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high degree of confidence when they are used as tests of significance for index
numbers, since in nearly all time series there exists an appreciable degree of
serial correlation, persistence, or lack of independence among successive items of
any sample.

4, Bibliographical note. Certain aspects of the sampling distribution of the
geometric mean have been discussed by Burton H. Camp.® Attempts to derive
forms for estimating the standard errors of index numbers have been made by
Truman L. Kelley® and Irving Fisher,” and an empirical study of the sampling
fluctuations of indexes has been made by E. C. Rhodes.® Although various
special tests of significance for time series have been proposed,’ at the present
time no generally satisfactory procedure has appeared.
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A NOTE ON THE USE OF A PEARSON TYPE III FUNCTION IN
RENEWAL THEORY

By A. W. Brown

One of the methods suggested by A. J. Lotka' for the derivation of the renewal
function may be briefly summarized as follows.

The method consists of dissecting the total renewal function into ‘‘genera-
tions”. The original installation constitutes the zero generation, the units
introduced to replace disused units of the zero generation constitute the first
generation, renewal of these the second, and so on. Let f(z) be the “mortality”
function, the same for all generations. f(z) is a function satisfying the usual
conditions of a distribution function. Adopting Lotka’s notation, let N be the
number of units in the original collection, B;(f) dt the number of objects intro-

1 A.J. Lotka, ‘“A Contribution to the Theory of Self Renewing Aggregates, With Special
Reference to Industrial Replacement,”’ Annals of Math. Stat., Vol. 10 (1939), p. 1.
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duced between times ¢ and ¢ 4 dt and belonging to the first generation, B, (f) dt
a similar expression for the second generation, etc. Bi(t)/N, B:(t)/N, ... may
be regarded as renewal density functions for the various generations.

Now, evidently,

(1) Bl(t‘) = Nf(t)
@ B:(l) = [ Byt — 0)f(z) dz

and in general

@) Bus® = [ "B/t - 2)f) dx.

Summation of the contributions of the successive generations gives for the total
renewal at the time ¢

@ BO = BO + [ "B(t — 2)f(@) d.

In this note we propose to use a Pearson Type III function for f(x) and observe
wl:at form our equations then assume. The Pearson Type III function
c
T'(k)
practical situations. The two parameters ¢ and k give it a considerable amount
of flexibility. The fact that this function has an unlimited range in one direc-
tion is relatively unimportant from a practical point of view, as is well known
from the experience of fitting curves of this type to skewed data with limited
range. Of course the question of whether a Type III curve is appropriate can
be answered more objectively by using the usual Pearson curve-fitting criteria,

Bi, B: and k. We have, then, substituting in (1)

7%, (¢ > 0, k > 0), appears to be a reasonable one to use in many

* k—1 —ct
(5) Bi() =N 1710—) U e
and from (2)
f ck —1 —c(t—=. ck k—1 —cz
(6) Bz(t)=j;NlT(7{)(t—x)k e )ITk)m e “dx
N* . [ k=1, k—1
(7) = W € 1; (t - x) x dzx.

If, now, we set £ = ty, the integral in (7 ) reduces to

¢ —1_k—1 _ 2% I'(k)r (k)
/; (t—2) 2 dr = ¢ Tk
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Hence,

(8) Bst) =N K et
2 T'(2k)

and in general

(§) B;(t) = N ~c—ﬂ‘—~ grtemet
! T (jk) '

Summing the contributions of the several generations, we have for the total
renewal function

e (Ct)k_l (Gt)%_1
(10) B() = {F(k) PO+ }

If k is a positive integer > 3, (10) can be easily summed to a form which
shows immediately its damped periodic nature. Even if k is positive but not
an integer, it can be shown by continuity considerations that the function B(t)
defined by (10) has periodic properties.

Assuming k to be a positive integer, then, and setting z = ct, we may write
the expression in brackets in (10) as

zk-l z?k—l
(1) g t@m-mmtT o Tf@
Then
14 _ 19
and upon making the trial substitution, f(z) = Ae™, we get
AmFe™ = Ae™.
Hence,
mt =1

Taking unity in its complex form
1 = cos 2nr + ¢ sin 2nw

we have that

(12) m,.=\'°/i=cos2ﬂr+1,s Zk”

wheren = 0,1,2, ...,k — 1. Then
fe) = ZA i

n=0

and
k=1

f@) = E Anmi, ™!
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Now setting z = 0, we get
JO) = Ao+ A1+ -+ A =0
f’(O) = AOmO + Alml + e + Ak..lmk_l =0

F70) = Ami™ + A + o+ ATl = 1

k equations to determine the k constants. We know that A, is equal to the
ratio of two determinants formed from the coefficients of the above equations.
This ratio reduces to

(_1)]0+n+1

(13) A = (mk—l - mn)(mk—2 - mn) (] (mn - 'mo).

We have, then, an expression for the k constants in terms of the &k roots of unity.
Therefore, for any particular value of & we can obtain the sum of our series
from the relation

f@) = 3 Ane™.

n=0

Hence, under the assumption that % is a positive integer, we have
-1

(14) B(t) = Nce™* Z A ™,
n=0

The forms of B(?) for k = 1, 2, 3, 4 are respectively
B(t) = N¢
B(t) = $Nc(1 — ¢

B@t) = Nce"‘[%e“ — ¢t (% cos 3/3ct + % sin '}\/ﬁct)]

B(t) = Nce **[3(e” — ¢**) — }sin cf].

Although the above procedure is valuable particularly because it brings to
light something of the nature of our renewal function, the forms derived above
can be used actually to obtain values of B(t) for various values of ¢. However,
for extensive numerical work a better method is at hand, which does not even
depend on the assumption of an integral value for k.

Let us return once again to equation (10) which may be- written in the fol-

lowing form

_ e—ct ( Ct) k—1 e—e: (c t) 2k—1
(15) B(t)—Nc{ R 8 +}
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If k& and ¢ are determined by the method of moments, (using two moments),
k will not, in general, be a positive integer. However, by using the Tables of
the Incomplete Gamma Function edited by Karl Pearson, one can compute values
of B(t) without much difficulty. In these tables the function I (u, p) is tabulated
for various values of u and p, where I(u, p) is defined by

wVpil _

‘/; e v dy
1 =0
(16) I(u, p) o T D)

If we let £ = w;n/p + 1 = u/p then upon integrating by parts we find

e—f EP
I'p+1)

The left hand member of this equation is of the same form as each of the terms
of the series in brackets in (15). Hence, the value of the renewal function for a
particular time, ¢, is directly obtainable by summation of the right hand member
of (17) for successive significant values of the argument p.

By way of illustration a numerical example will be considered. The data are
taken from E. B. Kurtz’ book entitled Life Expectancy of Phystcal Property.
In this book the author makes a study of retirement rates of fifty-two different
types of physical property, and finds that their replacement curves fall into seven
distinct groups. We consider here Group VII which happens to be the largest
group, embracing seventeen different types of industrial equipment out of the
fifty-two examined. Using Kurtz’ replacement data * we obtain for the value
of the first and second moments

17) = I(up,p — 1) — I(wa, p).

m = 10.002
pe = 121.71

and from these by the method of moments, we find
k = 4.62
¢ = .462.

We then proceed to calculate values of B(f)/N by means of Pearson’s Tables,’ ob-
taining the results shown in the following table.

t E. B. Kurtz, Life Expectancy of Physical Property, Ronald Press, 1930, Table 22, page 86.

3 With regard to the method of interpolation employed in the calculations, it should
be mentioned that it was found advisable to use the Mid-panel Central Difference Formula
(xxii7) on page it of the introduction to Pearson’s Tables; and that it is quite sufficient
for our purposes to calculate only first order terms.
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t B(t)/N t B(t)/N
0 .0000 10 .1049
1 .0016 11 .1043
2 .0103 12 .1028
3 .0279 13 .1006
4 .0486 14 .0990
5 .0714 15 .0994
6 .0867 16 .1009
7 .0980 17 .1013
8 .1039 18 .0992
9 .1066 19 .0999

20 .0993

In conclusion the author wishes to thank Professor S. S. Wilks for various
suggestions he has made in connection with this note.
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ESTIMATES OF PARAMETERS BY MEANS OF LEAST SQUARES

By Evan JonNsON, JR.

As a criterion for comparing estimates of a parameter of a universe, of known
type of distribution, the use of the principle of least squares is suggested. A
criterion may be stated in rather general terms. Its application to any given
problem presumes a knowledge of the distribution functions of the estimates
considered. In the present paper a criterion is set up and application of it is
made in the estimation of the mean and of the square of standard deviation of a
normal universe.

We shall use the symbol @ to represent a parameter to be estimated. It is
to be remembered that 6 is a constant throughout any problem, that it represents
an unknown value, and that observations and functions of observations (called
estimates) are the only variables that occur. We shall use the symbols z;, 7 =
1,2, ..., m, to represent observed values of the variable x of the universe, and
the symbol F to represent a given function of the observations z; .

If we choose to consider a given function F as an estimate of 6, we are then
interested in the error F — 6. This quantity differs from the so-called residual
of least square theory, since we are here interested in the difference between
computed and true values, rather than in the difference between observed and
computed values. To avoid any possible confusion we shall refer to F — 6
as the error. Over the set of all samples of n observations, z;, the distribution
of the errors F — 6 is expressed by means of the distribution function f(F),



