution of @, can be satisfactorily approximated by referring Q./ {1 + .")_(—lc_——l—)

k
( i - ::)} to the x?distribution for k — 1 degreesof freedom. In this paper we discuss
the adequacy of the x2? distribution to describe the distribution of @; and of the adjusted
Q: when the degrees of freedom, n, , are small.

U. 8. Nair and D. J. Bishop have given theoretical evidence which suggests that when
ne > 2, (r=1,2 ..., k), Bartlett’s adjusted Q. may be expected to conform to the x?
distribution reasonably well in the neighborhood of the 5% and 1% levels. Using 1000
samples of 4 for which n,s?/(n,,1) has been tabulated by W. A. Shewhart in Table D, Ap-
pendix II of his “Economic Control of Quality of Manufactured Product,” 200 values of
Q: and Q. (with adjustment) were calculated and compared with the x? distribution for
k — 1 degrees of freedom. Two cases were studied: Case I, k = 5andn =ny = .- = 3;
Case II, k = 3 and n; = n, = 3 while n; = 9. As measured by the Chi-Square Goodness of
Fit Te~*. 18ing 11 degrees of freedom, the fits were good in all four instances. In Case I,
for Baruest’s adjusted Q; the test led to .80 < P < .90, and to.70 < P < .80 for the Brandt-
Stevens @, ; in Case I, the fits were poorer with .50 < P < .70 for Bartlett’s criterion and
.10 < P < .20 for the Brandt-Stevens. However, an examination of the descending cumula-
tive distributions showed that in all instances these criteria exhibited a deficiency of large
values of x2, with the deficiency, in general, more marked in the case of the Brandt-Stevens
test. Consequently, when one uses significance levels for these criteria obtained by means
of the x? approximation advocated, one is in reality using a level of significance slightly
less than that professed. The discrapancy is not great, however, and is on the safe side, i.e.
one will reject H, falsely in the long run less often than one professes to be doing. Without
doubt, however, one will also detect the falsehood of Howhen o? 5 ¢, for at least one pair
of values of r and ¢, r # ¢, less often in the long run by the use of these approximate signifi-
cance levels than if the true levels were used, but we have no definite evidence at present
on this point. A somewhat disquieting feature is that the agreement between the x? values
yielded by the two criteria becomes worse as one proceeds toward larger values of x? in
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terms of either quantity. Thus, of 8 samples which Q: would have rejected at the 5% level
in Case I, only 4 of these would have been rejected by @, , and Q: would have passed 3
samples of the 7 rejected by @: . Thus it appears that, if one wishes to work with a given
chance of rejecting H falsely, one s 1ould choose one of these criteria and then stick to it in
future applications. For large values of the n, the two criteria tend to equivalence, so the
choice between them is of interest mainly for small n, , but cannot be made with full in-
formation until more is known about the bias, if any, of the Brandt-Stevens test, and the
relative power of the two tests with regard to alternatives to H, .

On a Test Whether Two Samples are from the Same Population. A. WaLp
AND J. Worrowrtz, Columbia University and Brooklyn, New York.

Let X and Y be two independent random variables about whose distributions nothing 18
known except that they are continuous. Let z,, 2z, --+, Zn be a set of m independent
observations on X and let y1, y2, -+, y» be a set of n independent observations on Y.
The null hypothesis to be tested is that the distributions of X and Y are identical.

Let the set of m + n observations be arranged in order of magnitude, thus: 21,22, -+« ,
Zmin . Replacez;byv; (¢ =1,2, --- , m 4+ n) where v; = 0if 2; is a member of the set of
z’sandv; = 1, if z; i8s a member of the set of y’s. Since the null hypothesis states only that
the distributions of X and Y are identical without specifying them in any other way, the
distribution of the statistic U used for testing the null hypothesis must be independent of
this common distribution of X and Y. It can easily be shown that the statistic U must be
a function only of the sequence vy ,v2, **+ , Vmyn .

A subsequence v, V41, , Vsyr (Where r may also be 0) is called a run if v, = v, =

« = v4rand if v,y 5 v, when s < 1 and if v,yr % v5.ry1 when s + r < m + n. The
statistic U defined as the number of runs in the sequence vy , v2, - -+, ¥myn Se€ms a suitable
statistic for testing the null hypothesis. A difference in the distribution functions of X
and Y tends to decrease U. Hence the critical region is defined by the inequality U< uo,
where uo depends only on m, n, and the level of significance adopted. If m < n and
P{U = c} is the probability that U = ¢, then: '

2(m 10— - " 1Ch 1)

P{U = 2K} = —y , (K=1,2---,m),
m—1, n—=1 m=1(Y, , n—l,
P(U = 2K — 1) =( Cr1 C‘_,,:.j—c Ci Ck—lz, (K=2,3, - ,m+1).
The mean of U is:
2mn
1.
m+n+

The variance of U is:

2mn(2mn — m — n)

m+n2m+n—1)

If o « (a positive constant) and m — «, the distribution of U converges to the normal
n
distribution.
The Distribution of Quadratic Forms In Non-Central Normal Random Vari-

ables. WirLiam G. Mapow, Washington, D. C. (Presented to the Institute
under a slightly different title)
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Let the distribution of a sum of non-central squares of normally and independently dis-
tributed random variables which have the unit variances be called the x’2 distribution.
It is proved that if a set of quadratic forms have a sum which is the sum of the squares of
their variables, then a necessary and sufficient condition that the quadratic forms be inde-
pendently distributed in x’2 distributions is that the rank of the sum of quadratic forms be
equal to the sum of the ranks of the quadratic forms. Furthermore, the constants on which
the x’2 distributions depend may be obtained by substituting the values about which the
variables are taken for the variables themselves in the quadratic forms. Roughly speaking
the theorem states that if a set of quadratic forms satisfy the conditions of the Fisher-
Cochran theorem when the true means vanish, then the set of quadratic forms will be
independently distributed in x’? distributions when the true means do not vanish.

Some Theoretical Aspects of the Use of Transformations in the Statistical
Analysis of Replicated Experiments. W. G. CocuraN, Iowa State College.

The device of transforming the data to a different scale before performing an analysis of
variance has recently been recommended by a number of writers for replicated experiments
in which the original datashow a markedly skew distribution. The use of transformations
to obtain an approximate analysis has been supported mainly on the grounds that in the
transformed scale the true experimental error variance is approximately the same on all
plots. This paper considers the relation of the method of transformations to a more exact
analysis. Discussion is confined to the 4/z and sin~! 4/z transformations, which appear
to receive the most frequent use in practice.

To obtain an exact analysis, it is necessary to specify (¢) how the expected value on any
plot is obtained from unknown parameters representing the treatment and block (or row
and column) effects (i7) how the observed values on the plots vary about the expected
values. If the latter variation follows the Poisson law, (a case to which the square root
transformation has been considered appropriate), the equations of estimation by maximum
likelihood take the form

z—m\om
® (575 =

where z is the observed and m the expected value on any plot, cis a typical unknown para-
meter, and the summation extends over all plots whose expectations involve ¢. As the
number of parameters is usually large (e.g. 16 in a 6 x 6 Latin square), these equations are
laborious to solve; moreover, the question of obtaining small-sample tests of significance is
difficult. It is shown that if a particular form can be assumed for the prediction formula
in (7), namely that 4/m is a linear function of the treatment and block (or row and column)
constants, the equations of estimation may be reduced to the simpler form

@ 240 — /m) =,

1
where v/ = é(\/ﬁ + \%ﬁ) is a function closely related tothesquarerootofz. Itfollows

that the statistical analysis in square roots, with some slight adjustments, coincides with
the maximum likelihood solution, provided that the above form can be assumed for the
prediction formula. The appropriateness of this form in practice is briefly considered and a
‘“‘goodness of fit’’ test by x?is developed. A numerical example is worked as an illustration
and indicates that a good approximation is obtained by the transformation alone even
withvery small numbers per plot. The corresponding theory isalso discussed for theinverse
sine transformation, which applies where the original data are percentages or fractions
whose experimental errors are derived from the binomial distribution.
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In practice the type of analysis outlined above is unlikely to supplant the simple use of
transformations, because it can seldom be assumed that the experimental variance is
entirely of the Poisson or binomial type. The more exact analysis may, however, be
useful (7) for cases in which the plot yields are very small integers or the ratios of very
small integers (i7) in showing how to give proper weight to an occasional zero plot yield.

The Standard Errors of Geometric and Harmonic Types of Index Numbers.
By NiLan Norris, Hunter College.

Various statisticians have made empirical studies of the sampling errors of certain types
of index numbers used in the United States and England. None of these writers has taken
advantage of the tools afforded by the modern theory of estimation, including fiducial
inference, as a means of arriving at direct and general expressions for estimating the stand-
ard deviations of the sampling errors of geometric and harmonic types of index numbers.

A known expression for the first approximation to the variance of a function, as given by
the relation between the variance of the function and the variance of the argument, is
valid for that general class of distributions of which the variance and a higher moment
are finite. With the aid of this relation, there appear simple and useful forms for estimat-
ing the standard errors of geometric and harmonic types of indexes. For sufficiently large
samples, these forms are valid for all of the types of distributions of price relatives, produc-
tion relatives, and similar observations ordinarily encountered, provided that there are
satisfied the necessary conditions for drawing sound inferences on the basis of sampling
without reference to the value of the variate.

Necessary conditions for using tests of significance soundly in connection with index
number problems are those of realistic and intimate acquaintance with observations, and
careful attention to certain broad theoretical considerations which determine whether or
not the index ig suited for the purpose for which it is used.

A Study of R. A. Fisher’s z Distribution and the Related F Distribution. L. A.
Aro1aN, Hunter College.

The following results for the z distribution and related F distribution are investigated:

(1) Geometric properties.

(2) Exact values of the seminvariants and moments of z. Exact values of the first
four central moments of F.

(3) The approach to normality of both distributions as n; and n, become large in any
manner whatever.

(4) The Pearson types of approximating curves, the logarithmic normal approximation,
the Gram-Charlier approximation, and the uses of these in finding any level of
significance of z and of F.

A Note on the Analysis of Variance with Unequal Class Frequencies. ABRAHAM
Wavrp, Columbia University.

Let us consider p groups of variates and dendte by m; (j = 1, --- , p) the number of
elements in the j-th group. Let z;; be the ¢-th element in the j-th group. iWe assume that
Z; i8 the sum of two variates e;; and 9;, i.e. Zi; = e;j + nj Where e;; (¢ =1, -+, mj; j =
1, -+, p)is normally distributed with mean u and variance o% and 9; j = 1, ---, p) is
normally distributed with mean u’ and variance ¢’>. Al the variates e;; and nj are supposed
to be distributed independently. The intra-class correlation p is given by

o't
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Confidence limits for p have been derived only in case of equal class frequencies, i.e. m; =

ms = -+ =my. Wegive here the confidence limits for p in case of unequal class frequen-
. . . . . a? . . . ..
cies. Since p is a monotonic function of -, itis sufficient to derive confidence limits for
2
s

2
. Denote — by A? and the arithmetic mean of the j-th group by ;. Let
p o2

mj

Y= 14 m;ne’

and denote by F, and F; the lower and upper confidence limits respectively of F, where F
has the analysis of variance distribution withp — 1and N —p=mi + - + mp — p
degrees of freedom. Then the lower confidence limit A} of A?is given by the root of the equa-
tion in A2:

L Bl -2}
o)) .- J

. _N
fo0) = p—1 22(zij — %5)?

=F2,

and the upper confidence limit A} of A?is given by the root of
@ ) fO) = Fu.

For calculating the roots of (1) and (2), we can make use of the fact that f(\?) is mono-
tonically decreasing with increasing A2.

An Approach to Problems Involving Disproportionate Frequencies. BurTON
D. SEeLEY, Washington, D. C.

Applied mechanics offers an analysis of variance solution to problems of multiple classi-
fication involving disproportionate sub-class numbers. The quality of orthogonality may
be attained in such problems by measuring the variability between classes of any one
classification after centering the others. 'This approach, which is not limited by the num-
ber of classes or the number of classifications, treats the problem involving equal sub-class
numbers as a special phase of the general analysis of variance.



