346 ABRAHAM WALD

ON THE ANALYSIS OF VARIANCE IN CASE OF MULTIPLE
CLASSIFICATIONS WITH UNEQUAL CLASS FREQUENCIES

By ABraHAM WALD'
Columbia University

In a previous paper’ the author considered the case of a single criterion of
classification with unequal class frequencies and derived confidence limits for
¢”/a’ where ¢ denotes the variance associated with the classification, and o
denotes the residual variance. The scope of the present paper is to extend
those results to the case of multiple classifications with unequal class frequencies.

For the sake of simplicity of notations we will derive the required confidence
limits in the case of a two-way classification, the extension to multiple classifica-
tions being obvious.

Consider a two-way classification with p rows and ¢ columns. Let y be the
observed variable, and let n;; be the number of observations in the 7th row and
jth column. Denote by y{s the kth observation on y in the sth row and jth
column (k = 1, ..., ;). Let the total number of observations be N. We
order the N observations and let y, be the ath observation on y in that order.
Consider the variables:

t’ tl) b )tpavly cre g,

and denote by ¢, the ath observation on ¢, by &, the ath observation on ¢ and
by v;. the ath observation on v;. The values of {,, t. and vj, are defined as
follows:

ta= 1 (a: 1’...’N),

ke = 11if y, lies in the 7th row,

tia = 0 if y, does not lie in the 7th row,

vj« = 1 if y, lies in the jth column,

vj« = 0 if y. does not lie in the jth column.

We make the assumptions
k) k)
y‘gi = xt(:‘ + & + 05,

where the variates 2}, &, 7; 1 = 1, ... ,p;j =1, .- ,q;lkc =1,...,ny)
are independently and normally distributed, the variance of z{; is ¢*, the vari-

ance of ¢ is ¢”%, the variance of n; is ¢’”*, and the mean values of e and 5, are
Zero.

1 Research under a grant-in-aid from the Carnegie Corporation of New York.
2 ‘A note on the analysis of variance with unequal class frequencies,” Annals of Math.

Stat., Vol. 11 (1940).
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Let the sample regression of y on ¢, &y, e« ,¢p—1, V1, e+ , Vg1 be
Y=uat 4+ bits + .-+ + bpalpy + dwr + «+ o + dgrvp .

‘We want to derive confidence limits for

/" =N\
Let us introduce the notations:

2 tabia = an ¢=1,..-,p— 1),
D tabia = Gop14i G=1,---,94—1),
2 biabia = ¢ji=1--,p—1),
2 bidbia = Gipi G=1.,p=1j=1-..,¢=1),
Z ViaVja = Qp—144 p—1+i @Gji=1---,0—1),

leiill = Ilas; [T ¢Jji=01---,p+qg—2).

Let the regression of z{¥ on ¢, ty, «++ ,tp1, ¥1, -+ - , Vg1 be
X = a* 4+ bt + o 4 byatpr + divn + -+ + dg_we

The regression of & + 7; on the same independent variables is evidently equal to

ali + - -+ + ety + mor + -+ + 70,
=+ e)t+ (a— e+ -+ (1 — &)pa
+ (m— v + -+ + (ngm1 — M)V,

sincet, =t —t — - —tpgandv, =t — v, — ... — v,;. Hence

1) b= b + (& — &), G=1,---,p— 1),

and therefore

Obp; = Obl% T Olei—ep)(ej—ep) = cijo” + Oeiej T Tepey

lei + A + 8\, (G,j=1,---,p—1),

where 8;; is the Kronecker delta, i.e. 8;; = 0 for ¢ # j and 6z = 1. Denote
ci + (1 4 8:)N\ by ci;. Since the expected value of b! is equal to zero, on
account of (1) also the expected value of b; is equal to zero. Let

@)

”g‘i” = ”c:i”_l’ (iyj= 1,"',17— 1)-
Then
1 p—1 p—1
@) = 2 2 gibiby
0% j=1 iml



348 ABRAHAM WALD
has the x’-distribution with p — 1 degrees of freedom. The expression
1 N
4) = Z (Yo — Ya)2r
0% a=1
has the x’-distribution N — p — ¢ 4+ 1 degrees of freedom. The expressions

(3) and (4) are independently distributed. Hence

() N—p—q+1 ZZg;bib;

p—1 Z(Ya — Ya)*’
has the F-distribution (analysis of variance distribution). We will now show
that (5) is a monotonic function of A°. It is known that Z2g;;bb; is invariant
under linear transformations, i.e.

22gibb; = Ezgz{ib:byfx

where b; is an arbitrary linear function, say wib: + -+ 4 mip-1bp_1 Of by, o+,
bp—l (’L = 1, s, D — 1) and

Hgii |l = |l ovis |
We can choose the matrix || ;|| such that

¢ = paler — &) + -0+ pipa(es — &), ¢=1-...,p— 1),

are independently distributed and ¢7; = ¢”. The coefficients ui; of course do

not depend on ¢’. We have

e

oy = oy + Sijo”, (6;; = Kronecker delta).

Now let

by = vabi + +oo + vipaabpa, (P =1,.00,p — 1),

. . . * *7
where || »;; || is an orthogonal matrix and is chosen such that b;”, --. , bp1

are independently distributed. On account of the orthogonality of || »:; || we
obviously have

2 2 2 . .
by = o} + a’ H oy = 0 for 7z # J-

Hence
p—1 "
b;

(6) 202 gibibi = 2 —

“ 2 2°
oy + 2

The right hand side of (6) is evidently a monotonic function of A which proves
our statement. The endpoints of the confidence interval for A’ are the roots

in A* of the equations
N —p—g+1 ZZgibid; =F,: N—p—q+1 ZZg;b:b; =F
p—1 Z(Ya — Ya)? ’ p—1 Z(Ya — Ya)* ’

where F. denotes the upper, and F; the lower critical value of F.

@)
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The derivation of the required confidence limits in case of classifications in
more than two ways can be carried out in the same way and I shall merely state
here the results.

Consider r criterions of classifications and denote by p, the number of classes

in the uth classification (w = 1,...,7). Denote by n...;, the number of
observations which belong to the ¢th class of the first classification, 7th class
of the second classification, - .. , and to the 7,th class of the rth classification.

Let y{¥)..;, be the kth observation on y in the set of observations belonging to

the classes mentioned above (X = 1, ... ,n...;,). We make the assumption
*® ok ey [®)
Yiyeoodp = x;l...;, + €, + s + é;: y

where the variates
x,g':.’..,-” 8)’ coe ,ef-? (’Lu = 1, vee Py U = 1, eee Ty k = 1, cee ’n‘.l""!)’
are independently and normally distributed, the variance of z{r...;, is ¢°, the
variance of € is o5 and the mean value of ¢ is zero (4, = 1, .-+, pu;
u=1...,7).

Let N be the total number of observations. We order the observations in a
certain order and denote by y, the ath observation in that order (« = 1, ... , N).

Consider the variables:
tyttg:): (u=1)"‘:r;iﬁ=1’”';pu)’
and denote by ¢, the ath observation on ¢ and by #*
¥, The values of ¢, and ¢{*) are given as follows:
t« =1 (a = ]_’ cee ,N),,

ti¥ = 1if y, lies in the 7,th class of the uth classification,

a the ath observation on

tE,:‘.l = 0 if y, does not lie in the 7,th class of the uth classiﬁcatibn.

Let the sample regression of y on ¢, t{*

tu

r pu—l1
Y=at+ 2, 2 b{¥¢"

u=l ty=1

be given by

Let the covariance of b{*’ and b{* be given by C{X, ¢* under the assumption
that oy = 03 = ... = o, = 0. The matrix || C{ || Guydu=1, -, P — 1)

can be calculated by known methods of the theory of least squares. Let
g |l = 11 €5 + (A + dag)Nu [ (luyju=1,++c, pu — 1),

where &;,;, is the Kronecker delta and A} = o%/¢". Then the lower and upper
confidence limits for A} are given by the roots in A} of the equations

T pu—1 pu—1
N—Xpat+r—12 X g@bpw
8 u-l fuml fumt =F (i=12),

u—l Y,
p Zl(ya— a)2
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where F, is the upper and F; the lower critical value of the analysis of variance

distribution with p, — 1 and N — 2 p, + 7 — 1 degrees of freedom. In

u=1
case of a single criterion of classification the confidence limits (8) are identical
with those given in my previous paper.

THE FREQUENCY DISTRIBUTION OF A GENERAL MATCHING
PROBLEM

By T. N. E. GREVILLE

Bureau of the Census

1. Introduction. This paper considers the matching of two decks of cards of
arbitrary composition, and the complete frequency distribution of correct
matchings is obtained, thus solving a problem proposed by Stevens.! It is also
shown that the results can be interpreted in terms of a contingency table.

Generalizing a problem considered by Greenwood,’ let us consider the matching
of two decks of cards consisting of ¢ distinct kinds, all the cards of each kind being
identical. The first or “call”’ deck will be composed of %; cards of the first kind,
1z of the second, etc., such that

4+t o +i=mn;
and the second or “target” deck will contain j; cards of the first kind, j; of the
second, etc., such that
htpt o +j=mn

Any of the 7’s or j’s may be zero. It is desired to calculate, for a given arrange-
ment of the “call” deck, the number of possible arrangements of the ‘“target”
deck which will produce exactly r matchings between them (r = 0,1, 2, ... , n).
It is clear that these frequencies are independent of the arrangement of the call
deck. For convenience the call deck may be thought of as arranged so that all
the cards of the first kind come first, followed by all those of the second kind,
and so on.

2. Formulae for the frequencies. Let us consider the number of arrange-
ments of the target deck which will match the cards in the kith, ksth, - - ., kth
positions in the call deck, regardless of whether or not matchings occur elsewhere.
Let the cards in these s positions in the call deck consist of ¢; of the first kind,
¢; of the second, etc. Then:

at+e+t+ o Fee=s

The number of such arrangements of the target deck is
n — §)!
W e
H (dn — en)!

1'W. L. StevENSs, Annals of Eugenics, Vol. 8 (1937), pp. 238-244.
2 J. A. GREENwooOD, Annals of Math. Stat., Vol. 9 (1938), pp. 56-59.




