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approximation (for n = 3) by setting ¢ = 2; the significance test for n = 3
then becomes,

(25) P(Lg < Ljs) = L3N — 2) — (N — 4)L.3].

Probably similar approximations can be found for other values of n. It is a
pleasure to acknowledge the helpful comments and advice which I received
from Mr. A. M. Mood of Princeton. Recognition is also due Mr. Wallace
Brey, a student assistant under the National Youth Administration, who aided
in the computations.
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A SIMPLE SAMPLING EXPERIMENT ON CONFIDENCE INTERVALS

By S. KuLLBACK AND A. FRANKEL

1. Introduction. In order to illustrate some of the notions of the theory of
confidence-or fiducial limits in connection with a course in Statistical Inference
at the George Washington University, we had the class carry out certain simple
experiments, following a suggestion in one of Neyman’s papers on Statistical
Estimation [1]. In the belief that the experimental data may be of interest
to others, we present the results herein.

2. The problem. We consider the problem of estimating the range 6 of a
rectangular population defined by p(z, ) dz = dz/6, 0 < « £ 6 and in par-
ticular, for simplicity, we limit ourselves to samples of two and four. We
consider three possible approaches to the problem, viz., by using (a) the sample
range (b) the sample average or total (c) the larger (largest) sample valuc.
Let us consider each in turn.

(a) Sample range. Wilks [2] has shown that for samples of n and confidence
coefficient 1 — «, the confidence or fiducial limits for the population range 6
are given by r and r/y, , where r is the sample range and . is determined by

1) Valn — (n — o] = o

Forn =2,a=0.19andn = 4, a = 0.1792, (1) yields ¢ = 0.1 and ¢, = 0.4
respectively. Accordingly, for samples of two with confidence cocfficient
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1 — a = 0.81, and for samples of four with confidence coefficient 1 — a =
0.8208, the confidence interval is respectively given by

2) (r, 10r) and (r, 2.57).

The length, A,, of the confidence interval is respectively 9r and 1.57. Using
the distribution of r, n(n — 1)(6 — r)r" /6", we have for samples of two:
E(\,) = 36, an, = 2.12136, and for samples of four: E(A,) = 0.96, s, = 0.36.

(b) Sample total. Following Neyman [1, p. 357] let us denote by A(6) the
region defined by

@) 0—A<z+z<0+A

where 6 is the population range, z; and z, the sample values of the sample E,
and A is selected so as to have P{E, ¢ A(8) | 6} = 1 — a. It is readily found
that P{EseA(0) | 6} = [6° — (6 — A)")/6* = 1 — « from which we find that
A = 61 — o"®). Accordingly (3) becomes 6a"* < z, + 22 < (2 — o'?),
yielding the confidence limits (z; 4+ 22)/(2 — '), (¥1 + z2)/a"> For the
confidence coefficient 1 — o = 0.81 the confidence interval is given by

(4) [0.6394 (1 + x2), 2.2941(x1 + 22)].

The length of the confidence interval is given by Ar = 1.6547(x; + z2) so that
E(\r) = 1.65470, o\, = 0.67550.
Let us denote by A’(8) the region defined by

(5) 20 — AL x4 22+ 25 + 24 < 20 4 A,

where 6 is the population range, ., 2, z3 , 4 the sample values of the sample
E,and A is selected so as to have P{E; e A’(6) | 8} = 1 — a. Using the known
distribution of the sample average [3] and 1 — a = 0.8208, it is readily found
that

P{E.cA'(6) |6} = 139{% - 8(%)3 412 (%)4} — 0.8208

from which we find that A = 0.7886. Accordingly, (5) becomes 1.2120 <
2 + 22 + 23 + 24 < 2.7886, yielding the confidence interval

(6) [0.3587(xy + 22 + 25 + x4), 0.8251(x1 + 22 + x5 + 4)]

The length of the confidence interval is given by Ar = 0.4664(z; + z2 + x5 + x4)
so that E(A\r) = 0.93286 and or, = 0.26796.

(¢) Larger (largest) sample value. Again following Neyman [1, p. 359] let us
denote by A(6) the region defined by

@) @<L<§¢

where 0 is the population range, L the larger of the two sample values z; and z
and g, a number between zero and unity, to be determined by P{E; € A1(6) | 8} =
1 — a. It is readily found that P{E; e A,(0) | 8} = (6> — ¢°6°)/6° = 1 — «q,



from which we find that ¢ = «
yielding the confidence limits L, L/a"*.
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Accordingly, (7) becomes 62"’ < L < 6
For the confidence coefficient 1 — o =

(8) (L, 2.2941L).
TABLE 1
No. of cases of Frequency
coverage per
Sgn(l)f)lle%o Range Sum Larger (Largest)
z Samples | Samples | Samples | Samples | Samples Samples
of two of four of two of four of two of four
69 1
70
71 1
72
73 1
74 1 1
75
76 4 3 4 1
77 2 6 1 2
78 3 6 3 1
79 9 2 4 2 3
80 3 1 6 4
81 2 2 1 3
82 2 1 6 1 2 5
83 3 3 3 1 5 3
84 3 2 1 4 1
85 3 3 2
86 2 2 2 2 1
87 1 1 2 1 1
88 1 2 1 1
89 1 1 1
90
91 1
39 15 39 15 39 15
Average. . .. 81.1 82.1 80.2 84.2 80.2 82.1

The length of the confidence interval is given by A, = 1.2941L so that using
the distribution of L, nL" ™" dL, we have E(\.) = 0.86270 and o), = 0.30506.
Incidentally, since L < z; 4+ £, we have 1.2941L < 1.6547(x; + a2) so that
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in every case, for samples of two, the confidence interval of procedure (c) is
shorter than the confidence interval of procedure (b).

For samples of four, we consider the region (7) where L is the largest of the
sample values 7, 12, z3 and 4 of the sample E,. It is readily found that
P{E:eA,(0) | 0} = (8" — ¢'0")/8" = 1 — a, from which we find that ¢* = a.
For a« = 0.1792, ¢ = 0.6506 so that (7) becomes 0.65060 < L < 6 yielding
the confidence interval

9) (L, 1.5370L).

The length of the confidence interval is given by A, = 0.5370L so that E(\,) =
0.429660 and o\, = 0.08774.

TABLE II
L Larg-
Somple Range Sum —:rgirs t() ajrg
size Theo-| Ob- | Theo-| Ob- | Theo-i Ob-
retical | served | retical | served | retical | served
Confidence Coeflicient 2 .8100! .8110] .8100; .802 | .8100| .8020
4 .8208| .8210; .8208 .842 | .8208| .8210
Average length of confi- 2 3.00002.9660 1.6547|1.6441| .8627| .8556
dence interval per set 4 .9000| .8976| .9328| .9296| .4296| .4272
of 100 samples
Standard deviation of av- 2 .2121) .2133| .0676| .0581| .0305 .0293
erage length of confi- 4 .0300! .0335/ .0268| .0140/ .0088! .0093
dence interval

3. The Experimental Data. We considered the rectangular population with
6 = 1 and obtained the sample values by using pairs of digits obtained from
Tippett’s random sample tables [4]. Using these observed values the confi-
dence intervals given by (2), (4), (6), (8) and (9) were computed and the number
of cases in which the value 8 = 1 was covered, noted. In all, 3900 samples
of two were observed, subdivided into 39 sets of 100 each. The samples of
four were obtained by combining pairs of samples of two and there were studied
1500 samples of four, subdivided into 15 sets of 100 each. Table I gives the
observed distribution of the number of cases of coverage per set of 100 samples
of two and of four. The length of the confidence interval obtained by each of
the three procedures was obtained and the observed mean and standard devia-
tion of the distribution of the average length of the confidence interval per set
of 100 samples computed. (Since they are averages of 100 values, these ob-
servations are practically normally distributed.) Table I summarizes these
results.
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THE NUMERICAL COMPUTATION OF THE PRODUCT OF CONJUGATE
IMAGINARY GAMMA FUNCTIONS

By A. C. CoreN, Jr.

The difference equation

e .&;-_1=$2+6127+62
fo @t oarto

was used by Professor Harry C. Carver [1] as the basis for graduating frequency
distributions in a manner analogous to the use of the differential equation

ldy _ __a—-z
ydzx  bo+ biz + bez?

in the Pearson system of frequency curves. In order to determine a particular
J=by Professor Carver’s method it was necessary to perform the complete gradua-
tion from the lower limit of the range up to and including the required f-.
When z is large and only isolated values of f; are required it seems desirable to
have a method for computing f. directly, and the present note seeks to accom-
plish this purpose.

It is well known [2] that the difference equation

Jern _ (@ —a)z — as) ooe (& — an)
@ AR ey N s e
has the solution
_ T —a) oo T(x — an)
(3) fz—'w:a I‘(x—ﬁl)o--l‘(x—ﬁ"‘)’

where w, is a periodic function of £ (W = Weyn = .-+ = k) and I'(x + 1)
for z, a positive real number may be defined in the usual manner by the second
Euler integral

4) Mz +1) = fo " et



