ON A LEAST SQUARES ADJUSTMENT OF A SAMPLED FREQUENCY
TABLE WHEN THE EXPECTED MARGINAL TOTALS ARE KNOWN

By W. Epwarps DEMING AND FREDERICK F. STEPHAN

1. Introduction. There are situations in sampling wherein the data fur-
nished by the sample must be adjusted for consistency with data obtained from
other sources or with deductions from established theory. For example, in the
1940 census of population a problem of adjustment arises from the fact that
although there will be a complete count of certain characters for the individuals
in the population, considerations of efficiency will limit to a sample many of
the cross-tabulations (joint distributions) of these characters. The tabulations
of the sample will be used to estimate the results that would have been obtained
from cross-tabulations of the entire population.! The situation is shown in
Fig. 1 in parallel tables for the universe and for the sample. For the universe
the marginal totals N, and N ; are known, but not the cell frequencies N;; ;
for the sample, however, tabulation gives both the cell frequencies n:; and the
marginal totals n;, and n.;.

In estimating any cell frequency of the universe, such as N;;, three possi-
bilities present themselves; from the sample one may make an estimate from
the 7th row alone, another from the jth column alone, and still another from the
over=all ratio m;;/n: specifically, the three estimates would be n:N;/n;. ,
ni;N.j/n.;,and ni;N/n. Asaresult of sampling errors these will not be identical
except by accident, and though any of them by itself may be considered ac-
curate enough, still, if the whole » X s table of universe cell frequencies were so
estimated, the marginal totals would not come out right. In this paper we
present a rapid method of adjustment, which in effect combines all three of the
estimates just mentioned, and at the same time enforces agreement with the
marginal totals. The method is extended to varying degrees of cross-tabulation
in three dimensions.

In any problem of adjustment where the conditions are intricate it is neces-
sary to have a method that is straight-forward and self-checking; this becomes
imperative when we realize that in the three-dimensional Case VII of the
problem now at hand (vide infra), any adjustment in one cell must be balanced
by adjustments in at least seven others. The method of least squares is one
possible procedure for effecting an adjustment and at the same time enforcing
certain conditions among the marginal totals. It is essentially a scheme for

1 Examples will occur in the 1940 census publications. Further discussion of this prob-
lem and of the sampling procedure is given by the authors in ‘“The sampling procedure
of the 1940 population census,” Jour. Am. Stat. Assn., Vol. 35 (1940), pp. 615-630.
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428 W. EDWARDS DEMING AND FREDERICK F. STEPHAN

arriving at a set of calculated or adjusted observations that will satisfy the
conditions of the problem, and at the same time minimize the sum of
the weighted squares of the residuals, symbolized as

6)) S = Zwhn, — no)’

n. and ny being the calculated and observed numbers in a cell, and n, — 7o the
corresponding residual. It is the nature of the conditions imposed on the ad-
justed values that distinguishes one type of problem from another. Least
squares has the practical advantage of uniqueness, once the weights of the ob-
servations have been assigned, and it possesses the theoretical dignity of giving
one kind of ‘best’” estimates under ideal conditions of sampling. For our
present purpose we shall minimize sums of the form

(2) S = Z(M; - n.-)z/n;

n; being the observed frequency in the ith cell, and m, the calculated or adjusted
frequency therein. TFhe conditions among the m; will arise from the fact that
the marginal totals, after adjustment, must agree with their expected values,
namely, the deflated marginal totals of the universe (for example, m;. and m ; as
defined in eqgs. (6) and (7)).

By definition, weight and variance are inversely proportional, hence the
principle of least squares is identical with the minimizing of chi-square. Here
the variance in the ¢th cell is »;(1 — »:/n), where »; is the expected number in
that cell, and n is the total number in the sample. Now if »; is sufficiently
well approximated by n;, it follows that if no cell contains an appreciable
fraction of the whole sample (a circumstance requiring a fair sized number of
cells—perhaps 100), the variance may be taken as »; for every ¢, and the mini-
mized S can be used as chi-square. But regardless of the number of cells, if
the n; be not too much different from one another, <o that the factor 1 — »;/n
may be treated as a constant, we still get the least squares solution by minimiz-

ing S as defined in eq. (2).

2. The two dimensional problem. Suppose that the data on two character-
istics (e.g. age and highest grade of school completed) are obtained for each
member of a universe of N individuals, and that tabulations of the data provide
either (a) one set of marginal totals N1., Nz, --- , N, ; or (b) in addition, the
marginal totals Ny, N, --- , N,. The nature of the tabulations is presumed
such that it is not feasible to count the numbers N;; in the cells, as would be
done if one character were crossed with the other. Suppose, however, that for
a sample of n individuals selected in a random manner from the universe, the
two characters are crossed with each other, so that we know not only all the
s <+ r marginal totals n,, -.., n, of the sample but also the numbers n;;
(¢=12...,r;5=1,2,...,8). The problem is to estimate the unknown
frequencies N;; in the cells of the universe. This will be done by finding the
calculated or adjusted sample frequencies m;; and then inflating them by the
inverse sampling ratio N/n.
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For the least squares solution we seek those values of m;; that minimize’
3) 8 = Z(mi; — nij)*/ni;

wherein the m;; are subjected to one of the following sets of conditions:
Case I: One set of marginal totals known. Assume N1, N,., ---, N, to be
known. Then we require

@ 2. mi; = mi,, i=1,2 oo,
K

These r equations constitute r conditions on the adjusted m;; .

UMVERSE SAMPLE
J- 7z
! 2 S x4 2 s
1| Ny | Nz Nis (V). Ny | Mz Njs |1,
<2 | Nor [ Nzz Nes | Nz. Nz | Nee Nzs | Nz
Ng| BTN R R 8
r N)'I N/'z N]'5 Np. /7,-, /7,-2 n,-s 1.
Ny Ng - Nj - NMs N n, Ng - Nj - Ng N
N;; unknown ni; known
Marginal totals N.; and N, known Marginal totals n.; and ni. known
N known n known

Fig. 1. SHOWING THE SYSTEM OF NOTATION FOR THE CELL FREQUENCIES AND MARGINAL
TorALs OF THE UNIVERSE AND THE SAMPLE IN THE Two DIMENsIONAL PROBLEM

Case I1: Both sets of marginal totals known. Here the adjusted cell frequencies
must satisfy not only condition (4) but also

(5) Z_m"f=m-i j=1;2;"':3—1
there being now a total of r + s — 1 conditions. In both cases,

(6) mg, = N.'.n/N,

(7) m,; = N,ﬂ’L/N.

In other words, m; and m_; are the deflated marginal totals, i.e., Ni, and N_;
divided by the actual sampling ratio N/n. Them;. and m_ ;arenot independent,
for

2 The sign E will denote summation over all possible cells, unless otherwise noted.

Z will denote summation over all values of ¢, and similarly for an inferior j or k. The
i
dot, as in n.;, will signify the result of summing the n;; over all values of ¢ in the jth

column.
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(8) N.1+N.2+---+N..=N1.+N2.+“-+Nr.=N-

It is for this reason that if 7 runs through all r values in eq. (4), then j can run
through only s — 1in eq. (5). A similar equation also exists for the marginal
totals of the sample, namely,

9 ny+ne+ - +ne=n+n + ... +n, =n

Solution of the two dimensional Case I. Assuming that the adjusted values
of the m;; have been found, let each take on a small variation ém;; ; then the
differentials of egs. (3) and (4) show that

(10) 168 = Z{(mi; — nij)/nij}dmi; = 0 (one equation),
(11) Z dmg; = 0, 1=1,2, ...,r (r equations).
7

Multiply now eq. (112) by the arbitrary Lagrange multiplier — A;, , and add egs.
(10) and (11) to obtain

(12) Z{(mi; — nij))/ni; — Ni.}dmy; = 0. (one equation).

By the usual argument, one may now set each brace equal to zero, recognizing
that the » Lagrange multipliers are then no longer arbitrary but must satisfy
the relation

(13) mi; = nii(1 + ).
The adjusted frequencies m;; can be computed at once as soon as the \;. are

found. To evaluate them one may rewrite the conditions (4) using the right-
hand member of (13) for m;;, obtaining

(14) m;. = n.-,(l + )\.‘,).
Another way to arrive at this same relation is to sum each member of eq. (13)

in the sth row. However obtained A;, is now known, since m; and n; are
known, and in fact eq. (13) now gives

(15) mi; = nij(ms./ni).

The adjustment is thus a simple proportionate one by rows, the cells in any one
row all being raised or lowered by the proportionate adjustment in the row total.
Case I thus amounts to r independent one dimensional proportionate adjust-
ments, one for each row, and any one or all may be carried out, as desired.
This result can be obtained by a simpler approach but is presented in this way
for consistency with later cases.

The minimized sum of squares may be computed directly, or from the row
totals by seeing that

(16) 8 =20 (mi — nmi)’/ms..

The term (m;. — n;)’/n;, for the sth row may be considered separately, and
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used as x* with s — 1 degrees of freedom, or all rows may be combined into
the minimized S as given in eq. (16), and used as x* with r(s — 1) degrees of
freedom.

Solution of the two dimensional Case II. In addition to eqs. (11) we now
have also

(17) 2 omy =0 i=12...,s—-1

which comes by differentiating eqs. (5). By addition of egs. (10), (11), and
(17), after multiplying eq. (112) by —\;. and eq. (175) by —\.;, we obtain

(18) Z{(mi; — nij)/ni; — Ni. — N;}ém; = 0.
Equating each brace to zero, as before, we find that
19) mi; = ng(1 + M.+ Xj)

wherein A, is to be counted 0. The adjustment is now no longer proportionate
by rows, but involves every cell.

To evaluate the Lagrange multipliers in eq. (19) we may sum the two members
downward and across in Fig. 1 and obtain the » 4+ s — 1 normal equations

ni.)\e.+znki)\.i=m¢.—ni., t=1,2 0,7

7
(20) .
2ok F N =m;—ng, j=1,2...,5—1

These can be reduced for numerical computation. The top row solved for
s, gives

(21) M= 1/ne){mi — 2k} — 1

whereupon by substitution into the bottom row of egs. (20) we arrive at the
8 — 1 normal equations

A.l )\_2 cee )\,,_1 =1
NaNia Ni1 Nz NiaMNie—1 NaM;,
ﬂ.l""z n" —E-nT —Z—m—— —m.l_;T
[} i ) . . .
Nia Ny . N2 N4 s—1 NipM;,
No— - = m.z-z——

(22)
N4, 8—1M4,8—1 Ni,s—1M,,
1 —_—_— = m. 1 —_—
.01 Z n;. =t Z i,
0.

Because of symmetry in the coefficients, those below the diagonal are not shown,
indeed, in a systematic computation, they are not used. The 0 in the bottom
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row is appended for the computation of the minimized 8, if desired. The
number of Lagrange multipliers to be solved for directly is s — 1, and the
remaining ones come by substitution into eq. (21), A ; being counted 0.

A simple procedure for calculating the coefficients in the normal equations
(22) is to set up a preparatory table by dividing each n,;in the ith row by v/n;, ;
also to write down m; /+/n;_ for that row, for use on the right-hand side of the
normal equations (compare Tables I and II). In machine calculation the con-
stant divisor \/7; would be left on the keyboard until the entire sth row is
divided; or, if reciprocal multiplication is preferred, the multiplier 1/4/n; would
be left on. Frem this preparatory table, the cumulation of squares and cross-
products in the vertical gives the required summations for the coefficients. The
sum check would be applied in the usual manner.

3. A numerical example of the two dimensional Case II. The fact is that
in practice one need not bother about forming and solving the normal equations
because they will be displaced by a simplifying iterative procedure, to be ex-
plained in a later section. For illustration, however, we may do an example
both ways, first using the normal equations and the adjustment (19), later on
accomplishing the same results by the quicker method.

We may start with the unitalicized numbers in the 4 X 6 array of Table I,
assuming these to be the sampling frequencies n;; to be adjusted. Actually,
they were obtained by deflating 1/20th (for a supposed 5 per cent sample) the
New England age X state table on p. 1108 of vol. 2 of the Fifteenth Census of
the U. S., 1930, then varying the deflated values by chance with Tippett’s
numbers to get our sampling frequencies n;; . The italicized entries in Table I
represent the final (adjusted) m,;, and it is these that we now set out to get.
We start off with the sampling frequencies #n;; and the known marginal totals
m.y, me, etc., where m;, = N;n/N, m.; = N m/N, as in eqgs. (6) and (7).
The Lagrange multipliers shown along the left-hand and top borders arise in the
calculations now to be undertaken.

Table II is the preparatory table, advised at the close of the last section. It
is derived from Table I by dividing the 7th row of sample frequencies by /7, .
For example, the entry 8.64 in the cell 7 = 3, j = 2 comes by dividing 419 by
4/ 2352, 419 being the entry in the cell of the same indices in Table I, and 2352
being the sum of the third row. The sums at the bottom and right-hand side
are for checking the formation of the normal equations. The cumulations of
squares and cross-products along the vertical give the summations required for
the normal eqs. (22), which now appear numerically as eqs. (23).

No. A\ A2 Ay = 1
1 7413  —3549  —2354 = 3197 X 107*
2 4441 —544 = 2356

3 3129 = —3222

4 0

(23)
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Performing the solution by any favorite procedure one will obtain
(24) A1 = .01182 A2 = .01490 As = .00119

TABLE 1
A table of artificial sample frequencies, an artificial 5 percent sample of native
white persons of native while parentage altending school, by age by state, New
England, 1930. The adjusted frequency m;; in each cell is shown dtalicized
just below the corresponding sample frequency ni;

Age 7to13 |14&15|16 & 17 (18 to 20
ji= 1 2 3 4 ns.
Aj = 0118 .0149 | .0012 0 ms,
State ) i
Maine 1 —.0146)| 3623 | 781 | 557 | 313 || 5274

3618 | 781 | 550 | 308 | 6252

New Hampshire 2 —.0003)| 1570 | 395 | 251 | 155 2371
15688 | 401 | 261 | 166 | 2396

Vermont 3 .0234| 1553 | 419 | 264 | 116 2352
1608 | 435 | 270 | 119 | 2432

Massachusetts 4 —.0162(| 10538 | 2455 | 1706 | 1160 || 15859
10492 | 2462 | 1680 | 1141 || 16766

Rhode Island 5 —.0230|| 1681 | 353 | 171 | 154 2359
1662 | 850 | 167 | 1560 | 2330

Connecticut 6 —.0034|| 3882 | 857 | 544 | 339 5622
3915 867 548 338 5662

n.; 22847 | 5260 | 3493 | 2237 || 33837
m.; || 22877 | 6286 | 3462 | 2213 | 33837

The adjusted mi; (italicized) are rounded off, hence when summed may occasionally
disagree a unit or so with the expected marginal totals (also italicized), the latter arise
by deflation from the universe rather than by direct addition of the mi;.

whereupon by substitution into eq. (21) comes

A = —.0146 A = —.0162
(25) Az, = —.0003 Xs. = —.0230
)\3, = +0234 Xe, = —.0034.

The next step is to compute the m;; by eq. (19). Table I is now bordered
with the Lagrange multipliers for a convenient arrangement of the factors
required, and the calculation is completed. It will be noted that, for example
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(26) mge = 419(1 4 .0234 4 .0149) = 435.

The m;; thus calculated are shown italicized in Table I. The marginal totals,
found by adding the m.; just calculated, do not agree exactly everywhere with
the expected totals, because of rounding off to integers: the errors of closure,
however, are slight, and it is a simple matter to raise or lower some of the larger
cells by a unit or two to force exact satisfaction of the conditions, if this is

desired.

4. The three dimensional problem. Here the N cards of the universe are
sorted and counted for one and perhaps a second and third characteristic, and
possibly crossed by pairs in various combinations (Cases I-VII). The sample
of n, however, is crossed by all three characteristics, which is to say that the

TABLE II

This comes by dividing each sample frequency in Table I by the corresponding \/n;.
‘ (This operation would ordinarily be done a row at a time)

j=
mi.[/\/ 1. Sum
1 2 3 4 /

t1=1 1 49.89 10.75 7.67 4.31 72.32 144.94
32.24 8.11 5.15 3.18 49.19 97.87

32.02 8.64 5.44 2.39 50.15 98.64

34.61 7.27 3.52 3.17 47.97 96.54

2

3

4 83.68 19.49 13.55 9.21 125.19 251.12
5

6

51.77 11.43 7.26 4.52 75.51 150.49

Sum 284.21 65.69 42.59 | 26.78 420.33 839.60

cell frequencies 7 are all known (refer to Fig. 2). As before, the adjusted

frequencies are required.
Case I: One set of slice totals known. Assume the slice totals Ny.., Na..,

-+, N,.. to be known; the conditions are then

(27 kaifk=7m.. = N..n/N 1=1,2 .01
7

being r in number. The summation to be minimized is

(28) S = Z(mip — n.c‘y‘k)z/nc'ik

being similar to that in eq. (3), except that now there are three indices to be
summed over instead of two. Following a procedure similar to that used before,
we differentiate egs. (27) and (28) and introduce the r Lagrange multipliers A:.
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with eq. (27). The steps are identical with those of the two dimensional Case I,
and the result is at once
(29) Mijp = Nip(l + Ni) = nop(me./ni).

This adjustment, like that shown by eq. (15), is a simple proportionate one, but
this time by slices rather than by columns. All cell frequencies having the same
7 index are raised or lowered in the same proportion.

ugzom\)O)Ul-PblN"‘

Fic. 2. SHOWING THE SYSTEM OF NOTATION FOR THE CELL FREQUENCIES AND MARGINAL
ToTALs IN THE THREE DIMENSIONAL SAMPLE

Case IT: Two sets of slice totals known. Here, in addition to the slice totals
of Case I we know also

N.l.’N.z.) A )N.a.
whence arise the s — 1 additional conditions

(30) anz,-fk =m. = N.;n/N, i=1,2 ...,8—1
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Using the Lagrange multiplier A ;. here, and \;.. with eq. (27) as before, we

find that

(31) mige = nip(l + N+ Nj)

in which A . is to be counted zero. This adjustment is proportionate by tubes,

the ratio m;/nijx being constant along the #jth tube and in fact equal to

mi;./ni;. , independent of k. Unfortunately we do not here know the face totals

m;;. and are unable to make use of the proportionality as we shall in Case IV.
To solve for the r + s — 1 Lagrange multipliers we sum the members of eq.

(31) over j and then over 7 and arrive at the normal equations

ni. N, + Z ng NG =mi, — i, =12 ...,7,
(32) ' .
Z g M. + N =my —ng, J=1,2,...,8—1.
1

These can be reduced to s — 1 equations in precisely the same way that eqs.
(20) were reduced, but because of the iterative process to come further on, we

shall not pursue the reduction here.
Case III: All three sets of slice totals known. All slice totals

Ni,Ns,---,N,
Ni.,N;.,---,N,.
N.yNao,---,N.:
now being known, in addition to conditions (27) and (30) we require here
(33) 2 mig = m_; = N.yn/N, k=1,2...,t—1
%]

which makes a total of r + (s — 1) + (t — 1) or r + s + ¢ — 2 conditions:
The same kind of manipulation as used heretofore gives

(34) mije = Nie(l 4+ N+ N+ Ak)

with A,. and \..; to be counted zero. The adjustment is no longer propor-
tionate by slices or tubes, but involves every cell. In practice, once the normal
equations are solved and the Lagrange multipliers worked out, one proceeds
very much as in the two dimensional Case II: for each of the ¢ slices, corre-
sponding to the ¢ values of %, there will be a two dimensional adjustment, the
1in eq. (19) being replaced now by 1 + X\ ;.

The normal equations for the Lagrange multipliers can be found by per-
forming double summations on eq. (34). The result is

ni N+ 20 mg N+ Zk: Nixhie =M, —Miey  +=1,2, 00,7,
1
(35) Z LTRSS P WA o Zk) Njehie =M — N, J=12,...,8—1,

Z NikMi.. + Z NN + N aNr=map—nu, k=12 ..., t—1
i 7
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If these calculations were to be carried out, one would simplify the computation
by solving the top row for A;.., getting

(36) A, = (1/n:) {mi. — ’E N Ng. — Z": nigha} — 1

and then substituting this into the middle and last rows of egs. (35) to get a
reduced set of s + ¢ — 2 normal equations for the Lagrange multipliers A_;.
and X, ; , the numerical values of which when set back into eq. (36) give the A;.. .
In all the summations of egs. (35) and (36), M. and A..; would be counted zero.
But here again, the iterative process to be explained later will displace the use

of normal equations, so actually we are not interested in reducing them.
Case IV: One set of face totals known. It may be that the rs face totals

Nll.,Nﬂ.,“'yNt’i.,””Nn.

are known from crossing the ¢ and j characters in the universe. The conditions
are then

37 }I; Mige = mij. = Ng.n/N

The adjustment here turns out to be
(38) mijp = naip(l + Nij);

but by summing both sides over the index k to evaluate A;;. it is seen that

(39) mi;. = (1 + Nij),
whence
(40) Msje = ng‘jk(mii./nii.)’

This adjustment is thus proportionate by tubes, like that in eq. (31), though
here the factor m,;./ni;. is known and eq. (40) can be applied at once.

Case V': One set of face totals, and one set of slice totals known. Sometimes, in
addition to the rs face totals of Case IV, the slice totals

N..lyN..2) e ’N..t

will also be known, in which circumstances the conditions (37) are to be accom-
panied by

(41) Zmijk=m,,k=N..kn/N, k=12 ...,t—1.
i

The same procedure as previously applied yields now
(42) mije = nigp(l + Nij. + Nox)

with A..¢ to be counted zero. Summations performed over k, and then over ¢
and j together, give the normal equations
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Mg, Nij. + ; Nijk Nk = Mij. — Nij.

(43)
2 i+ BEN ok = Mok — Nk
LY

The number of equations is rs + ¢ — 1, since A... does not exist. As before,
a simplification can be effected by solving the top row for A;;. and making a
substitution into the lower one, but because of the great advantage of the
iterative process to be seen further on, we shall not carry out the reduction.

Before going on it might be noted that although this case is three dimensional,
it reduces to the two dimensional Case II if one considers that 7j. is one index
running through the values 11, 12, ... , 21,22, *.. | rs, and that . .k is a second
index running through the values 1, 2, ... ,¢. This can be seen by the simi-
larity between egs. (43) and (20).

Case VI: Two sets of face totals known. If in addition to the face totals of
Case IV, the face totals

N.ll,N.l2) "‘;N.at

are also known from further crossing the j and k characters in the universe, we
shall require

j= 172’ cee, S,

(44 mie = m.jy = N.an/N,
) Z ik ik ik / k=1,2,---,t—1

in addition to the conditions (37). In place of eq. (40) of pase IV we now
find that

(45) mig = naip(l + Nij. + Njw)

in which \_; is to be counted zero for all 5. No simple relation such as eq. (40)
is possible here, because the adjustment is not proportionate by tubes; the
Lagrange multipliers must be evaluated. This can be accomplished by summing
the members of eq. (45) over k and ¢ in turn, resulting in the normal equations

i Nij. + ; NieNjk = Mij. — Nij. ,

(46)
Z NijeNij, + NjkNjk = Mok — Njk .

Since \.;;: does not exist for any values of j, the number of equations is
rs + s(t — 1) = s(r + t — 1). They break up at once into s sets each of
r + t — 1 equations, one set for every j value. In fact, the problem can be
considered as s sets of the two dimensional Case II. Any one value of j gives
a slice, which can be looked upon as fulfilling the specifications of the two
dimensional Case II. Each set of normal equations can be reduced in the same
manner that eqs. (20) were reduced.

Case VII: All three sets of face totals known. All totals now being known,

we require
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(37 D> mip = my;. = Ny.n/N,
k J= 17 27 * X
.7 = 17 2’ ) 87
(44) 2 My = m = N.an/N,
' k=12 ...,t—1,
1=1,2 ...,7r—1,
(47) E Mijxk = Mix = N.'.kn/N, ’
i k=12 ...,t—1

The adjusting relation is
(48) mije = nip(l 4 Noj. + Njp + Mik)

in which A_;; is to be counted zero for any j, A,.x for any k, and X, for any .
The normal equations for the Lagrange multipliers are

i Nij. + ; NieN.gx + ; Nijk ik = Myj. — N,
(49) ; Nije Nig. + NjeNje + Z NijkNik = Mjx — Tk
+
E Nk Niz, + Z Nk Nk + BikNik = Mik — Nik
? ?

being rs + rt + st — r — s — t + 1 in number. They can be reduced in the
same way that previous normal equations have been reduced; but here again,
the iterative process will render the use of normal equations unnecessary, except
for theoretical purposes, e.g. justification of the iterative process.

6. A simplified procedure—iterative proportions. It is well known in least
squares that the number of Lagrange multipliers in any problem is equal to the
number of conditions imposed on the adjustment. Here the conditions have
appeared in sets, depending on which marginal totals are involved. By a com-
parison of egs. (15) and (29) on the one hand, with eqgs. (19), (31), (34), (42),
(45), and (48) on the other, we see that wherever there was only one set of
marginal totals involved we came out with a proportionate adjustment, but
that in all other cases it was not so; the Lagrange multipliers involved were
unfortunately related to one another through normal equations. We now make
the observation, however, that as a first approximation the adjustments may
all be considered proportionate, and we shall be able to write down an expression
for the error in this approximation, and shall be able to eliminate it by a suc-
cession of proportionate adjustments.

Take the two dimensional Case II for an example. In eq. (21) one may
recognize (1/n;.) Z ni;\.; as a weighted average of A ; for the sth row. There

1
will be a weighted average of A ; for the first row, another for the second, etc.,
one for each value of 7; consequently one may appropriately speak of the 7th
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average of X ;, writing it -av. X.;. Substituting from eq. (21) into (19) one
then sees the adjustment (19) appear as

(50) mi; = n.-j(m.-,/n.-, + Aj— -av. )\_,‘).

If, on the other hand, \.; had been eliminated from eqgs. (20), instead of A;.,
the result would have been

(51) m;; = ngi(m,,-/n.,- + A, — j-av. )\.)

From either eq. (50) or (51) it is clear why the adjustment (19) is not propor-
tionate by rows or columns, and why Case II does not break up into r or s sets
of Case I: the reason is that A_; in any cell is not necessarily equal to the average
A.; for that row, nor is A;. in any cell necessarily equal to the average \;. for
that column. If nevertheless one were to make the simple proportionate
adjustment

(52) mi; = ni(mi./n:)

along the horizontal in the ¢th row, the horizontal conditions (4) will be en-
forced but not the vertical ones (5); i.e., it will be found that m{. = m._, but
that usually not all m; = m_;. This is because eq. (52) effects only a partial
adjustment, each m; being in error through the disparity between theX_; proper
to the jth column, and the average of all the X ; for the sth row, as seen in
eq. (50). This error can then be diminished by turning the process around and
subjecting these m;; to a proportionate adjustment in the vertical according to

the equation

(53) m:': = mt{i(m.i/m.,i)

which may be considered an application of eq. (51) wherein the disparity be-
tween any A;. and the average \;. for the jth column has been neglected. It is
the vertical conditions that will now be found satisfied, but perhaps not all of
the horizontal ones, because some of the row totals may have been disturbed.
The cycle initiated by eq. (52) is therefore repeated, and the process is con-
tinued until the table reproduces itself and becomes rigid with the satisfaction
of all the conditions, both horizontal and vertical. The final results coincide
with the least squares solution, which is thus accomplished without the use of
normal equations.

Usually two cycles suffice. In practice the work proceeds rapidly, requiring
only about one-seventh as much time as setting up the normal equations and
solving them. The tables III-V show the various stages of the work when
the method of iterative proportions is applied to the sample frequencies of
Table I. It will be noticed that the results of the third approximation (Table V)
are final, since if the process were continued, the table would only reproduce
itself.

The same process can be extended to three or more dimensions with an even
greater relative saving in time. To see how the method of iterative proportions
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applies in one of the three dimensional cases, we may go back to Case III. By
the substitution afforded through eq. (36) the adjusting eq. (34) may be put
into the form

TABLE III
The method of iterative proportions applied to the data of Table I. First stage:
A proportionate adjustment by rows by eq. (52). Note that mi. = m;. ,
but that m; # m ;

i=1 2 3 4 m’ m

1 =1 3608 778 555 312 5253 5252
2 1586 399 254 157 2396 2395
3 1606 433 273 120 2432 2432
4 10476 2441 1696 1153 15766 15766
5 1660 349 169 152 2330 2330
6 3910 863 548 341 5662 5662

m,',- 22846 5263 3495 2235 33839

m, ; 22877 5285 3462 2213 33837

TABLE 1V

A continuation of the process initiated in Table III. The figures tn Table 111
are now adjusted proportionately by columns according to eq. (63). The vertical
totals m; and m.; now are equal, but the agreement of the horizontal totals
accomplished in Table III has been slightly disturbed

”"

j =1 2 3 4 m;. M,
i=1 3613 781 550 309 5253 5252
2 1588 401 252 155 2396 2395
3 1608 435 270 119 2432 2432
4 10490 2451 1680 1142 15763 15766
5 1662 350 167 151 2330 2330
6 3915 867 543 338 5663 5662
m 22876 5285 3462 2214 33837
m.; 22877 5285 3462 2213 33837

(54) Mije = Nap(ms. /e + N+ Ak — 4-av. N ;. — -av. A.g).
Equally well it could have been written
(55) Mige = Nig(m.j/n.;. + M. + M — j-av. Ni.. — j-av. A ),

or
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(56) Mije = Nig(M. x/n.x + M. + N;. — k-av. .. — k-av. A ;).

Any of these three equations shows why the adjustment (34) is not propor-
tional by slices, and why this case does not break up into r or s or ¢ sets of the
three dimensional Case I. As a first approximation it does, as is now clear
from these three equations, and by making successive proportionate adjust-
ments we may thus arrive at the least squares values. To go about the work
we could first calculate the values of

(57) mie = Nip(ms../ns..)

then

(58) m:Iik = ms{ik(m.f./m.,i.)
TABLE V

The cycle is commenced again. The figures of Table IV are subjected to a propor-
tionate adjustment by rows, according to eq. (62). And since these results turn
out to be almost a reproduction of Table IV but with both horizontal and vertical
conditions satisfied, they are considered final. The agreement with the m;; in
Table I should be noted

i=1 2 3 4 m;. m,
i=1 3612 781 550 309 5252 5252
2 1587 401 252 155 2305 2395
3 1608 435 270 119 2432 2432
4 10402 | 2451 | 1680 | 1142 15765 | 15766
5 1662 350 167 151 || 2330 2330
6 3914 867 543 338 5662 5662
ml; 20875 | 5285 | 3462 | 2214 33836
m., 20877 | 5285 | 3462 | 2213 33837
followed by
(59) migy = Miz(m. x/mLs).

These three successive adjustments would constitute a cycle, which would then
be repeated in whole or in part until the table becomes rigid with the satis-
faction of all three sets of conditions.

6. Simplification when only one cell requires adjustment. On occasions it
happens in sampling work that one is especially interested in one particular cell
of the universe, and would like to have a result for it in advance before the other
cells are adjusted. "Sometimes it even happens that the others individually
are of no particular concern. In such circumstances one merely places the cell
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of interest in one corner of the table by an appropriate interchange of rows and
columns, and then compresses the rest of the table into the cells adjacent to it.
In the two dimensional Case II one would thus work with a 2 X 2 table, one
corner cell being the one of special interest, the other three being the result of
compression, The marginal totals of the row and column belonging to the cell
of interest are unaffected. For illustration we may suppose that from the
sample shown in Table I we require only mg . We then start with the 2 X 2
Table VI, which is derived from Table I by compression. Commencing with
Table VI, one might first adjust by rows according to eq. (52), then by columns
by eq. (83). One cycle of iterative proportions is sufficient, as is seen in Table

TABLE VI
Derived from Table I by compression, the cell 1 = 6, j = 1, requiring adjustment
ji=1 j=2-4 7, ms.
i=1-35 18965 9250 28215 28175
1=26 3882 1740 5622 5662
n.; 22847 10990 33837
m.; 22877 10960 33837
TABLE VII
A proportionate adjustment of Table VI
Rows adjusted by eq. (562) Columns adjusted by eq. (563)
18938 9237 28175 18962 9213 | 28175
3910 | 1752 5662 3915 1747 5662
22848 10989 33837 22877 10960 33837

Conclusion: mg = 3915

VII, and the value 3915 found for me, is in good agreement with its value shown
in Tables I and V. The scheme of compression provides a quick method of
getting out an advance adjustment for a cell of special interest, and the result
so obtained will ordinarily be in good agreement with what comes later when
and if all the cells are adjusted.

In the three dimensional Cases II, III, V, VI, and VII, one compresses the
original table toa 2 X 2 X 2 table, and then uses the method of iterative propor-
tions. (The other cases do not require consideration, since they are propor-
tionate adjustments wherein one is already at liberty to adjust as few or as
many cells as he likes without altering the equations or the routine.) The same
procedure can be extended to the adjustment of two cells, the only modification
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being that in two dimensions we shall compress to a 2 X 3 or a 3 X 3 table,
depending on whether the two cells do or do not lie in the same row or column.
In three dimensions we compress toa2 X 2 X 3,ora2 X3 X 3,ora3 X 3 X 3
table; the first if the two cells lie in the same 7, j, or k tube, the second if they
lie in the same slice but not in the same tube, the third if they are in separate

slices.

7. Some remarks on the accuracy of an adjustment. A least squares adjust-
ment of sampling results must be regarded as a systematic procedure for
obtaining satisfaction of the conditions imposed, and at the same time effecting
an improvement of the data in the sense of obtaining results of smaller variance
than the sample itself, under ideal conditions of sampling from a stable universe.
It must not be supposed that any or all of the adjusted m; in any table are
necessarily “closer to the truth” than the corresponding sampling frequencies
ni;, even under ideal conditions. As for the standard errors of the adjusted
results, they can easily be estimated for the ideal case by making use of the
calculated chi-square. For predictive purposes, however (which can be regarded
as the only possible use of a census by any method, sample or complete), it is
far preferable, in fact necessary, to get some idea of the errors of sampling by
actual trial, such as by a comparison of the sampling results with the universe,
as can often be arranged by means of controls. There is another aspect to the
problem of error—even a 100 per cent count, even though strictly accurate, is
not by itself useful for prediction, except so far as we can assert on other grounds
what secular changes are taking place.

In conclusion it is a pleasure to record our appreciation of the assistance of
Miss Irma D. Friedman and Mr. Wilson H. Grabill for putting the formulas
and procedure into actual operation with census data, and thereby disclosing
defects in earlier drafts of the manuscript.
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