THE SUBSTITUTIVE MEAN AND CERTAIN SUBCLASSES OF THIS
GENERAL MEAN

By Epwarp L. Dopp

1. Introduction. No general agreement has been reached, so far as I know,
as to what constitutes a mean. A necessary condition which appears to meet
with general approval is that a single-valued mean of a set of numbers all equal
to a constant ¢ should itself be equal to c. However, there appears to be some
valid objection against imposing any other proposed condition as necessary.

Of course, intermediacy is a condition that suggests itself at once. Indeed,
in certain mean value theorems in general analysis—such as the First Theorem
of the Mean for integral calculus, which I mention in Section 3—intermediacy
is the main feature.

However, O. Chisini [1] insisted that intermediacy or internality is not the
chief characteristic of a statistical mean. Rather, a mean is a number to take
the place, by substitution, of each of a set of numbers in general different.
Such a mean may well be called a representative or substitutive mean.

Chisini defined m to be-a mean of z;, ¥z, - - - , Za, relative to a function F,
provided that
(1.1) Fm,m, ---,m) = F(x,, %2, -+ , Tn).

If, for example,

(1.2) F(xy, 2, -, &n) = 227 = Zm’ = nm’,
the mean m thus obtained is the root-mean-square

(1.3) m = =+ [(1/n)Z<3"

The choice of F, Chisini noted, depended upon the use to be made of the

mean.
Suppose now that f(z1, @2, - - - , %) is such a function that one value of

(1.4) flx,z, .-, 2) = =.

And suppose that this f is taken as a particular F for (1.1) to determine a mean
m tmplicitly; thus

(1.5) flm,m, --. ,m) = f(x1, 22, -+, Ta).

Then, from (1.5) and (1.4) it follows that one value of

(1.6) flri, xa, -, Ta) = m.

And thus f determines the mean m both explicitly and implicitly.
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164 EDWARD L. DODD

It should be noted that the F = 2z} in (1.2) is not itself a mean of the ;.

If, in (1.2), we take x; = —2, 2 = 1, 23 = 1, then the double-valued mean
m = = 2"% results. Now —2'* is internal; ei. —2 < —2'% < 1; but 2% is
external, for 2> > 1 > — 2. But since here Zz; = 0, it follows also that the
standard deviation of —2, 1, 1, is the extérnal mean 2'°. Chisini [1], indeed,
used the root mean square to show the possibility of external means. External
means have been noted by other writers, [2-7].

It is noteworthy that a number of writers [8-12] have used the condition
(1.4) (in general, with f single-valued) as one of a set of axioms to
characterize particular means. Sometimes, this has appeared in weaker form
as f(1,1,...,1) = 1.

This paper will be concerned primarily with the mean of a finite number #,
of variates, x1, #2, - -+, Z, . Possible generalizations will be mentioned briefly
in Section 8.

In the conception of the substitutive mean, m, as I have been using it for some
time, emphasis is laid upon the explicit form for m; and provision is made for
multiple values.

DEFINITION OF THE SUBSTITUTIVE MEAN. Let f(1, %2, -+, Z,) be a func-
tion of n variables, x1 , Tz, - - - , & defined at least for one set of equal values, x; = k.
If ¢ is any number such that f(c, ¢, - - - , c) is defined, let one value of

(]-'7) f(C, Cy ooy C) = c.

Then f(x1, %2, - - - , &) will be said to be a substitutive mean of 1, T2, - -+, Tn .
If an original formulation of a problem does not assign to a function a value
when the variables are all equal, it is sometimes possible to assign such values
by continuity considerations, such as are commonly used in the “evaluation”
of indeterminate forms. This will be discussed in Section 6.
In the following, when the word mean is used, it will designate the substitu-
tive mean as defined above.

2. Classification of Means already made. Some general classes of means
have already been distinguished. One important basis for a classification of
means is the kind of data to be used. The data may be only qualitatively
distinguishable. Then numbers may be assigned to qualities. For dealing in
a very general way with all kinds of data, C. Gini and L. Galvani [13], and
G. Pietra [14], distinguished between data in rectilineal series, in eyclical series,
and in unconnected series. These three classes are associated respectively with
the straight line, the circle, and a regular polyhedron (in three dimensions, the
regular tetrahedron, and in n dimensions, a polyhedron with » + 1 vertices each
at the same distance from each of the other n vertices).

For one definition of the arithmetic mean of a cyclical series, Gini uses the
center of gravity principle; and this mean is computed with the aid of sines and
cosines. By mechanical means, such an arithmetic mean of dates—for example,
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of dates of weddings—as days of a year can be found. On the rim of a wheel
delicately suspended and marked off for the 365 days or 366 days of a year, let
small weights proportional to the number of weddings on a day be placed in the
spaces assigned to the individual days. Then when the wheel comes to rest,
the arithmetic mean of the dates will be found at the lowest point of the rim.
In the special case where the center of gravity of the system is at the center of
the circle, the mean is indeterminate, or we may say that every day is a mean
day.

Also, for cyclical series the arithmetic mean and the median are defined by
other methods, using such principles as minimizing the sum of the squares of
deviations or the sum of the absolute deviations.

The properties of means may be made the basis of a classification, either those
properties which have been evolved by writers [8-12], [15-18] who have char-
acterized specific means by sets of axioms, or those properties which seem of
special importance in making distinctions. Two such properties will now be
mentioned.

Gini [19] recognizes two large classes of means: “A) medie ferme, B) medie
lasche,”” the latter (loose) class including the median and mode for which values
do not depend upon all the data. To describe this latter mean m of arguments
z;, we might write dm/dx; = 0 as applying to several if not most of the argu-
ments over wide ranges instead of at isolated points.

Subelasses of A or firm means as given by Gini will be discussed in Section 4.

Another rather large classification distinguishes between simple means and
their weighted forms. In a case often encountered, where the weights are
whole numbers indicating frequencies of occurrence this distinction is of little
significance. In the more general case, however, where weights may give ratings
of the efficiency of measuring instruments or the weights may be negative [6,
20], more direct attention needs to be paid the weighted forms.

To supplement classifications already proposed, I am indicating in the next
section a descent from the substitutive mean, the most general of all means,
down through two classes of means less general, which I am calling the summa-
tional mean and the quasi-arithmetic mean, to the more specific mean known
as the associative mean, studied in particular by M. Nagumo, [21] A. Kolmogoroff,
[22] and B. de Finetti, [2].

The foregoing subclasses of the general or substitutive mean are based
primarily on structure, the way the mean is formed.

3. The Summational Mean, Quasi-Arithmetic Mean, and Associative Mean.
The summational mean, now to be defined, is a generalization of the weighted
arithmetic mean.

w=atitatt. .. +cn

; # 0.
atat+--+e 2o

(3.1)
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It is to be noted that although W is not a symfiiétric function of z;, W is a
symmetric function of ¢;z;. In the generalization @, the following features of
W are retained:

1. Certain weights c¢; being given, Q is a symmetric function of ¢;z; .

2. This @ may be determined from sums of n terms, each term involving
one and only one x; .

DEFINITION. Let = denote a summation for i = 1,2, ..., n. Suppose that

(32) F{y; zfl(cixi ) y); 2f2(c€xi ) y); ] Efln(cixi ) y)} =0

has a solution, y = Q which is a substitutive mean of 1, 22, -+, To. Then Q
will be called a summational mean of x,, xa, - - -, Ta, relative to the functions fy,
f27 "'fk:a"dF'

Sometimes it is possible to express @ as

3.3) Q = G{Zgi(ciws), Zgaleixs), - - - , Zgalcizs)}.

Among summational means, those of most frequent use involve in a special
way but one summation. Thus with ¥(x) a function, which would usually be
taken as continuous, this m satisfies

(34) \p(m)Ec.- = EC,‘\P(I”.‘).

But this, with ¢; > 0, is just an algebraic analogue or prologue to the First
Theorem of the Mean for integral calculus—the ¢; to be replaced by a positive
integrable function. Without further specification, this mean m may have an
uncountably infinite number of values. But if it be required that y(r) be a
continuous increasing function, and that ¢; > 0, then m is unique.

In a series of papers, C. E. Bonferroni [20], [23-27] used means such as m in
(3.4) for statistical and actuarial problems. And, as he had in mind [28] dis-
tinetly the notion of substitution, he was in a sense a forerunner of Chisini.
E. L. Dodd [29] made use 6f a mean m defined with the aid of n continuous in-
creasing functions ¥;(x), thus:

3.5) Zeapi(m) = Zeahi(xs), c; > 0.
If gi(x) = capi(z), this can be written
(3.6) 2gi(m) = Zgi(x:).

In one paper, C. E. Bonferroni [20], as already noted, used weights which
might be either positive or negative.

Some such mean as m in (3.4) has been used by a number of writers. Here
¥(m) is a weighted arithmetic mean of Y(z;); and thus it is natural to call m a
quasi-arithmetic mean of z; .

DeriNiTION. Let Z¢; #= 0. If m is a solution of

(3.4) Y(m)Ze; = Zea(s),
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then m will be called a quasi-arithmetic mean of x; , with weights c; , and relative to
the function ¥(z).

Sufficient conditions for the existence of this mean m are: (1) That y(x) be
continuous in the interval I, finite or infinite, in which the observations z; lie;
(2) That either ¢; > 0 for each 7, or that y(z) take on all real values, as « runs
through 1.

It will be helpful to picture geometrically the double transformation or mirror-
ing represented by (3.4). Points z; on the horizontal axis are carried vertically
to the curve ¥ = ¥(r) and then reflected horizontally to the y axis. For the
points y;, on the y axis thus obtained the arithmetic mean § or “center of
gravity’’ is obtained. Then 7 is carried horizontally to the curve and reflected
vertically to the z-axis. The abscissas m of points on the z-axis thus obtained
are means of the given z; , relative to this y(x).

It may happen (Dodd [3 p. 746]) that the curve y = ¥(z) contains horizontal
segments, as in the curve for temperature y of ice-water-steam which has ab-
sorbed a quantity = of heat. In this case the mean m may be an “interval,”
an uncountable set of real numbers. Indeterminateness over an interval is a
well known feature of the median of an even number of variates. In fact, a paper
of D. Jackson [30] was for the purpose of indicating one method of selecting a
single value from this interval of indeterminateness, as a median.

It may be noted that a mean of n variables becomes, when n = 1, a function
of a single variable; and thus it appears possible to implant in a mean of n
variables almost any peculiarity found in a function of one variable.

A special case of the quasi-arithmetic mean is the associative mean m which
under some general conditions has been shown [2, 21, 22] to satisfy

(3°7) n'l’(m) = E‘p(xi)r t=12...,n;

where ¢(x) is a continuous increasing function.

If fa(x1, %2, ---, %) is an associative mean, then by definition, f.(z:,
Ty, --- , &) is unaltered when any k of the n variates are each replaced by the
mean f; of that set.

4. The Gini means as summational. Having distinguished firm means from
loose means, Gini [19] noted that in the former class, a variate might appear as
a base, as an exponent, or both as base and exponent. In general, these variates
are to be positive. Gini then listed ten means of a decidedly broad character,
some of them generalizing the combinatorial means treated by A. Durand [31]
and O. Dunkel [32]. See also G. Pietra [37].

These ten means involve only the four simple arithmetic operations and root
extraction. For many purposes they are best expressed in the form given. by
the author. However, to show that these means are summational, logarithms
will be used to reduce products to sums.
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Let
8P .= Za? i1=1,2 ... ,n;
#Ce = n!l/el(n — ¢)!, a binomial coefficient;

P, be any one of the .C. products of ¢ different elements taken from
(41) L1y, T2, ) &n,

P? = (P.)*, the p* power of P, ;
Z, = ZP,, the sum of all the ,C, products P, ;
Z; = zP7.

In the expressions which follow, it is assumed that the denominators are not
zero.

The ten means, as defined in Gini’s Equations I, IT, . .. , X, will bedesignated
here by my, me, ..., my ; and their logarithms, with base arbitrary, will now
be given.

log m; = (log 8” — log n)/p

log ms = (log Z, — log .C.)/c

log ms = (log Z7 — log .C.)/cp

log my = (log 87 — log 89)/(p — ¢)

log ms = Zzf log z:/S”

log me = (log Z: — log Zs — log .C. + log +Ca)/(c — d)
log m; = (log Z7 — log Z — log .C. + log .Ca)/(c — d)p
log ms = (log ZZ' — log Z3)/c(p — q)

log my = ZP?log P,/cZ;

log my = (log Z7 — log Z3 — log .C. + log .Ca)/(cp — dg).

(4.2)

As noted by the author, the foregoing include some well known special means.
Thus, m, is the power mean, which for p = 1, 2, — 1, becomes respectively the
arithmetic mean, the root mean square, and the harmonic mean. If p — 0,
then the limit of m; and of my is the geometric mean. If p = 0,1, 2,and ¢ =
p — 1, then m, is respectively the harmonie, the arithmetic, and the contra-
harmonic mean.

For each of the ten means, Gini gives an appropriate name. Those involving
binomial coefficients are combinatorial, a mean like the contra-harmonic with
denominator other than a constant is biplanar, the more simple means
monoplanar.

When in the following, I show that certain combinatorial expressions may be
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replaced by sums, it is not implied that this replacement would simplify
computation.

To prove that m;, my, - - -, myp are all summational means, it may be noted
that n, p, g, ¢, d, .C., and ,Cq are constants. Moreover, S” is the symmetric
sum of the pth powers of z;, thus with only one z; in each term, and
t1=1,2,---,n And,since Z,, Z7, Z,, and Z] are symmetric polynomials in
the z;, they may be expressed as polynomials in S, S% ..., by a well known
theorem of algebra. Hence among the ten means, the only one that requires
special attention is the ninth mean, ms.

To show that ms is a summational mean, we need only examine the numerator
of the right member. Let this numerator be N.

(4.3) N = ZP%log P..

Then

(4.4) gN = (zizg --- 2)(log 2f + .-+ + log ac) + --- .
Thus, if we set y; = z{, we may write

(4.5) gN = (ywz - -~ y)(logy1 + -+ - + logy) + --- .

The coefficient of log % in this right member is the sum of all products of ¢
different factors which include y; .
Now, let Y, be the sum of the products of r different factors taken from

Y1, Y2, -, Y ; and let T, be the sum of the products of r different factors
taken from %2, ¥s, --+, ¥Y» . Then it is evident that
(4.6) Y, =T+ yTr; T,=Y—yTlru.
If, now, we set Y, = 1, it follows that
4.7) Tonr=Yey—pVesr+ 4i¥es — -+ + (=1)yi Yo
Hence, in ¢N, the coefficient of log ¥, is
(4.8) hTes = 41¥ers — i¥es + -+ + (=1)7yiYs.
Thus in ¢gN, the terms containing log y, are
(4.9) Youplogy — Yeafilogys + --- + (—1)yilog y:.
Now let
(4.10) U, = 2y log y:, 1=1,2...,n
Then,
(4.11) gN = Y. Uy — YoosUs + -+« + (=1)Y,U..

Thus, ¢N is here constructed from sums of n terms with but a single y; in any
term.
Likewise, with y; replaced by ={, a term contains but a single x; .
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b. Transformations. A function f(z,, 2, .-, ) is not in general a mean
of its arguments z;. However, it is often possible to make a substitution
z; = ¢(y:) so that

(51) f[d’(yl); ¢(:l/2), R ] ¢(yn)] = g(yl y Y250+, yn)y

is a mean of its arguments y; .
The required substitution is sometimes obvious, as in the case of the estimate
s of scale

(5.2) s = [(1/n) 2@ — m)" = [(1/n)Zyi

Here s is a mean of y;, although it is not a mean of z;.

DerFINITION. Let y = Y(x), in general multiple valued, be defined in an in-
terval I, finite or infinite, the values of y lying in an interval J. Suppose that for
each y in J, there is at least one x in I such that Y(x) = y. Let any such x be
designated by ¢(y). Then ¢(y) will be called the inverse of Y(x). It follows that
one value of

(5.3) Yie(®)] = .
THEOREM. Let
(5.4) z2=f(x1,2, - )xﬂ):

in general multiple valued, be defined when each x; is in some interval I, finite or
infinite. With x in I, sel

(55) Y(x) = Sz, z, -, 2);

and suppose that y = yY(x) has an inverse, * = ¢(y) defined in J. Let z; =
o(ys) be substituted into f to form the function

(5.6) w = flo(y1), ®2), -+ , ¢Wn)] = gly1, ¥z, - -+, Yn).

Then w is a mean of y;, defined when y; is in J. It is thus a mean of ¥(x;),
where z; s in 1. ‘

If further, y(x) is a continuous increasing function of z, then for a given set of
x; , the values of z and w are identical. The same is true for a given set of n values y; .

Proor. If each y; = ¢, a number in J, then

(6.7) To(y), - -+, oyn)] = fld(0), - - -, #(0)] = ¥ls(c)].

And one value of ¥[p(c)] is ¢, from the definition of the inverse function ¢(y).
Moreover, if a number ¢’ is taken in I, then ¥(c’) is some number in J, which
we may call ¢; and the argument above is applicable. Finally, if ¢(z) is con-
tinuous and increasing, then a number z; in I is associated with one and only
one y; in J; and vice versa. Thus w and z become identical.

In the foregoing, we started with f which is not a mean of its arguments z;,
and obtained g which is a mean of ;. Something like the reverse of this is
possible. The last member of (5.2) is a mean of ;. It was obtained by treat-
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ing m as a constant, with respect to z;. If, however, m is an estimate for
location and is taken as (1/n)Zz;, and this is substituted into (5.2) then

(5.8) s = {[(n — 1)/n]Za} — (2/n)Zxa;}"?, i<j

This s is now not a mean of z;; for if x equal any constant ¢, then s = 0.
Furthermore, there exists no single valued continuous increasing function z =
#(y) such that if z; = ¢(y:) is substituted into (5.8), s will be a mean of the
ys;. Thus the elimination of m from (5.2) interferes with the status of s as a
mean of the z; .

6. Indeterminate Forms that arise in testing for Means. Sometimes a func-
tion f is substantially continuous. But the investigation leading to the func-
tion fails to assign to the function a value for certain values of the argument z,
or arguments, z,, %2, ---, £,. However, values are often assignable which
will make the function continuous. This is the usual occurrence when, in curve
fitting, parameters are estimated. In general, the measurements are assumed
to be not all alike. However, when a general function such as Zz;/n for loca-
tion is obtained, we do not hesitate to assign to this function the value ¢ when
each z; = ¢, ta make the function continuous.

As another illustration of ‘“‘indeterminate forms,” consider the Jackson [30]
median, M, of four numbers z; £ 2, < 23 < 24, Viz.,

(6.1) M = (z@s — z211)/ (x4 + 23 — T2 — ).

A direct substitution of £ = ¢, renders’ M indeterminate. But if z; — ¢,
indeed, if merely x; — ¢, and x; — ¢, so also does M.

In a recent paper, R. Cisbani [33] generalizes means suggested by Dunkel
[32] and L. Galvani [34] by setting up

n A —1/z
(6.2) yi(z) = [n—l Z; (@ + ih)“”’] , j#0, z #0;

and letting » — . There results an integral with the value

bt — =t ]llz
(/i 4+ DE —adl ’

for the case,  # j. This mean set up as a mean of an infinite number of variates
turns out to be also a mean of the two numbers @ and b,—which for b = a be-
comes indeterminate. But as b approaches a, so also does 7;(x) approach a.
This is also true for the special cases x = —j, ete.

In testing to see if a function m of z; is a mean of these numbers, a difficulty
sometimes arises, because a substitution of z; = ¢ and m = ¢ into the equation
which implicitly defines m will put zeros into denominators. An aid in such
testing will now be formulated as a theorem, although the ideas involved are
not essentially new.

(6.3) 7@ =|
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THEOREM. Let f(x) be a continuous increasing function of x defined for each
real . Let

(6.4) f(0) = 0.
Given n real distinct numbers
(6.5) T <2< or K Ty < 24,y
n positive numbers, k; , and a real number C.
Set
6.6) F(x)=f61k_l_7)+”'+f(x_:c‘:—x)—c’

Then F(x) = 0 has n — 1 real roots m; , such that
6.7) <M< <M< o < Mpy < Tp
also, a root less than x, , provided
(6.8) Zki/f(+ ) < C;,
or a root greater than x, , provided
(6.9) Zki/f(— ) > C.

Proor. Since’f(r) is a continuous increasing function of z, so also is
ki/f(x; — x), except for the single value, z = z;. So also, then, is F(z), except
when 2 = zyor2p 0or -.. or z,. But

(6.10) Flz; +0) = — o; F(zy — 0) = + .

Hence, between z; and z;,; , there exists a root m, , of F(z) = 0.
Moreover, since

(6.11) F(— ) = [Zki/f(+»)] — C; F(z1 — 0) = +=;

it follows that there is a root less than z; , provided (6.8) is satisfied. Likewise,
there is a root greater than z, if (6.9) is satisfied.

The use of this theorem in testing for means is simple. Keeping the z; dis-
tinct, the equation F(z) = 0 determines (n — 1) numbers, m;, such that if
x; — ¢, 50 also do these m; — ¢. Employing continuity to define m; when each
z; = ¢, we may say that each m;isameanof z;;7 =1,2, ... (n — 1);7 =
1,2, ... n, when the conditions of this theorem are satisfied. If F(x) = 0 has
still another root, m, this m will not in general be a mean of z; .

7. Summational Means arising in the Estimation of Parameters of Frequency
Distributions. In curve fitting, the estimation of parameters leads in general
to summational means. If the method of moments is used, the first step is to
find the moments by summation. I have already considered estimates for
Jocation and scale by this method (7], and by the R. A. Fisher method of maxi-
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mum likelihood [4]. A further study of the results of the likelihood method will
now be made.

By this method, products which first appear are reduced to sums by log-
arithms, and the means found are, in general, summational. Some idea of the
forms of these means can be obtained by examining a rather general form of
frequency function which includes the Pearson Type I, and involves parameters
with estimates p > 0 and ¢ > 0, in addition to the location m and scale a.

Let the observations be 21, 23, -+ - , . ; let
(7.1) ti = (x; — m)/a; 0=st=s1, a>0;
1T(p+ g 1 1
7.2 - - __ %7 tp_ l — -
@2 V=it | Y
The likelihood L is obtained by multiplying together the n factors obtained
by substituting ¢t = &, &, ---, ta.
Then

logL = —nloga + nlog I'(p + q) — n log.T'(p) — n log I'(g)

7.3 - 3
(7.3) + @ =12 logti+ (g~ 1) 2log (1 — &),

From aL/dm = 0, there is obtained

1 1
m T @ — =0 P=p-1 @=9-1

(74) Pz z

3

Suppose P = 0 and @ # 0; and as a first case, suppose P + Q # 0. If each
z; is replaced by z, the above equation leads to m = ¢ — (Pa)/(P + Q).
Then m is a summational mean of

(7.5) x$=x.—(Pa)/(P+Q) t=12...,n

as seen by applying the Theorem in Section 5.
Likewise, a is a summational mean of

(7.6) z = (z: — m)(P + Q)/P.
If P 0,Q % 0; but P + Q = 0, then (7.4) becomes
7.7) 1 _s_ 1 |
Ti—m—a Ti—m

Now set ¥; = 2; — m, C = Z1/y; ; and write (7.7) as

1
Yi—a

(7.8) Fl@) =2 —-C=0.

This has the form given in (6.6) with z replaced by a, k; = 1, f(a) = a. If then
¥ < 2. < --- < Yn, there exist (n — 1) solutions a; of F(a) = 0 between y:
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and y,. Aid thus keeping the y; distinet, if y: — ¢, so also do the a; — ¢.
These a; are then means of y; , and thus, means of z; — m.

In the more general case where P 4+ Q # 0, it is seen also that @ is a summa-
tional mean of

(7.9) P [z‘ o - 1].

From 0L/da = 0, quite analogous results are obtained. The special case
now, however, is given by P+ Q +1 =0 = p + ¢ — 1. And, with the
continuity interpretation, @ is a mean of 2; — m; and moreover, m is a mean of
r; — Q.

Using now the digamma functian

(7.10) F@) = L 10g r(w),

set

(7.11) D(p) = ¢(p + q) — (p).

The condition 0L/dp = 0, then leads to

(7.12) D(p) = (1/n)Z(—log &), 0<t =1

Now, with ¢ > 0, D(x) = 0, D(— 1 + 0) = «; and D(p) is a continuous de-
creasing function of p, when p > — 1. Then, since — log ¢; > 0, there is a

unique p > — 1 to satisfy (6.12).

To be useful, here, p should be > 0. But, at all events, the p thus found is
a mean of D™'(—log t;), where D" is inverse to D.

The digamma function (7.10) appears also in estimating the parameters for

the Pearson Type III.

1 1 —t
1 = s = - -1.
(7.13) y al‘(p+l)e t7 t = (x — m)/a, P>
By setting 9L/dp = 0, it is found that m is the arithmetic mean of z; — ae"” .
a is the arithmetic mean of (z; — m)e ***”; while p is a summational mean of

£ log (z; — m)/a} — 1, where ' is the inverse of r. From dL/am = 0, it
is found that m is a summational mean of z; — pa; a is the harmonic mean of
(z: — m)/p; and p is the harmonic mean of (z; — m)/a. Finally, from dL/3a =
0, there is obtained

(7.14) (1/n)Zz; = m + a(p + 1),

which makes m, a and p each an arithmetic mean of a simple function of the
observations z; , when the other two estimates are taken as constants.
Comparison of (5.2) with (5.8) has shown that after complete climination,
estimates may cease to be means. However, it may be noted that s is more
frequently exhibited in the form (5.2) where it is a mean than in the form (5.8)

where it is not.
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8. Generalizations. The extension of results from the discrete or discontinu-
ous case where a mean m depends upon only a finite number of elements to the
continuous case is fairly immediate, with integration taking the place of summa-
tion, and a distribution or frequency function taking the place of discrete weights,
¢;. Stieltjes and Lebesque integrals may be used as well as Riemannian. Such
a generalization of the Chisini mean was given by de Finetti [2].

The summational mean, which I have defined as involving possibly several
summations, may be generalized likewise.

In terms of set functions, sometimes called functionelles, I gave [35] the fol-
lowing general definition of a mean with a point set H in mind as a distribution

function.

DEFINITION. Let E and H be sets of numbers. Such a number t may be a real
number or a vector number t = (&1, to, -+, ).

Let E ., be the result of replacing each number of E by a single number t.

Then the mean m of numbers in E, relative to the set H, and to a function f, is
giwen by m = f(E, H); provided that the function f has been so constructed that
Joreach tin E, f(E,, H) = t, or at least one value of this f is t. It s to be under-
stood above that when E is changed to E, , the set H remains unaltered.

This retains the chief feature of f(t, ¢, - - . , ) = ¢ in explicit form or of f(t,
t,---,t) =f(t,ta, ---,t,) in implicit form, where tisameanof t; , s, --- , tu .

I used [36] a somewhat less general definition to discuss regression coefficients.
All such means may well be called substitutive or representative.
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