THE ANALYSIS OF VARIANCE WHEN EXPERIMENTAL ERRORS
FOLLOW THE POISSON OR BINOMIAL LAWS

By W. G. CocHRAN

1. Introduction. The use of transformations has recently been discussed by
several writers [1], [2], [3], [4], in applying the analysis of variance to experi-
mental data where there is reason to suspect that the experimental errors are
not normally distributed. Two types of transformations appear to be coming
into fairly common use: 4/z and sin™" 4/z. The former is considered appro-
priate where the data are small integers whose experimental errors follow the
Poisson law, while the latter applies to fractions or percentages derived from
the ratio of two small integers, where the experimental errors follow the binomial
frequency distribution. In each case the object of the transformation is to put
the data on a scale in which the experimental variance is approximately the
same on all plots, so that all plots may be used in estimating the standard error
of any treatment comparison. The extent to which these transformations are
likely to succeed in so doing has been examined by Bartlett [2]. The object of
the present paper is to discuss the theoretical basis for these transformations in
more detail, and in particular to examine their relation to a more exact analysis.

2. Experimental variation of the Poisson type. The first step in an exact
statistical analysis of the results of any field experiment, is to specify in mathe-
matical terms (1) how the expected values on each plot are obtained in terms of
unknown parameters representing the treatment and block (or row and column)
effects (2) how the observed values on the plots vary about the expected values.
In this section, the variation is assumed to follow the Poisson law.

The specification of the expected values requires some consideration. In the
standard theory of the analysis of variance, treatment and block (or row and
column) effects are assumed to be additive. In the case of a Latin square, for
example, the expected yield m; of the ith plot, which receives the tth treatment
and occurs in the 7th row and the cth column is written

(1) mi=G+Tt+Rr+Cc

where G is a parameter representing the average level of yield in the experiment,
and T,, R, and C, represent the respective effects of the treatment, row and
column to which the plot corresponds. Since the T, R and C constants are
required only to measure differences between different treatments, rows and
columns, we may put

03] ;T¢=ZR,=ZCC=O.
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336 W. G. COCHRAN

If the experimental errors are normally and independently distributed with
equal variance, this specification leads to very simple equations of estimation
for the unknown parameters, the maximum likelihood estimate of T., for
example, being the difference between the mean yield of all plots receiving that
treatment and the general mean. In addition to its simplicity, this type of
prediction formula is fairly suitable for general use, because it gives a good
approximation to most types of law which might be envisaged, provided that
row and column differences are small in relation to the mean yield. However,
in considering an exact analysis with Poisson variation, the prediction formula
is assumed chosen, without reference to computational simplicity, as being the
most suitable to describe the cgmbined actions of treatment and soil effects.

The probability of obtaining a given set of plot yields z; with expectations m;
may be written

e m;
I

1',' )

Thus L, the logarithm of the likelihood, is given by

3) L= Z (x: log m; — m;) — Z log ;!.

Hence the maximum likelihood equation of estimation for any parameter 6
assumes the form

(z: — m;) om;
m; a0

4 z =0

where the summation extends over all plots whose expectations involve 8, The

function 6;? will usually involve a number of parameters. Since the specifica-

tion of row, column and treatment effects in a 6 x 6 Latin square requires 16
independent parameters, the solution of these equations may be expected to be
laborious, though it may be shortened by the intelligent use of iterative methods.
The problem of obtaining exact tests of significance is also difficult. The
method of maximum likelihood provides estimates of the variances and co-
variances of the treatment constants, which under certain conditions can be
assumed to be normally distributed if there is sufficient replication, but this can
hardly be considered an exact ‘‘small sample”’ solution.

These remarks show that the exact solution is somewhat too complicated for
frequent use. The difficulty arises principally because the typical equation of
estimation consists of a weighted sum of the deviations of the observed from the

expected values, the weights being %‘ B;Zi. The factor % was introduced into

the weight by the Poisson variation of the experimental errors, and must be
retained in any theory which claims to apply to Poisson variation. It is, how-
ever, worth considering whether some simplification cannot be introduced into
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the equations by assuming some particular form for the prediction formula.
This line of approach seems promising when one considers the simplification
introduced into the ‘“normal theory’” case by assuming the prediction formula

to be linear.
For Poisson variation, the linear law does not appear to be particularly suit-

able, since it may give negative expectations on some plots (as happens in the

numerical example considered in the next section). Further, while %"03 becomes

a constant, the factor % remains in the weight.

The entire weight can be made constant by assuming a linear prediction
formula in the square roots and transforming the data to square roots. For a
Latin square, this prediction formula is written

(5) m=ai=G+T1+Rr+Cc,
where

(6) tZTt=ZRf=ZCc=O.

To find the maximum value of (3) subject to the restrictions (6), we may use the
method of undetermined multipliers, maximizing

) L+NET) +w(X R) +v(XC).
The equation of estimation for a typical treatment constant 7', becomes

x; — m;\dm; da; . 2(1'1 - 7ni)
—_ = .C. E ———— =
(8) E( - )da,- oT, +A=0, ie, T + =0,

the summation being extended over all plots receiving the treatment. If
a; = \/x; , then by Taylor’s theorem

) I 4 (e -

(9) i —mi = (& — o +§—!a

Y day

If m; is reasonably large, only the first term on the right-hand side need be
retained. When m; is small, we may use, instead of the exact square root, a
quantity a; defined so that

(10) 2 —mi = (o} — ) ‘i{f— = 2v/mi (@ — a).

Thus if the analysis is performed on the quantities a; instead of on the original
data, equation (8) becomes

(11) TZ 4(ai — o) + 1 = 0.
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On substituting the expectations for «; from (5), and using (6), we obtain
(12) 2 4ai—G—T)+r=0.
Ts

The corresponding equation for G is
(13) 2 4ai - @ =0,

so that G is the general mean of the quantities a’. By adding equations (12)
over all treatments, and comparing the total with (13), we find A = 0 Hence
T, is the difference between the mean yield of a’ over all plots receiving 7', and
the general mean of a’. In this scale the simplicity of the “normal theory”
equations has apparently been recovered. Actually, the quantities:a’ are not
known exactly, since

. (z—m) 1 z
(14) a—a+——2——\77=n——-2—(a+&—)
where a is the expected value of 4/z. However, this process provides a means
of successively approximating the maximum likelihood solution, by choosing
first approximations to the quantities a, constructing the a’’s, solving for the
unknown constants and hence obtaining second approximations to the expected
values. The close relation of a’ to /z is seen by remembering one of the
common rules for finding square roots. This consists in guessing an approxi-
mate root (a), dividing = by the approximate root, and taking the mean of the
approximate root («) and the resulting quotient (z/a).

The suitability of the linear prediction formula in square roots must be con-
sidered in any example in which the above analysis is being employed. The
law is intermediate in its effects between the linear law and the product law in
the original data. My experience is that it is fairly satisfactory for general use,
(cf. [2], p. 72) An exception may occur when it is desired to test the inter-
action between two treatments, both of which produce large effects. In this
case the definition chosen for absence of interaction may not coincide at all
closely with the definition implied in using the linear law in square roots. An
example of this case was given in a previous paper [1].

In this connection it should be noted that an approximate ‘“goodness of fit”
test may be obtained of the validity of the assumptions made. Since the quan-
tities a; enter into the equations of estimation with weight 4, the quantity
4 E (ai — a;)? is distributed approximately as x° with the number of degrees

1

of freedom in the error term of the analysis of variance. Some idea of the
closeness of the approximation may be gathered by considering the simplest
case in which only the mean yield is being estimated. In this case the observed
values = are assumed to be drawn from the same Poisson distribution, and the
sufficient statistic for the mean G is known to be Z(x;)/n. Since, however, the
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prediction formula is here the same in square roots as in the original scale, and
since the maximum likelihood solution is invariant to change of scale, the mean
value a of o’ must be exactly /Z(z)/n, as the rcader may verify by working
any particular example. Thus 4(a’ — o)’ is found to be =(z — %)*/&, the
usual x* test for examining whether a set of values = may rcasonably be assumed
to come from the same Poisson distribution. By working out the exact distri-
bution of Z(z; — #)?/Z in a number of cases [5], I previously cxpressed the
opinion that this quantity followed the x* distribution sufficiently closely for
most practical uses, cven for values of the mean as low as 2, This opinion has
since been substantiated by Sukhatme, [6] who sampled this distribution for
m = 1,2 3,4, and 5.

A high value of x* means cither that the prediction formula is not satisfactory
or that the experimental errors are higher than the Poisson distribution indi-
cates, or that both causes are operating. These effects can sometimes be sepa-
rated by examining whether the observed yields deviate from the expected
yields in a systematic or a random manner. If the deviation is systematic, the
prediction formula is probably unsatisfactory.

The type of approach used above resembles in many features the “cxact”’
analysis for the probit transformation [7]. The principal difference is that in
the case of probits the transformation is made to suit the a prior: prediction
formula, which postulates that the probits are a linear function of the dosage,
or of the log (dosage). Thus with probits the equations of estimation still
involve weights in the transformed scale. These do not seriously complicate
the analysis, since only two parameters require to be estimated for a given
poison. With, however, the much greater number of parameters usually in-
volved in specifying the results of a field experiment, the attractiveness of a
solution which does not involve weighting is greatly increased.

3. Numerical example of the square root transformation. A 5 X 5 Latin
square cxperiment on the effects of different soil fumigants in controlling wire-
worms was selected as an example. The average number of wircworms per
plot (total of four soil samples) was just under five. Previous studics (8], [9]
have indicated that with small numbers per sample, the distribution of numbers
of wireworms tends to follow the Poisson law.

The plan and yields are shown in Table I. The first two figures under the
treatment symbols are the numbers of wireworms and their square roots respec-
tively, the latter being regarded as first approximations to the valuesa’. Two
of the plots receiving treatment K gave no wireworms. Since these plots are
likely to be changed most in the transition from square roots to a’, better
approximations were estimated for them before proceeding with the calculations.
The best simple approximations appeared to be obtained from the square roots
of the means in the original units. For the plot in the sccond row and second
column, the square roots of the row, column and treatment means in the original
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TABLE I
Plan and number of wireworms per plot
P (0] N K M Mean
3! 2 5 1 4
1.73% 1.41 2.24 1.00 2.00 1.6762
1.76° 1.45 2.25 1.11 2.00 1.7143
1.774 1.46 2.25 1.10 2.00 1.716%
M K (0] N P
6 0 6 4 4
2.45 (0.39) 2.45 2.00 2.00 1.858
2.45 0.32 2.50 2.02 2.02 1.862
2.46 0.32 2.49 2.02 2.02 1.862
0 M K P N
4 9 1 6 5
2.00 3.00 1.00 2.45 2.24 2.138
2.10 3.09 1.00 2.47 2.25 2.182
2.13 3.08 1.00 2.46 2.25 2.184
N P M (4] K
17 8 8 9 0
4.12 2.83 2.83 3.00 0.79) 2.714
4.18 2.84 2.83 3.00 0.77 2.724
4.17 2.84 2.83 3.00 0.77 2.722
K N P M (0]
4 4 2 4 8
2.00 2.00 1.41 2.00 2.83 2.048
2.14 2.02 1.49 2.04 2.92 2.122
2.10 2.03 1.50 2.05 2.90 2.116

Mean 2.460° 1.926 1.986 2.090 1.972 2.087?
2.526% 1.944 2.014 2.128 1.992 2.1213
2.526* 1.946 2.014 2.126 1.988

Treatment Means

K P o M N

1.0362 2.084 2.338 2.456 2.520
1.0683 2.116 2.3%4 2.482 2.544
1.058¢ 2.118 2.396 2.484 2.544

1Qriginal numbers. 2Square roots. *Second approximations. ¢Third approxima-
tions.
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units are respectively 2.000, 2.145 and 1.095, and the square root of the general
mean is 2.227. Hence

a’ = 3[2.000 + 2.145 4+ 1.095 — 2(2.227)] = 0.39.

The other zero value was similarly found to give ¢’ = 0.79. The corresponding
estimates from the means of the square roots were considerably too low, since
the a’ values tend to be higher than the square roots. The use of “missing plot”’
technique.gave very poor approximations, because it ignores the fact that the
plots in question had zero yields.

With the estimated values inserted, the row, column, and treatment means
of the square roots are as shown in Table I. A second approximation to a’
was calculated for each plot. For the plot in the first row and the first column,

the expected yield is
a = 1.676 + 2.460 + 2.084 — 2(2.087) = 2.046.

Hence @’ = 3(2.046 + 3/2.046) = 1.76. These values constitute the third set
of figures in Table I. Theoretically, it is advisable to readjust the row, column,
and treatment means after each new value of a’ has been obtained, in order to
secure rapid convergence. This is rather laborious in practice, and a complete
set of new plot values was obtained before readjusting the means. The third
approximations obtained by this method are shown in the fourth lines in Table I
and are correct to two decimal places.

It is noteworthy how closely the square roots agree with the third approxi-
mations on all plots except those which originally gave zero yields. The differ-
ences between the second and third approximations are trivial.

The next step is to make a x° test by means of the quantity 4Z(a’ — a)>.
From the manner in which the values a are constructed from the a'’s, it follows
that Z(a’ — a)® is simply the error sum of squares in the conventional analysis
of variance of the values a’. The analysis of variance of the third approxi-
mations is shown in Table II.

TABLE II
Analysis of variance of adjusted square roots
Degrees of freedom| Sum of squares Mean square
Rows 4 2.9815
Columns 4 1.1190
Treatments. 4 7.5815 1.8954
Error 12 4.5970 0.3831

The value of x’is 4 X 4.597 = 18.39, with 12 degrees of freedom, which is

just about the 10 percent level.

If the hypothesis is regarded as disproved

only when x* exceeds the 5 percent level, the treatment means may be tested
by regarding them .as approximately normally distributed with variance
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1/5 X 0.25 = 0.05. It is, however, more prudent to use the actual error mean
square as an estimate of the experimental error variance, performing the usual
tests associated with the analysis of variance. This may be justified on the
grounds that the calculations have produced a set of plot values a’ of equal
weight. On this basis the standard error of a treatment mean is 4/0.3831/5 =
0.2768. Treatment K reduced the number of wireworms significantly below
all other treatments, but there is no indication of any difference between the
other treatments. The treatment means may be reconverted to the original
units by squaring.

4. Experimental variation of the binomial type. In this case the yields are
obtained by examining a constant number 7 units per plot and noting those
which possess a certain attribute (e.g., plants which are diseased). Experi-
mental variation is presumed to arise solely from the binomial variation of the
observed fraction p possessing the attribute about the expected fraction P, which
is specified in terms of unknown parameters representing the treatment and

soil effects.
If r; is the number possessing the attribute on a typical plot, so that p; = r;/n
the likelihood function takes the form

n! ri BT
I.I 7‘,;!(7& el 7‘.‘)! P' Q' ’
Hence the terms in the logarithm which involve the unknown parameters are
given by
(15) L =2 {r:log P; + (n — r;) log Qi}.

The equation of estimation for a typical constant 6 is
n aPi _
(16) EI_).'—Q_;(pi—P‘)W—O

where the summation is over all plots whose expectations involve 6.
As in the Poisson case, an exact solution is laborious because of the weights
n oP i
P;Q; a0
variate a; = sin_' /P;, and assuming that the prediction formula is linear
in the transformed scale. For a Latin square the prediction formula is assumed
to be

(17) a; =G+ T+ R+ Ce

where the 7th plot receives treatment ¢ and lies in the rth row and cth column.
Further

(18) ;T"—_‘ERr:ZCc:O.

The unequal weighting may be removed by transforming to the
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Since P; = sin’® a4, Z—P' = 24/P;Q;. A set of variates a; is defined so that
ot

on each plot
3
(19) pi— Pi = (o} — o) % = 20/, (0 - ).

With these substitutions, the equation of estimation for 7',, for instance,
becomes

(20) :,: dnfai —ax) + A =0

where, as before, \ is an undetermined multiplier. The remainder of the solu-
tion proceeds exactly as in the Poisson case, T'; being found to be the difference
between the mean value of a; over all plots-receiving this treatment and the
general mean of a;. A x’ test may be made with Z an(a; — )’

From (19)

, — 1 . — . — . 1 . — .
(21) ai—ai+2_\/P‘—Q‘(p- P;)—a1+2_\/'l)~‘6‘(01 q;)
(22) = o5 + % cot a; — ¢; cosec (2a)

where ¢; is the observed fraction which does not possess the attribute. The
calculation of approximations to a; thus involves finding a predicted value o
from the treatment and block (or row and column) means, and using equation
(22). Tables [10] of the values of sin™* \/P;, a; + % cot a;, and cosec (2a;)
have been prepared to facilitate the computations. It should be noted that
these tables are in degrees, whereas the above equations assume that «; is
measured in radians. In degrees, equation (20) above becomes

1r2n ’
(23) e~ 8100 (ai - a.-) =0
while
(24) ai = a; + %) {3 cot a; — ¢; cosec (2a;)}.

As in the Poisson case, the appropriateness of the linearly additive law in
equivalent angles depends on the way in which treatment and soil effects operate.
As Bliss has shown [11], the effect of the transformation is to flatten out the
cumulative normal frequency distribution, extending the range ove- -vhich it
can be approximated by a straight line.

6. Numerical example of the angular transformation. The data were selected
from a randomized blocks experiment by Carruth [12] on the control by me-
chanical and insecticidal methods of damage due to corn ear worm larvae.
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The control and the six types of mechanical protection were chosen for analysis,
the “yields” being the percentages of ears unfit for sale. The numbers of ears
varied somewhat from plot to plot, the average being 36.5, but the variations
were fairly small and appeared to be random. It was considered that varia-
tions in the weight (4n) could be ignored in solving the equations of estimation.

TABLE III
Percentages of unfit ears of corn

Treatments Blocks Means

I II I11 v \% VI

42.41 34.3 24.1 39.5 55.5 49.1
1 40.6? 35.8 29.4 38.9 48.2 44.5 39.572
40.7* 36.0 29.4 38.9 48.6 44.6  39.70°

23.5 15.1 11.8 9.4 31.7 15.9
2 29.0 22.9 20.1 17.9 34.3 23.5 24.62
29.1 23.1 20.3 18.2 34.3 23.5 24.75

33.3 33.3 5.0 26.3 30.2 28.6
3 35.2 35.2 12.9 30.9 33.3 32.3 29.97
35.5 35.3 14.5 31.0 33.4 32.4 30.35

11.4 13.5 2.5 16.6 39.4 11.1
4 19.7 21.6 9.1 24.0 38.9 19.5 22.13
19.8 21.7 10.0 24.4 39.9 19.6 22.57

14.3 29.0 10.8 21.9 30.8 15.0
5 22.2 32.6 19.2 27.9 33.7 22.8 26.40
22.6 32.7 19.2 28.0 33.7 22.9 26.52

8.5 21.9 6.2 16.0 13.5 15.4
6 17.0 27.9 14.4 23.6 21.6 23.1 21.27
17 .4 28.2 14.5 24.0 22.1 23.2 21.57

16.6 19.3 16.6 2.1 11.1 11.1
7 24.0 26.1 24.0 8.3 19.5 19.5 20.23
24.3 26.2 28.8 10.9 20.1 19.5 21.63

Means 26.81*2 28.87 18.44 24.50 32.79 26.46 26.31

! Percentage. 2 Equivalent angle. 3Second approximation.

The percentages of unfit ears, the equivalent angles and the second approxi-
mations to a’ are shown in descending order in Table ITI. The percentages on
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individual plots vary from 2.1 to 55.5. The second approximations were calcu-
lated from the block and treatment means of the angles. For the control plot
(treatment 1) in block I, for example, the expected value is

39.57 + 26.81 — 26.31 = 40.07.

Since Fisher and Yates’s tables of @« + % cot « and cosec (2a) are given for
values of « from 45° to 90°, we take the complement of the expected value,
which is 49.93. Interpolating mentally from the table, we find

a + 1 cot o = 74.0, cosec (2a) = 58.3.
Thus the second approximation to the complement of the angle is
74.0 — 0.424 X 58.3 = 49.3.

Hence the second approximation to a’ is 40.7, which agrees very closely with
the equivalent angle.

On the majority of the plots, the second approximation differs by only a
trivial amount from the equivalent angle. The plots with the three lowest
percentages (2.1, 2.5, and 5.0) have increased somewhat more, and also one or
two other plots where the angles deviated considerably from the expected values.
A third set of approximations was not considered necessary.

The analysis of variance of the second approximations is given in Table IV.

TABLE IV
Degrees of freedom| Sum of squares Mean squares
Blocks 5 709.79
Treatments 6 1,531.56 255.26
Error 30 982.67 32.76

Taking n as 36.5, the expected value of the error mean square is 820.7/36.5 =
22.48. Thus x* = 982.67/22.48 = 43.71, with 30 degrees of freedom, which is
almost exactly at the 5 percent level. This, together with the appreciable
amount of the variance removed by blocks, indicates that the experimental
error probably contains some element other than binomial variation. As in the
preceding case, it would be wise to make the usual analysis of variance tests
with the actual error mean square.

6. Discussion. It must be emphasized that the solutions given above apply
to the case where the whole of the experimental error variation is of the Poisson
or binomial type. The methods are therefore likely to be useful in practice only
where the experimental conditions have been carefully controlled, or where the
data are derived from such small numbers that the Poisson or binomial variation
is much larger than any extrancous variation. The x” test is helpful in deciding
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whether this assumption is justified. Further, the examples worked above
indicate that the transformed values form very good approximations on most
plots. It will often be sufficient to adjust only those plots which give zero or
very small values in the Poisson case, or zero or 100 percent values in the
binomial case. In this connection the method of adjustment given above may
perhaps be considered as an improvement on the empirical rule given by Bartlett
[13] of counting n out of n as (n — 1/4) out of n.

Where extraneous variation becomes important, as is probably the normal
case with data derived from field experiments, there seem to be no theoretical
grounds for using the adjusted values. If we were prepared to describe accu-
rately the nature of the variation other than that of the Poisson or binomial
type, a new set of maximum likelihood equations could be developed. These
would, however, lead to a different type of adjustment.

The justification for the use of transformations has no direct relation to the
Poisson or binomial laws in this case, or in cases where percentages are derived
from the ratios of two weights or volumes, as in chemical analyses, or from an
arbitrary observational scoring With percentages, for example, it may be
said, without describing the experimental variation in detail, that the variance
must vanish at zero and 100 percent and is likely to be greatest in the middle.
The formula ¥V = APQ is at least a first approximation to this situation. The
angular transformation will approximately equalize a distribution of variances
of this type, provided that A is sufficiently small. We have, of course, returned
to an “approximate” type of argument. It follows that the original data should
be scrutinized carefully before deciding that a transformation is necessary and
that any presumed opinions about the nature of the experimental variation
should be verified as far as possible.

7. Summary. This paper discusses the theoretical basis for the use of the
square root and inverse sine transformations in analyzing data whose experi-
mental errors follow the Poisson and binomial frequency laws respectively.

The maximum likelihood equations of estimation are developed for each case,
but are in general too complicated for frequent use. If, however, the expected
yield of any plot is assumed to be an additive function of the treatment and
soil effects in the transformed scale, a transformation can be found so that the
equations of estimation assume the simple “normal theory” form. The trans-
forms are closely related to the square roots and inverse sines respectively.

The nature of the assumed formula for the expected values is briefly discussed,
and a x* test is developed for the combined hypotheses that the prediction
formula is satisfactory and that the experimental errors follow the assumed law.

Numerical examples are worked for both types of transformation. These
indicate that even for data derived from small numbers, the square roots or
inverse sines are good estimates of the correct transforms on almost all plots,
except those which give zero yields in the Poisson case, or percentages near
zero or 100 in the binomial case.
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In practice, these new methods are not recommended to supplant the simple
transformations for gencral use, because it can seldom be assumed that the
whole of the experimental error variation follows the Poisson or binomial laws.
The more exact analysis may, however, be useful (¢) for cases in which the plot
yields are very small integers or the ratios of very small integers (¢) in showing
how to give proper weight to an occasional zero plot yield.
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