ENUMERATION AND CONSTRUCTION OF BALANCED INCOMPLETE
BLOCK CONFIGURATIONS'

By GerTrUDE M. Cox

" 1. Introduction. One of the general problems of experimental design is to
avoid extraneous effects in making desired comparisons. The method employed
is to use experimental materials as nearly homogeneous as possible. Such
materials, however, are seldom available in large quantities. On the contrary,
field soils vary in fertility from block to block, animals vary with both litter and
sex, and leaves on one young plant differ from those on another. Differences
between blocks, between litters and sex, and between plants, being irrelevant
to the comparisons usually contemplated, must be avoided.

When the number of treatments to be compared is small, well known methods
of design, such as the Latin square or randomized complete block, areavailable
and efficient. As the number of treatments increases, however, these designs
tend to become less efficient through failure to eliminate heterogeneity. Fur-
thermore, they become cumbersome, the Latin square design requiring replicates
equal in number to the treatments and the complete block design providing that
each treatment occur in every block. (Blocks are defined as an assemblage of
experimental units chosen to be as nearly alike as possible.)

Because of such limitations, several modifications of the complete block design
have been devised. These new designs all have the common characteristic that
the experimental material is divided into groups or blocks containing fewer units
than the number of treatments to be compared. These more homogeneous
small blocks are referred to as incomplete blocks.

It is desirable to have all comparisons between pairs of treatments made with
equal accuracy. This requires of the design that every pair of treatments
occur in the same block an equal number of times. Such a design is referred to
asbalanced. Balanced incomplete block designs can be arranged (for any given
number of treatments) only for certain combinations of block size and number of
replications.”

The construction of balanced incomplete block designs is mathematically a
part of the theory of configurations. A configuration is an assemblage of
elements into sets, each element occurring in the same number of sets, and each

1 A revision of an expository paper presented under a different title at a joint meeting
of the Institute of Mathematical Statistics and Biometric Section of the American Statisti-
cal Association, December 27, 1939.

2 Numerous additional designs are available in the partially balanced incomplete blocks
[31.
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INCOMPLETE BLOCK CONFIGURATIONS 73

set containing the same number of elements. The configurations to be con-
sidered here arc the complete configurations, i.e., those in which each element
occurs an cqual number of times in the same set with every other element. It
would be uscful to know, (a) what configurations (within the useful range)
exist. (b) how these configurations may be constructed.

The typical requirement of the experimenter is this: “I wish to test ¢ treat-
ments and can usc blocks of size k(t > k). I should like a design which will
involve as little experimental material as feasible.” The designer must then
determine what configuration of ¢ elements in sets of k& will satisfy the incidencé
relation that each pair of elements occur together in a set an equal number of
times, and for which the total number of sets is a minimum. There are still
many configurations which the experimenter needs but which have not as yet
been constructed.

In order better to explain the construction of these balanced incomplete block
designs, it is essential to specify the underlying combinatorial problems. A
configuration satisfying the condition of balance can be obtained by writing
down all possible combinations, b, of the ¢ elements taken k at a time,

o
TEG-R

The simplest example is that in which each set contains only two elements and
all possible combinations of the ¢ elements, taken in pairs, appear in the different
sets. This series of pairs can be written out by the experimenter, and the
method of analysis is given by Yates [20].

Let us take another example; given six elements to be taken three at a time,

b ==zch

6!
b = 603 = 3—!“3"' = 20
The 20 combinations are,
123 134 146 236 346
12} 135 156 246 346
125 136 234 246 356
126 145 235 256 456.

Such unreduced designs are not necessarily economical or feasible in experimental
work. It is often desirable to find some less extensive configuration. In this
example half of the combinations, either those in italics or the other half, fulfill
the restriction that every element occur with every other element in the same
number of sets. Each pair of elements occurs twice in either group of sets.
Thus, a balanced incomplete block design can be based on either half of the
20 sets as well as on all 20.

2. Combinatorial methods. Combinatorial considerations of a simple nature
enable us to set up necessary conditions which balanced designs must satisfy.
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We have ¢ elements arranged in b sets of k elements each; each element occurs in 7
sets, and each pair of elements occurs together in a set exactly A times. Then
we must have

tr =0k, r(k— 1) = At — 1).

The first of these equations expresses the fact that the total number of plots
must be equal both to the product of elements by replications and to the product
of sets by number of elements per set; the second, that the number of pairs into
which a given element enters must equal A times the remaining number of
elements.

It is convenient to write

=1
U

b= A(@E—1)

kk — 1°
Since the numbers ¢, b, 7, k, A must be integers, it is easy to obtain lower limits
for any three in terms of the other two.

To give a general classification, the configurations have been divided into
classes according to the value of N\. Because of the practical limitations in
experimentation, table I has been expanded only to include A = 6 and the &
values from 1-14. It may be well to call attention to the fact that duplications
occur in the different classes of table I. For instance in the class, A = 1, for
k=6,t=15m+41,andm = 1,thend = 8,and r = 3. Inorder to construct a
design, the following condition is necessary; r > k and therefore b > ¢. In this
example, the condition is met if b, 7 and A are multiplied by 2, the resulting design
ist =16,b = 16,7 = 6,k = 6 and A = 2. This configuration is a duplicate
of the design in the class, A = 2, for k¥ = 6 and m = 1. In many of the con-
figurations where N is 3, 4, 5, or 6, a common factor can be cancelled from b, r and
A giving a design listed in the classes , A = 1, 2 or 3.

It should be emphasized that the conditions under which table I was derived
are necessary, but not sufficient, for the existence of a complete configuration.
For example, consider the following configurations which satisfy the necessary
conditions for a design.

Sub class N

(table I) m t b r k A
10m 4+ 5 1 15 21 7 5 2
2Im + 1 1 22 22 7 7 2
15m + 6 2 36 42 7 6 1
42m + 1 1 43 43 7 7 1
45m + 10 2 100 110 11 10 1
110m + 1 1 111 111 11 11 1

No configurations of the above specification can actually be constructed.
A selected group of configurations from table I is given in table II. Only
those configurations whose %, r and X lie within practical limits, and whose
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existence has not been disproved, have been included. The practical limits of
k, r and \, of course, are dependent upon the conditions surrounding the experi-
ment.  We have chosen to keep k within the range 3 to 10 except for a few special
configurations in which ¢ is greater than 100, in which cases k was allowed to
equal 11-14. Also r has been kept within a similar limited range. (Those
configurations in table II, with an asterisk preceding ¢, have not been con-
structed.)

The above limitations upon & and r give a small, selected group of configura-
tions. However, many others either have been constructed or are known to
exist. For balanced incomplete block designs, Yates [20] gives the lower limits
of r for ¢ from 4 to 25 and k from 2 to 12 but not greater than 4. Fisher and
Yates [8] have tabulated the configurations which are known to exist having
ten or less replications including all arithmetically possible configurations the
existence of which has not been disproved.

Even if the existence of a configuration has not been disproved, there still
remains the difficult problem of writing out the elements which are to appear in
each set. Some discussion of the structure of such configurations is presented
by Fisher and Yates [8] by Yates [20, 21] by Goulden [9, 10] and by Bose [4].
Additional descriptions are to follow.

While a search of the literature revealed a number of constructed configura-
tions, yet the general theory of their formation has received relatively little
consideration. The question of combinations related to the theory of configura-
tions which is of interest here was first set forth by Kirkman [11] in 1847. He
states the problem thus: “If Q. denote the greatest number of triads that can be
formed with = symbols, so that no duad shall be twice employed, then

3Q, =2 —1)/2 -V,

if for V, we put 0, when x = 6m + 1 or 6m + 3.” This gives the formula for b
which was given earlier in this article. Putz =tand V, =0

t—1) _ tt—-1)
32  k(k—1)"

Besides the theory connected with these combinatorial problems, considerable
information related to the construction of the configurations has been found in
the literature on finite projective geometry, especially the geometry which applies
to the theory of groups.

An extensive discussion of the A = 1 class of configurations (as listed in table I)
can be found in the literature. The theory of the formation of the configurations
for the sub-class ¢ = 6m + 3 has been summarized by Ball [1]. This is the
Kirkman “‘school-girl problem” for which Eckenstein [7] lists 48 papers and 5
books written during the years 1847-1911 dealing with this subject. The
problem was first published in the Lady’s and Gentleman’s Diary for 1850 [12].
It is usually stated that “a schoolmistress was in the habit of taking her girls
for a daily walk. The girls were fifteen in number, and were arranged in five
rows of three each, so that each girl might have two companions. The problem

b=0Q, ="
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is to disposc of them so that for seven consceutive days no girl will walk with any
of her school-fellows in any triplet more than once.”  For this particular sub-
class (¢ = 6m + 3, k = 3), this type of configuration has been shown to exist

TABLE II
Selected Group of Configurations
(Balanced Incomplete Block Designs)

t b r k A ¢ b r k A
77 3 3 1Y.81 || *25 50 8 4 1
7 7 4 4 2 25 30 6 5 1
8 14 7 4 3 25 15+15 3 5 1 LS.
9 12 4 3 1 *25 25 9 9 3
9 6+6 2 3 1LS.2 28 63 9 4 1
9 18 8 4 3 28 36 9 7 2
9 18 10 5 5 20 29 8 8 2
9 12 8 6 5 31 31 6 6 1Y.8
10 30 9 3 2 31 31 10 10 3
10 15 6 4 2 *36 45 10 8 2
10 18 9 5 4 37 37 9 9 2
0 15 9 6 5 *41 82 10 5 1
o1 5 5 2 *46 69 9 6 1
1 u 6 6 3 *46 46 10 10 2
13 2 6 3 1 49 56 8 7 1
13 13 4 4 1Y.8 49 28428 4 7 1LS
13 13 9 9 6 51 85 10 6 1
15 35 7 3 1 57 57 8 8 1Y.S.
15 15 7 7 3 64 72 9 8 1
15 15 8 8 4 64 72472 9 8 2 L.S.
16 20 5 4 1 73 T3 9 9 1Y.8.
16 20420 5 4 2 LS 8L 90 10 9 1
16 16 6 6 2 81 45445 5 9 1LS.
16 16 10 10 6 91 o1 10 10 1Y.S.
19 57 9 3 1 121 132 12 1 1
19 19 9 9 4 121 66466 6 11 1L.S.
19 19 10 10 5 133 133 12 12 1Y.S.
21 70 10 3 1 169 182 14 13 1
21 21 5 5 1Y.S. 169 91491 7 13 1 LS.
21 28 8 6 2 183 183 14 14 1Y.S.
21 30 10 7 3

* Have not been constructed.
1 Youden squares.
2 Lattice squares.

for every possible value of . Most of the solutions werc worked by H. E.
Dudeney and O. Iickenstein. They are given by Ball [1] for all #s less than 100,
that is, for ¢t = 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93 and 99.
Ball describes several methods of constructing such configurations, as cycles,
combinations of cycles, scalene triangles inscribed in the circle, focal and analyti-
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cal methods. As an illlustration of the school-girl problem, the construction
of the configuration fort = 9,b = 12, r = 4, k = 3 and A = 1 will be shown.
Scalene triangles are inscribed' in a circle with certain specifications (to be
fulfilled) giving the three sets of triplets for the first day as follows,

Set Group 1

1) k 1 5
2) 3 4 6
3) 7 8 2.

By rotation or by cyeclic substitution the other three groups are secured:

Set Group I1 Group III Group IV
4) k 2 6 ) k3 7 (10) k 4 8
5) 4 5 7 (8) 5 6 8 (11) 6 7 1
(6) 8 1 3, 9) 1 2 4, (12) 2 3 5.

Then placing k& = 9, we have the configuration for ¢ = 9, b = 12, and r = 4.
Note that in the school-girl problem the sets are grouped into complete replica-
tions of the elements. This problem of 9 girls taken 3 at a time has been sub-
jected to an exhaustive examination. There are 840 arrangements but only one
fundamental solution. In the case of 15 girls, the number of fundamental
solutions according to Mulden [14] and Cole [6], is seven. Ball mentions the
Kirkman problem in quartets which is the sub-class ¢ = 12m + 4, for k = 4.
He states that this has been solved for cases where m does not exceed 49. He
also states, “I conjecture that similar methods are applicable to corresponding
problems about quintets, sextets, etc.”

Before leaving the school-girl problem, an illustration will be given of ¢ = 28,
b=63,r=9k=4and X = 1. The following framework was set up by Dr.
C. P. Winsor using suggestions from Netto [15].

k a b c

ay asg b3 be
(17 ay b1 bs
Qas ag C4 Cs
a4 Qs 4] Cs
bz b1 ‘ C3 Cg
by bs Ca Cr.

a, b and ¢ each have every internal difference once and only once; and each pair
a-b, a-c and b-c must have every external difference once and only once. The
nine groups are given in table III. The cyclic substitution is within three sets,
a,band c. That is,
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ingroup I, a=1 a=2 @a=3 ..., g=09;
ingroup II, a=2, a, =3, as =4, ..., a=1;
ingroupIll, a=3, a,=4, aa=5, ---, a=2;

ete.

Netto [15] discusses ¢ elements in sets of k, every set of 2 elements to occur
together in a set exactly A times. He deals with A = 1, and gives a discussion
of both sub-classes when k = 3, that is, for{ = 6m + 1and { = 6m + 3. Reiss
[16] and Moore [13] have proved that configurations can be constructed for all
valuesof tif k = 3. This is the type of information which is valuable in answer-

TABLE III
Configuration for t = 28, b =63, r =9, k=4, 1 =1

Group 1 Group I1 Group III Group IV
kE a b ¢ 28 1 10 19|28 2 11 2028 3 12 21 (28 4 13 22
a1 as by b 2 9 13 16 3 1 14 17| 4 2 15 18| 5 3 16 10
a; ar by bs 3 8 11 18 4 9 12 10|l 5 1 13 11| 6 2 14 12
as as €4 Cs 4 7 23 24|l 5 8 24 25| 6 9 25 26 7 1 26 27
as as €1 Cs 5 6 20 27| 6 7 21 19| 7 8 22 20| 8 9 23 21
by br cs ce 12 17 22 25 (|13 18 23 26|14 10 24 27| 15 11 25 19
by bs c2 c¢r 14 15 21 26|15 16 22 27 | 16 17 23 19 | 17 18 24 20

Group V Group VI Group VII Group VIII Group IX
28 5 14 23 ||28 6 15 2428 7 16 25|28 8 17 2628 9 18 27
6 4 17 11 7 5 18 12| 8 6 10 13| 9 7 11 14| 1 8 12 15
7 3 15 13 8 4 16 14| 9 5 17 15|l 1 6 18 16| 2 7 10 17
8 2 27 19 9 3 19 20| 1 4 20 21| 2 5 21 22| 3 6 22 23
9 1 24 22 1 2 25 23| 2 3 26 24| 3 4 27 25| 4 5 19 26
16 12 26 20 |17 13 27 21|18 14 19 2210 15 20 23|/ 11 16 21 24
18 10 25 21 10 11 26 22| 11 12 27 23|12 13 19 24 {13 14 20 25

ing the first question in the introduction of this article; ‘“what configurations
exist?”” Carmichael [5] mentions the quadruple systems 6m + 2 and 6m + 4
and states that the general problem of their existence appears not to have been
solved. Also for the higher values of k there seems to be very little known of
any generality, but it is known that for k¥ > 3 there are certain configurations
which are not possible.

3. The method of geometrical configuration. Another aid in the construction
of balanced incomplete block designs is found in some of the finite projective
geometries. These are described by Carmichael [5]. A tactical configuration
of rank two is defined as a combination of ! elements into m sets, each set con-
taining A distinct elements, and each element occurring in u distinct sets,
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l = (t) = number of points in the geometry,
m = (b) = number of lines,

A = (k) = m mber of points,

g = (r) = number of lines on a point.

The series of finite projective geometries PG(k, p") for x > 1 furnishes a
certain infinite class of these tactical configurations. The following list gives
those which have been incorporated in the list (table II) of useful balanced
incomplete block designs.

Two dimensional space, PG(2, p™)

" i@t) m(b) A (k) u(r)
2 7 7 3 3
3 13 13 4 4
2 21 21 5 5
5 31 31 6 6
7 57 57 8 8
2* 73 73 9 9
3’ 91 91 10 10

11 133 133 12 12

13 183 183 14 14.

Three dimensional space, PG(3, p™)
" l m A M
2 15 35 7 3.

From the Euclidean geometry EG(k, p™) for « > 1 other tactical configurations
can be constructed. These are formed from the PG(x, p") by omitting a given
line from the two dimensional space and a plane from the three dimensional
space configurations. Some of the resulting designs are:

Two dimensional space, EG(2, p")

p" l m A u
2 4 6 3 2
3 9 .12 4 3
2 16 20 5 4
5 25 30 6 5
7 49 56 8 7
2® 64 72 9 8
3’ 81 90 10 9

11 121 132 12 11

13 169 182 14 13.
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Methods are available for constructing the two dimensional space PG(x, p")
and the corresponding EG(x, p™) configurations where p is a prime number.
This being true, we can also construct the completely orthogonalized squares
from the EG(x, p") geometry. The reverse situation in which these configura-
tions are constructed by using the completely orthogonalized squares is to be
illustrated. These squares consist of superimposed Latin squares, fulfilling the
condition that each number from the second Latin square occurs once and only
once with each number in the first Latin square. As an example take the two
Latin squares:

Latin Square I Latin Square 1I
1 2 3 1 3 2
2 3 1 2 1 3
3 1 2, 3 2 1.

Superimpose square II upon square I to get the completely orthogonalized
3 x 3 square,

11 23 32
22 31 13
33 12 21.

The first number in each cell is a value from square I; the second number in each
cell is from square II. Note that the numbers in the second place in each cell
occur once and only once with each of the first numbers, that is 1-1, 1-3, and 1-2.
The completely orthogonalized squares have been proven to exist for all prime
numbers and for powers of prime numbers. The solution of this problem was
secured independently by Bose [2] and by Stevens [18]. Those of sides 2, 2°, 2°,
2*, 2° 2% 3,3° 3%, 3 5 5° 5° 7,7°, 11 and 13 have been given.
The completely orthogonalized 3 x 3 square may be used to construct

11 1 23 4 32 7
22 2 31 b 13 8
33 3 12 6 21 9

a balanced incomplete block design. The italic numbers, which follow the
cell numbers, designate the 9 elements which are to be arranged in four groups of
three sets. Group I is formed by placing the elements from each row into sepa-
rate sets, in group II the elements from the three columns are placed in three
sets; in group III the first set (7) consists of the elements which follow 1 in the
first place in the cells, set (8) consists of the elements which follow 2 in the first
place in the cells; and group IV is assembled in the same way as group III except
the numbers in the second place in the cells are used to select the elements for
each set. Thus we have the configuration:
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Grotip 1 Group II Group III Grotip IV
Set  (rows) (columns) (first place) (second place)
1 1 4 7 4 1 2 3 7 1 6 8 10) 1 5 9
2 2 5 8 B) 4 5 6 8 2 4 9 11) 2 6 7
B) 3 6 9 6) 7 8 9 9 3 5 7 (12) 3 4 8

In the 12 sets of 3 elements, each of the 9 elements occurs with every other
element once and only once in a set.

This is an illustration of one series of configurations which can be constructed
with the aid of the completely orthogonalized squares. These are the EG(x,p")
in two dimensional space when x = 2 and p" = 2,3, 2, 5,7,2°,3°, 11, 13, . ..
The PG(x, p") configurations can be written by adding (k 4 1) elements
to the previous group of configurations. For example, the elements 10, 11,12
and 13 may be added to the groups, one to each group. That is, 10 is added to
each set in group I, 11 is added to each set in group II, 12 to group IIT and 13 to
group IV. An additional set must be added to include these four new elements.
A configuration for¢ = 13,b = 13,k = 4,7 = 4and A = 1results.

Set

(1) 14710 (4 12311 (7)) 16812 (10) 1 5 913
(2 25810 (5 45611 (8 24912 (11) 2 6 713
3 36910 (6 78911 (9 35712 (12) 3 4 813

(13) 10 11 12 13.

The 13 sets are made up of 4 elements each. These designs are symmetrical
for sets and elements, that is, every pair of elements occurs together in the same
number of sets, also, every pair of sets has the same number of elements in
common. Discussion of the construction of these designs with illustrations are
given in references [20, 8, 9] and [19].

In the PG(k, p") series of designs, as constructed by means of completely
orthogonalized squares, the sets cannot be arranged in replication groups. How-
ever, these configurations can be arranged in Youden squares [22] in which all
the sets are placed side by side and all the elements in a single row form a com-
plete replication. This method of arrangement has been of considerable value
in experimentation with plants. The Youden squares are the PG(x, p") when
k = 2. Singer [17] gives a partial list of the (reduced) perfect difference sets
(table IV), only a single set for each p". The number of distinct perfect differ-
ence sets (or the number of distinct perfect partitions) for a given p” is equal to
#(g)/3n. Since each perfect difference’ set can be paired with its inverse, the
number is even.

The construction of one of the Youden squares from its perfect difference set
will be illustrated. Consider p" = 3then ¢ =p"" +p"+1=3"+3 +1 = 13.
There are two perfect difference sets with their inverses for ¢ = 13.  One perfect
difference set is 0, 1, 3, 9 which has the perfect partition 1, 2, 6, 4 which will
add in succession to each number from 1 to and including 13, and also 1, 2, 6,4
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add to 13. The elements of the perfect difference set are put in set (1) except
that 13 replaces 0. Set (2) is secured by a one-step cyclic substitution, 1 for
13,2for 1,4 for 3and 10 for 9. This process is continued until there are thirteen
If the substitution is applied to set (13), the elements in set (1) are secured.

sets.

tion

This is the Youden square for¢ = 13,b = 13,r = 4,k = 4, and A = 1.

Replica-

A
B
C
D

Set,

1M @ G @ G ® O © © 1) a1y 12) 13)

13 1 2
1 2 3
3 4 5
9 10 11

3
4
6

4 5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12 13

7 8 9 10 11 12 13 1 2

12 131 2 3 4 5 6 7 8.
The

elements in each row form a complete replication.

TABLE IV
Singer’s list of perfect difference sets
¢(a)

p" q 3 Perfect difference set
2 7 2 01 3
22 21 2 01 4 14 16
28 73 8 013 7 15 31 36 54 63
2 273 12 0 1 3 7 15 31 63 90 116 127 136 181 194 204 233 238 255
3 13 4013 9
32 91 12 0 1 3 9 27 49 56 61 77 81
5 31 10013 8 12 18
7 57 12 0 1 3 13 32 36 43 52
11 133 36 0 1 3 12 20 34 38 81 88 94 104 109
13 183 40 0 1 3 16 23 28 42 76 82 86 119 137 154 175

t=g=p"+tp"+1

A third series of configurations, called Lattice squares or quasi-Latin squares
[21] can be constructed by using the completely orthogonalized squares. The

groups of sets on page 78 are taken in pairs.

For each pair a square is constructed

having its rows formed by the sets of one group and its columns by the sets of
another group. For example, square I below is made so that the sets of group I

form the rows and the sets of group II form the columns.

combination of groups IIT and IV.

Square I
1 4 7
2 5 8
3 6 9

Square II
1 6
9 2
5 7

Square II is the



84 GERTRUDE M. COX

In this lattice square each pair of elements occurs together once only in cither a
row or a c¢olumn of cither onc of the squares. Also, every clement oceurs with
every other element once in one column and onc row from cach square.

A device known as ‘“complements’ gives several configurations. From an
arrangement having k& ¢ ¢, a second one can be obtained for the same number
of elements, in sets of £ — k units. This is done by replacing each set by its
complement, that is, by a set containing all the elements missing from the
original set. An illustration follows:

t=17 b="17 =7 b=17
r=3, k=3 r=4, k=4
A=1 A=2

Set Set
(1) 1 2 4 (1) 3 5 6 7
(2) 2 3 5 (2) 1 4 6 7
3) 3 4 6 (3) 1 2 5 7
(4) 4 5 7 (4) 1 2 3 6
(5) 5 6 1 (5) 2 3 4 7
(6) 6 7 2 (6) 1 3 4 5
(7 7 1 3, (7 2 4 5 6.

While the triple systems, quadruple systems, etc., which have been con-
sidered by some mathematicians, do furnish designs mceting the balance re-
quirements, they are usually not suitable for experimental purposes. A quad-
ruple system requires that every possible triple of elements occur once and only
once together in a block. Since we need only every pair together once (A = 1)
or more, only the triple systems are generally useful.

4. Summary. The mathematical theory of configuration has been helpful
in the construction of the balanced incomplete block designs. It would be use-
ful to know (a) what configurations (within the useful range) exist, (b) how these
configurations may be constructed. In table I the configurations have been
classified according to the value of A, while in table II configurations within a
useful range have been listed. Of the designs in this table which have not been
constructed, some are known to exist. Those aids which have been used in the
construction of the balanced incomplete block designs have been briefly dis-
cussed. )
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