ON THE INTEGRAL EQUATION OF RENEWAL THEORY

By WiLLy FELLER

Brown University

1. Introduction. In this paper we consider the behavior of the solutions of
the integral equation

L.1) () = o) + [ "ult — D)f(e) da,

where f(t) and g(t) are given non-negative functions." This equation appears,
under different forms, in population theory, the theory of industrial replacement
and in the general theory of self-renewing aggregates, and a great number of
papers have been written on the subject.” Unfortunately most of this literature
is of a heuristic nature so that the precise conditions for the validity of different
methods or statements are seldom known. This literature is, moreover, abun-
dant in controversies and different conjectures which are sometimes supported
or disproved by unnecessarily complicated examples. All this renders an ori-
entation exceedingly difficult, and it may therefore be of interest to give a
rigorous presentation of the theory. It will be seen that some of the previously
announced results need modifications to become correct.

The existence of a solution u(¢) of (1.1) could be deduced directly from a well-
known result of Paley and Wiener [21] on general integral equations of form

(1.1).> However, the case of non-negative functions f(¢) and g(t), with which.

we are here concerned, is much too simple to justify the deep methods used by
Paley and Wiener in the general case. Under the present conditions, the exist~
ence of a solution can be proved in a simple way using properties of completely
monotone functions, and this method has also the distinct advantage of showing
some properties of the solutions, which otherwise would have to be proved
separately. It will be seen in section 3 that the existence proof becomes most
natural if equation (1.1)°is slightly generalized. Introducing the summatory
functions

12 U0 = [ FO=[fdn 60 = [ o,

1 For the interpretation of the equation cf. section 2.

2 Lotka’s paper [8] contains a bibliography of 74 papers on our subject published before
1939. Yet it is stated that even this list “‘is not the result of an exhaustive search.”” At
the end of the present paper the reader will find a list of 16 papers on (1.1) which have
appeared during the two years since the publication of Lotka’s paper.

3 This has been remarked also by Hadwiger [3].
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244 WILLY FELLER

equation (1.1) can be rewritten in the form
t
(1.3) U® = 60 + [ Ut— o) dF ).
o

However, (1.3) has a meaning even if () and G(f) are not integrals, provided
F(t) is of bounded total variation and the integral is interpreted as a Stieltjes
integral. Now for many practical applications (and even for numerical calcula-
tions) this generalized form of tlie integral equation seems to be the most
appropriate one and, as a matter of fact, it has sometimes been used in a more or
less hidden form (e.g., if all individuals of the parent population are of the same
age). Our existence theorem refers to this generalized equation.

We then turn to one of the main problems of the theory, namely the asymptotic
behavior of u(tf) as t — . It is generally supposed that the solution u(2)
“in general”’ either behaves like an exponential function, or that it approaches

in an oscillating manner a finite limit ¢; the latter case should arise if f f@dt =1,
0

thus in particular in the cases of a stable population and of industrial replace-
ment. However, special examples have been constructed to show that this is
not always so.* In order to simplify the problem and to get more general condi-
tions, we shall first (section 4) consider only the question of convergence in mean,
that is to say, we shall study the asymptotic behavior not of u(f) itself but of

the mean value u*(f) = % f u(z) dz. The question can be solved completely
0

using only the simplest Tauberian theorems for Laplace integrals. Of course,
if u(f) — ¢ then also u*(t) — ¢, but not conversely. The investigation of the
precise asymptotic behavior of u(f) is more delicate and requires more refined
tools (section 5).

Most of section 6 is devoted to a study of Lotka’s well-known method of
expanding u(¢) into a series of oscillatory components, and it is hoped that this
study will help clarify the true nature of this expansion. It will be seen that
Lotka’s method can be justified (with some necessary modifications) even in
some cases for which it was not intended, e.g., if the characteristic equation has
multiple or negative real roots, or if it has only a finite number of roots. On
the other hand limitations of the method will also become apparent: thus it
can occur in special cases that a formal application of the method will lead to a
function u(f) which apparently solves the given equation, whereas in reality it
is the solution of quite a different equation.

Of course, most of the difficulties mentioned above arise only when the func-
tion f(¢) has an infinite tail. However, it is known that even computational
considerations sometimes require the use of such ¢urves, and, as matter of fact,

4 Cf. Hadwiger [2] and also Hadwiger, “Zur Berechnung der Erneuerungsfunktion nach
einer Formel von V. A. Kostitzin,”” Mitt. Verein. schweizerischer Versich.-Math., Vol. 34

(1937), pp. 3743.
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exponential and Pearsonian curves have been used most frequently in connec-
tion with (1.1). It will be seen that even in these special cases customary
methods may lead to incorrect results. Besides, our considerations show how
much the solution u(¢) is influenced by the values of f(t) for t — o, and, accord-
ingly, that extreme caution is needed in practice. The last section contains
some simple remarks on the practical computation of the solution.

2. Generalities on equations (1.1) and (1.3). This section contains a few
remarks on the meaning of our integral equation and on an alternative form
under which it is encountered in the literature. A reader interested only in the
abstract theory may pass immediately to section 3.

Equation (1.1) can be interpreted in various ways; the most important among
them are the following two:

(i) In the theory of industrial replacement (as outlined in particular by Lotka),
it is assumed that each individual dropping out is immediately replaced by a
new member of zero age. f(f) denotes the density of the probability at the
moment of installment that an individual will drop cut at age . The function
g(2) is defined by

@.1) 00 = [ 1@t~ 2)ds,

where n(z) represents the age distribution of the population at the moment
¢t = 0 (so that the number of individuals of an age between z and = + &z is
7(z)éxz + o(dx)). Obviously g(t) then represents the rate of dropping out at
time ¢ of individuals belonging to the parent population. Finally, u(f) denotes
the rate of dropping out at time ¢ of individuals of the total population. Now
each individual dropping out at time ¢ belongs either to the parent population,
or it came to the population by the process of replacement at some moment
t — 2 (0 < z < t), and hence u(t) satisfies (1.1). It is worthwhile to note that
in this case

2.2) : fo “fa =1,

since f(t) represents a density of probability.

(ii) In population theory u(f) measures the rate of female births at time ¢ > 0.
The function f(¢) now represents the reproduction rate of females at age ¢ (that
is to say, the average number of female descendants born during (¢, ¢ + &)
from a female of age ¢ is f(£)8t + 0(3¢)). If 5(z) again stands for the age distri-
bution of the parent population at ¢ = 0, the function g(f) of (2.1) will obviously
measure the rate of production of females at time ¢ by members of the parent
population. Thus we are again led to (1.1), with the difference, however, that
this time either of the inequalities

2.3) fo Tfodsa
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may occur; the value of this integral shows the tendency of increase or decrease
in the total population.

Theoretically speaking, f(¢) and g(¢) are two arbitrary non-negative functions.
It is true that g(¢) is connected with f(¢) by (2.1); but, since the age distribution
n(z) is arbitrary, g(t) can also be considered as an arbitrarily prescribed function.

It is hardly necessary to interpret the more general equation (1.3) in detail:
it is the straightforward generalization of (1.1) to the case where the increase or
decrease of the population is not necessarily a continuous process. This form
of the equation is frequently better adapted to practical needs. Indeed, the
functions f(¢) and g(¢) are usually determined from observations, so that only
their mean values over some time units (years) are known. In such cases it is
sometimes simpler to treat f(f) and g(f) as discontinuous functions, using
equation (1.3) instead of (1.1). For some advantages of such a procedure
see section 7. It may also be mentioned that the most frequently (if not the
only) special case of (1.1) studied is that where g(¢f) = f(f). Now it is apparent
from (2.1) that this means that all members of the parent population are of
zero age: in this case, however, there is no continuous age-distribution n(x).
Instead we have to use a discontinuous function #(x) and write (2.1) in the form
of a Stieltjes integral. Thus discontinuous functions and Stieltjes integrals
present themselves automatically, though in a somewhat disguised form, even
in the simplest cases.

At this point a remark may be inserted which will prove useful for a better
understanding later on (section 6). In the current literature we are frequently
confronted not with (1.1) but with

(2.4) u(t) = l ) u(t — x)f(z) dz,

together with the explanation that it is asked to find a solution of (2.4) which
reduces, for ¢ < 0, to a prescribed function h(f). Now such a function, as is
known, exists only under very exceptional conditions, and (2.4) is by no means
equivalent to (1.1). The current argument can be boiled down to the following.
Suppose first that the function g(¢) of (1.1) is given in the special form

(2.5) 90.= [t~ 2)f(e) d,

where h(z) is a non-negative function defined for x < 0. Since the solution
u(f) of (1.1) has a meaning only for ¢ > 0, we are free to define that u(—¢) =
h(—t) fort > 0. This arbitrary definition, then, formally reduces (1.1) to (2.4).
It should be noted, however, that this function «(f) does not, in general, satisfy
(2.4) for t < 0, for h(t) was prescribed arbitrarily. Thus we are not, after all,
concerned with (2.4) but with (1.1), which form of the equation is, by the way,
the more general one for our purposes. If there really existed a solution of
(2.4) which reduced to h(t) for ¢ < 0, we could of course define g(¢) by (2.5) and:
transform (2.4) into (1.1) by splitting the interval (0, «) into the subintervals
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(0, %) and (t, »). However, as was already mentioned, a solution of the required
kind does not exist in general. It will also be seen (section 6) that the true
nature of the different methods and the limits of their applicability can be under-
stood only when the considerations are based on the proper equation (1.1) and
not on (2.4).

3. Existence of solutions.
TeEOREM 1. Let F(t) and G(t) be two finite non-decreasing functions which
are continuous to the right". Suppose that

3.1) F0) = G(0) = 0,
and that the Laplace integrals®

(3.2) o) = [ Tetar®), () = [ " e ()

converge at least for s > ¢ > 0". In case that lim o(s) > 1, let ¢’ > o be the root®
8—a+0

of the characteristic equation ¢(s) = 1; in case im ¢(s) < 1, put ¢’ = 0.
8—+g+0

Under these conditions there exists for t > 0 one and only one finite non-decreasing
Sfunction U(t) satisfying (1.3). With this function the Laplace integral

(3.3) w(s) = fo " AU

5 It is needless to emphasize that this restriction is imposed only to avoid trivial am-
biguities.

6 The integrals (3.2) should be interpreted as Lebesgue-Stieltjes integrals over open
intervals; thus

00
o(8) = lim et dF(t),
e—+0 J,
which implies that ¢(s) — 0 as 8 — «. Alternatively it can be supposed that F(¢) and
G(t) have no discontinuities at { = 0. Continuity of F(¢) at ¢ = 0 means that there is no
reproduction at zero age. This assumption is most natural for our problem, but is by no
means necessary. In order to investigate the case where F(¢) has a saltusc > 0at¢ =0,
one should take the integrals (3.2) over the closed set [0, «], so that
o
o(8) = ¢+ lim et dF(t).
e—+0 J o

It is readily seen that Theorem 1 and its proof remain valid if 0 < ¢ < 1. However, if
¢ > 1, then (1.3) plainly has no solution U(¢). The continuity of G(¢) at t = 0 is of no
importance and is not used in the sequel.

7 The condition is formulated in this general way in view of later applications (cf., e.g.,
the lemma of section 4). In all cases of practical interest ¢ = 0.

8 »(s) is, of course, monotonic for s > o and tends to zero as s — «. In order to ensure
the existence of a root of ¢(s) = 1, it is sufficient to suppose that the saltusc of F(¢) at ¢t = 0
is less than 1 (cf. footnote 6).
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converges for s > o, and

(3.4) w(s) = 1)

1— o(s)

Proor: A trivial computation shows that for any finite non-decreasing solu-
tion U(t) of (1.3) and any T' > 0 we have

T—z

T T T
—s¢ _ —st —8z —st .
fo e AU(l) = [o T dG() + fo ¢ dF (z) fo AU
herein all terms are non-negative and hence by (3.2)
T T
[ av® <4 + o) [ ave.

Now ¢(s) < 1for s > ¢, and hence it is seen that the integral (3.3) exists for
s > ¢’ and satisfies (3.4). On the other hand it is well-known that the values of
w(s) for s > ¢’ determine the corresponding function U(f) uniquely, except for
an additive constant, at all points of continuity. However, from (1.3) and (3.1)
it follows that U(0) = 0 and, since by (1.3) U(?) is continuous to the right, the
monotone solution U() of (1.3), if it exists, is determined uniquely.

To prove the existence of U(f) consider a function w(s) defined for s > ¢’ by
(3.4). It is clear from (3.2) that ¢(s) and y(s) are completely monotone func-
tions, that is to say that ¢(s) and y(s) have, for s > @, derivatives of all orders
and that (—1)"¢™(s) > 0and (—1)"y'(s) > 0. We can therefore differentiate
(3.4) any number of times, and it is seen that ‘™ (s) is continuous for s > ¢.
Now a simple inductive argument shows that (—1)"»‘(s) is a product of
{1 — ¢(8)}~*" by a finite number of completely monotone functions. It
follows that (—1)"w‘™(s) > 0, so that w(s) is a completely monotone function,
at least for s > ¢’. Hence it follows from a well-known theorem of S. Bernstein
and D. V. Widder’ that thefe exists a non-decreasing function U(f) such that
(3.3) holds for s > ¢’. Moreover, this function can obviously be so defined that
U(0) = 0 and that it is continuous to the right. Using U(¢) let us form a new
function

(3.5) V) = fo " Ut — ) dF ().

V(¢) is clearly non-negative and non-decreasing. It is readily verified (and, of
course, well-known) that

v = | T ave) = wls)e(s).

It follows, therefore, from (3.4) that ¥(s) = w(s) — ¥(s), and this implies, by the

9 This theorem has been repeatedly proved by several authors; for a recent proof of.
Feller [19].
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uniqueness theorem for Laplace transforms, that V(f) = U(t) — G(f). Combin-
ing this result with (3.5) it is seen that U(t) is a solution of (1.3).

THEOREM 2. Suppose that f(t) and g(t) are measurable, non-negative and
bounded in every finite interval 0 < ¢ < T. Let the integrals

(3.6) o) = [ A o) = [ gl

0 0
converge for s > a. Then there exists one and only one non-negative solution wu(t)
of (1.1) which is bounded in every finite interval®. With this function the integral

3.7) os) = [o " et de

converges at least for s > o', where o’ = ¢ if lim ¢(s) < 1, and otherwise ¢’ > o
s—o+0

ts defined as the root of the characteristic equation ¢(s) = 1. For s > ¢ equation
(3.4) holds.

If f(t) is continuous except, perhaps, at a finite number of points then u(t) — g(t)
18 continuous.

Proor: Define F(f) and G(t) by (1.2). Under the present conditions these
functions satisfy the conditions of Theorem 1, and hence (1.3) has a non-decreas-
ing solution U(f). Consider, then, an arbitrary interval 0 < ¢ < T and suppose
that in this interval f(f) < M and g(f) < M. If0 <t <t+ h < T we have
by (1.3)

o<t {UE+ h) — U@}
=le+n -0+ [ vetn-aywa
h hJ:
+ [ wet n-2 - vt - 2@ @
0
< M + MU(T) +%fo' (UG + h—2) — Ult—2)} do

t+h h
~u+uvn + 3 [ vway =¥ [va)ay

< M + 2MU(T).

Thus U(t) has bounded difference ratios and is therefore an integral. The
derivative U’(t) exists for almost all £ and 0 < U’(f) < M. Accordingly we can
differentiate (1.3) formally, and since U(0) = 0 it follows that u(t) = U’(t)
satisfies (1.1) for almost all . However, changing () on a set of measure zero
does not affect the integral in (1.1), and since g(¢) is defined for all ¢ it is seen that

10 Without the assumptions of positiveness and boundedness this theorem reduces to a
special case of a theorem by Paley and Wiener [21]; cf. section 1, p. 243.
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u(f) can be defined, in a unique way, so as to satisfy (1.1) and obtain (1.3).
Since the solution of (1.3) was uniquely determined it follows that the solution
u(?) is also unique. Obviously equations (3.7) and (3.3) define the same function
w(8), so that (3.4) holds, and (3.7) converges for s > o”.

Finally, if f(£) has only a finite number of jumps, the continuity of u(f) — g(f)
becomes evident upon writing (1.1) in the form

u()) = o) = | "u@)f(t — ) da.

4. Asymptotic properties. In this section we shall be concerned with the
asymptotic behavior as ¢ — « not of u(f) itself but of the mean value u*(f) =

t
]t; f u(r)dr. If u(t) tends to the (not necessarily finite) limit C, then obviously
0

also u*(f) — C, whereas the converse is not necessarily true. For the proof of
the theorem we shall need the following obvious but useful
LemMma: If u(f) > 01s a solution of (1.1) and #f

(4.1) mt) = ut), L) = @), g) = Q)
then uy(t) s a solution of

wu® = 6@ + | "t — 2)fi(a) da.

THEOREM 3: Suppose that using the functions defined in Theorem 2 the integrals

(4.2) fo 1) dt = q, fo gt dt = b,
are finite.

(1) In order that
3) mm=§[mamﬁc

as t — oo, where C is a positive constant, it is necessary and sufficient that a = 1,
and that the moment,

(4.4) j; tiiyd: =
be fintte. In this case
(4.5) C = b .
m
(i) If a < 1 we have
® b
(4.6) [ wa= =
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(iii) If @ > 1 let o' be the positive root of the characteristic equation o(s) = 1
(cf. (3.2)) and put"

4.7) f S dt = my.
0
Then
1t b
(4.8) lim 7 [o U dr =

Remark: The case ¢ = 1 corresponds in demography to a population of
stationary size. In the theory of industrial replacement only the case a = 1
occurs; the moment m is the average lifetime of an individual. The casea > 1
corresponds in demography to a population in which the fertility is greater than
the mortality. As is seen from (4.8), in this case the mean value of u(f) increases
exponentially. It is of special interest to note that in a population with ¢ < 1
the integral (4.6) always converges.

Proor: By (4.2) and (3.7)

4.9) lim ¢(s) = a, lim y(s) = b.
8—+0 s—+0
If a < 1, it follows from (3.4) that lim w(s) = b/(1 — a) is finite. Sinceu(t) >0
this obviously implies that (4.6) holds. This proves (ii).
If a = 1 and m is finite, it is readily seen that

lim

1 —o(s) _ m,
s—+0 S

and hence by (3.4)

. . . s b

Bim, sole) = i 2() B = T
By a well-known Tauberian theorem for Laplace integrals of non-negative
functions® it follows that w*(f) — 1% Conversely, if (4.3) holds it is readily

seen that™

11 (4.2) implies the finiteness of m, .

12 Cf, e.g. Doetsch [18], p. 208 or 210.

18 Indeed, if (4.3) holds and if U(¢) is defined by (1.2), then there is a M = M (¢) s’ch that
|U@) —Ct| <M+ et. Now

o6) = s f T etUQ a,
0

and hence

8p(s) — C = s? f” e~ (U(t) — Ct) dt,
0

or
|se(s) — C| < s’f e (M + et) dt = sM + e.
0
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lim sw(s) = C,
s—+40

which in turn implies by (3.4) and (4.9) that

. 1 —op(s) _ b
JIE-II-IO 8 - E"
This obviously means that the moment (4.4) exists and equals b/C. This:
proves (i).
Finally case (iii) reduces immediately to (ii) using the above lemma with.
k = —o'. This finishes the proof.
It may be remarked that the finiteness of the integrals (4.2) is by no means-
necessary for (4.3). This is shown by the following
ExampLE: Let

O = 5= 9@ = —\—/I—Re“"“.

" Tt is readily seen that with these functions @ = 1, but b = ®. Now" ¢(s) =
e~V% and y(s) = e V*/+/3, so that

e—‘\/:
Vs —e V7))
Thus sw(s) — 1 as s — + 0, and hence u*({) — 1. In this particular case it can
even be shown that the solution u(?) itself tends to 1 as t — .

In practice, however, the integrals (4.2) will always exist, and accordingly we
restrict the consideration to this case.

w(s) =

5. Closer study of asymptotic properties. In this section we shall deal almost
exclusively with the most important special case, namely where

(5.1) '£ it = 1.

The question has been much discussed whether in this case necessarily u(t) — C
as t — o, which statement, if true, would be a refinement of (4.3). Hadwiger
[2] has constructed a rather complicated example to show that w(f) does not
necessarily approach a limit. Now this can also be seen directly and without
any computations. Indeed, if u(t) — C and if (5.1) holds, then obviously

lim ‘ u(t — x)f(x)dz = C,

t=voo

and hence it follows from (1.1) that g(f) —0. Inorder that u(f) — C itis therefore

1 The integrals can be evaluated by elementary methods, and are known; cf. e.g.
Doetsch [18], p. 25.
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necessary that g(f) — 0, and this proves the assertion. In Hadwiger’s example
lim sup g(f) = «, which makes his computations unnecessary.

It can be shown in a similar manner that not even the condition g(t) — 0 is
sufficient to ensure that «(f) — C. Some restriction as to the total variation of
f(t) seems both necessary and natural (conditions on the existence of derivatives
are not sufficient). In the following theorem we shall prove the convergence of
u(t) under a condition which is, though not strictly necessary, sufficiently wide
to cover all cases of any possible practical interest.

THEOREM 4: Suppose that with the functions f(t) and g(t) of Theorem 2

5.2 t)dt =1 =b .

(5.2) [roa=1,  [goa=b<e

Suppose moreover that there exists an integer n = 2 such that the moments

(5.3) my = L 1(t) dt, - k=12 ...,n,

are finite, and that-the functions f(t), (), (1), - -+ , " °f(t) are of bounded total
variation over (0, »). Suppose finally that

(5.4) lim £~g(f) = 0 and lim " f g(z)dz = 0.
t—ro0 t—ro0 t
Then
. b
. i —-—
(5.5) lim u(®) = 2
and
et _bl_
(5.6) Tim ¢ {u(t) =0

ReMaARk: As it was shown in section 4, the case where f fOdt>1
0

can readily be reduced to the above theorem by applying the lemma of section 4
with & = ¢’, where ¢’ is the positive root of ¢(s) = 1: it is only necessary to
suppose that ¢ "'f(f) is of bounded total variation and that ¢™*"‘g(f) — 0. Ob-
viously all moments of ¢ 'f(t) exist, so that the above theorem shows that
() = e~ u(t) tends to the finite limit b’/m; , where

b = f gt dt, mi= f @) dt.
0 o
’
Thus in this case and under the above assumptions u(t) ~ oy ¢, so that the
1

renewal function increases exponentially as could be expected. If however

f:f(t) dt < 1,
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u(¢) will in general not show an* exponential character. If f(f) is of bounded
variation and has a finite moment of second order, and if g(f) — 0, then it can be
shown that u(t) — 0. However, the lemma of section 4 can be applied only if
the integral defining ¢(s) converges in some negative s-interval containing a value
8’ such that ¢(s") = 1, and this is in general not the case.

Proor: The proof of Theorem 4 will be based on a Tauberian theorem due to-
Haar'®. With some specializations and obvious changes this theorem can be
formulated as follows.

Suppose that I(?) is, for ¢ > 0, non-negative and continuous, and that the
Laplace integral

(5.7) As) = fo " ) dt

converges for s > 0. Consider A(s) as a function of the complex variables=
z + 7y and suppose that the following conditions are fulfilled:

(i) For y s 0 the function A(s) (which is always regular for x > 0) has con~
tinuous boundary values A(sy) as £ — +0, for x > 0 andy = 0

(58) Mo = <+ y00),

where ¢(iy) has finite derivatives ¢'(3y), --- , ¥ (iy) and ¢ (Gy) is bounded
in every finite interval;

+w .
(i) [ @+ ipay

converges for some fixed £ > 0 uniformly with respect to¢ > T > 0;
(iii) Az + 7y) — 0 as y — =t 0, uniformly with respect to z > 0;
(iv) N(@), N (3y), -+ - ; A7 (4y) tend to zero as y — o}

(v) The integrals

1 ©
[ &\ (iy)dy and [ e\ (i) dy
0 v2

(where ; < 0 and y» > 0 are fixed) converge uniformly with respect tot > 7 > 0.
Under these conditions

(5.9) lim £{I(t) — C} = 0.

Now the hypotheses of this theorem are too restrictive to be applied to the
solution u(t) of (1.1). We shall therefore replace (1.1) by the more special
equation

(5.10) o() = h(t) + fo "ot — 2)1(z) da,

15 Haar [20] or Doetsch [18], p. 269.



RENEWAL THEORY 255
where

(5.11) h(t) = fo ‘1t — 2)1(z) do.

Plainly Theorem 2 can be applied to (5.10). It is also plain that A(z) is bounded
and non-negative and that (by (5.1))

(5.12) [ h() dt = 1,
(5.13) x6) = [ @t = $6).
Accordingly we have by Theorem 2

— ® —at _ ¢2(3)
(5.14) s6) = [ e*oar = £ ot

We shall first verify that {(s) satisfies the conditions of Haar’s theorem with
r = n — 2. For this purpose we write
(5.15) @ = 1@ — O,
where fi() and f(t) are non-decreasing and non-negative functions which are,
by assumption, bounded:
(5.16) 0 < fit) < M, 0 < () < M.

(a) We show that »(f) is continuous. Now by Theorem 2 the solution »(f)

of (5.10) is certainly continuous if k(t) is continuous; however, that h(t) is con-
tinuous follows directly from (5.11) and the fact that the functions

[f,(t — z)f(x)dx and [fg(t — x)f(x) dx

are continuous.
(b) In view of (5.1) the function ¢(s) exists for z = R(s) > 0. Obviously
| o(x + 1y) | < 1forz > 0. Now .

= oli) = [ (-0

= fo (1 — cosyt)f(t)dt + ¢ fo sin yt- f(¢) dt,
o o

and, since 1 — cos y¢t > 0 and f(f) > 0, the equality ¢(iy) = 1 for y 0 would
imply that f(f) = 0 except on a set of measure zero. It is therefore seen that
o(x + 1y) ¥ 1forallz > Oand forz = 0,y = 0.

It follows furthermore from (5.3) that fork = 1, ... , n and x > 0 the deriva-
tives

(k) — ® __f\k 8t
¢ (s)—fo (—t)* e f(t) dt
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exist and that
lim o™z + i) = o“ ().
Finally, it is readily seen that in the neighborhood of ¥ = 0 we have
o) = [ 50 @

(5.17) =1— miy+ %"(iy)’ —_ ...

+ (=D s @ + 0y ).

(¢) From what was said under (b) it follows by (5.14) that {(s) is regular for
z > 0, and that {(s), ¢'(s), - -~ , £™(s) approach continuous boundary values
as s = x + iy approaches a point of the imaginary axis other than the origin.
Now put

_ P 1
(5.18) W) = s -
so that by (5.14)
(5.19) ¢s) = 7-,-}-8 + ¥(s).

Forxz > 0and x = 0, y # 0 the function ¥(z + 7y) is obviously continuous;
the derivatives ¢'(¢y), ---,¥™(3y) exist. To investigate the behavior of
¥(¢y) in the neighborhood of ¥ = 0 put

(520)  Ply) =m = @) + = -0 = (-1 T )"

By (5.17), (5.18) and (5.20)

(5.21) Y(iy) = [9—”—;-(?-’5@’- - %-]% +0(y ™.

Now the expression in brackets represents an analytic function of y which
vanishes at y = 0. Hence y(iy) = PB(y) + 0( v |*™), where P(y) denotes a
power series. It follows that the derivatives ¢/(iy), - - - , ¥*" 2 (dy) exist for all
real y (including y = 0) and are bounded for sufficiently small | y | : since they
are continuous functions they are bounded in every finite interval.

(d). Next we show that there exists a constant A > 0 such that for sufficiently

large | y |
(5.22) e+ )| <

uniformly in z > 0. By (5.15)

(5.23) o(s) = l; ) {cos yt — ¢ sin ytle ™ { fi(t) — fa(t)} dt.
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Now f1(¢) is non-decreasing and accordingly by the second mean-value theorem
we have forany 7 > 0 and y

T r . )
f cos yt-fi(t) dt = fi(T) f cos ytdt = fu(T) M_j.__ysmfy ’
0 T

where  is some value between 0 and 7' (depending, of course, on y; at points of
discontinuity, fi(T") should be replaced by lim fi(f)). Hence by (5.16)
t—T—0

2M

lyl

Treating the other terms in (5.23) in a like manner, (5.22) follows.
Combining (5.22) with (5.14) it is seen that for sufficiently large | v |

2
|:<s>|<?l—,“§-

f cos yt-e . fi(t) dt' <
0

uniformly in z > 0. This shows that the assumptions (ii) and (iii) of Haar’s
theorem are satisfied for A(s) = {(s). In order to prove that also conditions
(iv) and (v) are satisfied it suffices to notice that the proof of (5.22) used only
the fact that f(¢) is of bounded total variation. Now ¢ (s) is the Laplace trans-
form of (—1)f(2), and, since t*f(t) is of bounded total variation for k < n — 2,
it follows that

I‘P(k)(s)l=0(lyl—l)r k=12 ...,n—2

for sufficiently large | y |, uniformly in z > 0. Differentiating (5.14) k times it is
also seen that
l;(k)(s)l =0(|y|—2)’v k= 1,.27"‘7” - 2;
as y — + o, uniformly with respect to x > 0.
This enumeration shows that v(s) = I(t) and A(s) = {(s) satisfy all hypotheses
of Haar’s theorem withr = n — 2and C = 1/m;. Hence

(5.24) lim z""{v(t) - %} =0.

t—c0

Returning now to (5.14) we get
w(8) = v(s) + v(s)e(s) + v(8)$(s),
or, by the uniqueness property of Laplace integrals,
t t
w@) = g0 + [ 9@~ 2dz + [ glah(t — 2)da
0 0

= g(t) + w(t) + w(?)

(which relation can also be checked directly using (5.10)). Let us begin with
the last term. We have by (5.2)

(5.25)



258 WILLY FELLER

w® ~ L= ["g ) {a@ - m—-l-l}dx,
and hence

tn—2

v(z) — %ldx

¢
wle) = 2l <2 [ g e
m t/2

n—2 ¢ 1
+ ¢ fmg(y) ot —y) — "—hldy-

If ¢ is sufficiently large we have by (5.24) in the first integral 2™

1
v(x) - '”_I,ll <eé&
In the second integral v(t — y) — mi is bounded, and hence by (5.4)
1

lim *7* = 0.

t—>c0

wt) — ,%

The same argument applies (even with some simplifications) also to the second
term in (5.24); it follows that

lim ¢"ui(f) = 0,

whilst ¢"*g(t) — 0 by assumption (5.4). Now the assertion (5.6) of our theorem
follows in view of (5.25) if the last three relationships are added. This finishes
the proof of Theorem 4.

It seems that the solution u(t) is generally supposed to oscillate around its
limit b/m, as t — . It goes without saying that such a behavior is a priori
more likely than a monotone character. It should, however, be noticed that
there is no reason whatsoever to suppose that u(f) always oscillates around its
limit. Again no computation is necessary to see this, as shown by the following

ExamprLE: Differentiating (1.1) formally we get

WO = ¢O + 900 + [ v~ 2)fw) da,

which shows that, if g(f) and f(¢) are sufficiently regular, u’(¢f) satisfies an integral
equation of the same type as u(t). Thus if

g® + g9(0)f(t) =0

for all ¢, we shall have /() > 0, and u(t) is a monotone function. In particular,
if g’(t) + g(0)f(t) = O, then u’(t) = 0 and u(t) = const. For example, let f(f) =
g(t) = ¢*. Then ¢(s) = ¥(s) = 1/(s + 1) and hence w(s) = 1/s, which is the
Laplace transform of w(f) = 1. It is also seen directly that u(t) = 1 is the
solution. We have however the following

TueoREM 5°: If the functions f(t) and g(t) of Theorem 4 vanish identically for
t > T > 0, then the solution u(t) of (1.1) oscillates around its limit b/mast— .

18 Under some slight additional hypotheses and with quite different methods this theorem
was proved by Richter [16].
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Proor: For ¢ > T equation (1.1) reduces to
13
MO=[1M—xM@M,
t=T

t
and since f f(z) dz = 1 it follows that the maxima of «%(f) in the intervals nT <
t—T

t < (n + 1)T form, for sufficiently large integers n, a non-increasing sequence.
Similarly the corresponding minima do not decrease. Since u(t) — b/m;, by
Theorem 4, it follows that the minima do not exceed b/m; and the maxima are
not smaller than b/m, .

6. On Lotka’s method. Probably the most widely used method for treating
equation (1.1) in connection with problems of the renewal theory is Lotka’s
method. As a matter of fact this method consists of two independent parts.
The first step aims at obtaining the exact solution of (1.1) in the form of a series
of exponential terms (this is achieved by an adaptation of a method which was
used by P. Herz and Herglotz for other purposes. The second part of Lotka’s
theory consists of devices for a convenient approximative computation of the
first few terms of the series. While restricting ourselves formally to Lotka's
theory, it will be seen that some of the following remarks apply equally to other
methods.

Lotka’s method rests essentially on the fundamental assumption that the
characteristic equation

(6.1) o(s) =1

has infinitely many distinet simple” roots s, , 81, - - - , and that the solution u(z)
of (1.1) can be expanded into a series

(6.2) u(t) = ‘kL‘, Ape™

where the 4; are complex constants. The argument usually rests on an assumed
completeness-property of the roots. Thus, starting from (2.4) it is required that
(6.2) reduces to h(t) for ¢ < 0; in other words, that an arbitrarily prescribed
function h(z) be, for < 0, respresentable in the form

(6.3) h(z) = Zk) Are™ (x <0).

In practice we are, of course, usually not concerned with A(f) but with g(¢) (cf.
(2.5)), and according to Lotka’s theory the coefficients A, of the solution (6.2)
of (1.1) can be computed directly from g(¢) in a way similar to the computation
of the Fourier coefficients.

Lotka’s method is known to lead to correct results in many cases and also to

17 Hadwiger [3] objected to the assumption that all roots of (6.1) be simple. The modifi-
cations which are necessary to cover the case of multiple roots aleo will be indicated below.
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have distinct computational merits. On the other hand it seems to require a
safer justification, since its fundamental assumptions are rarely realized. Thus
clearly an arbitrary function i(x) cannot be represented in the form (6.3): to
see this it suffices to note that (6.1) frequently has only a finite number of roots
(cf. also below). It should also be noted that, the series (6.3) having regularity
properties as are assumed in Lotka's theory, any function representable in the
form (6.3) is necessarily a solution of the integral equation (2.4), whereas the
theory requires us to construct a solution w(f) which reduces to an arbstrarily
prescribed function A(f) for ¢ < 0, (which frequently is an empirical function,
determined by observations). Nevertheless, it is possible to give sound founda-
tions to Lotka’s method so that it can be used (with some essential limitations
and modifications) sometimes even in cases for which it originally was not
intended. For this purpose it turns out to be necessary that all considerations
be based on the more general equation (1.1), instead of (2.4) (cf. also section 2).

Before proceeding it is necessary to make clear what is really meant by a root of
(6.1). The function ¢(s) is defined by (3.2), and the integral will in general
converge only for s-values situated in the half-plane %(s) > ¢. Usually only
roots situated in this half-plane are considered. It is also argued that 0]
is, for real s, a monotone function, so that (6.1) has at most one real root: ac-
cordingly the terms of (6.2) are called “oscillatory components.” However,
the function ¢(s) can usually be defined by analytic continuation even outside
the half-plane R(s) > o, and, if this is done, (6.1) will in general also have roots
in the half-plane R(s) < o. It will be seen in the sequel that these roots play
exactly the same role for the solution u(t) as the other ones, and that the ap-
plicability of Lotka’s method depends on the behavior of ¢(s) in the entire
complex s-plane. It may be of interest to quote an example where (6.1) has

_ infinitely many real and no other roots.
ExameLe": Let

1 _
(6.4) @) = er v t>0;

18 This was stated in particular by Hadwiger [3] and Hadwiger and Ruchti [6]; accord-
ingly the results of the latter paper (obtained by methods quite different from Lotka’s)
need some modifications.

19 Cf. the example at the end of section 4. A function closely related to (6.4)
plays an important role in two recent papers by Hadwiger [4] and [5]. Hadwiger’s conclu-
sion, if it could be justified, would fundamentally change the aspect of the whole theory.
The conclusion reached by Hadwiger seems to be that for any biological population the
reproduction function should be of the form u(f) = Zu,(t), where u,(f) represents the
contribution of the nth generation and

e—At+Can—nta?/t .

® unl) = =

Herea, A and C are constants. Clearly (*) is a generalization of (6.4). Now his conclusion
is based on the arbitrary assumption that ua(t) should be of the form u.(f) = ¢(z, na)
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It is easily seen that ¢(s) = e”v*. The integral (3.2) converges only for R(s) >
0, but ¢(s) is defined as a two-valued function in the entire s-plane. The roots of

(6.1) are obviously sy = —4 k’x", so that all of them are real and simple. If
g(®) = f(t), we get by (3.4)
-\ 0
w(s) = I—e——_‘—* =2 e VT, s real, > 0.
—e V¢ 1

n e~n’l4¢
2/7 B2
seen that the solution u(f) can be written in the form

Now e-"V* is the Laplace transform of , and hence it is readily

1 = —n2/4¢

(6.5) u(t) = T z}: ne ™,
of course, this expansion is not of form (6.2) and shows no oscillatory character.

From now on we shall consistently denote by ¢(s) the function defined by the
integral (3.4) and by the usual process of analytic continuation; accordingly we
shall take into consideration all roots of (6.1). The main limitation of Lotka’s
theory can then be formulated in the following way: Lotka’s method depends
only on the function g(t) and on the roots of (6.1). Now two different functions
S(t) can lead to characteristic equations having the same roots. Lotka’s method
would be applicable to both only if the corresponding two integral equations
(1.1) had the same solution u(f). This, however, is not necessarily the case.
Thus, if Lotka’s method is applied, and if all computations are correctly per-
formed, and if the resulting series for u(f) converges uniformly, there is no
possibility of telling which equation is really satisfied by the resulting u(?):
it can happen that one has unwittingly solved some unknown equation of type
(1.1) which, by chance, leads to a characteristic equation having the same roots
as the characteristic equation of the integral equation with which one was really
concerned. Indeed this happens in the following example which is familiar in
connection with our problem. It is illustrative also for other purposes: thus it
shows not only limitations of Lotka’s method, but also that this method canbe
modified so as to become applicable in some cases where the characteristic equa-
tion has only a finite number of roots.

where y(z, a) is independent of n. To my mind Hadwiger’s result shows only the im-
practibility of this axiom. However, Hadwiger’s result is not correct even under his assump-
tion. Indeed, he derives for y(z, a) the functional equation

¢
(**) ¥(z,a+b) = f Wz — & a)y(s, b) d,
0

which is well-known from the theory of stochastic processes. Now Hadwiger merely
verifies the known result that (*) leads to a solution of (**). However, (**) has infinitely
many other solutions (it is possible to write down expressions for their Laplace transforms,
although it is difficult to express the solutions themselves explicitly). This, of course,
renders Hadwiger’s result illusory.
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ExampLE: Pearson type III-curves.™ Consider the integral equation (1.1)
in the following two cases:

I 1) = g(t) = i) = @ 126
and
(In f&) = g@©) = fu(t) = 3¢,
It is readily seen (and well known) that the corresponding Laplace transforms are
1
I er(s) = GF e
and
(ID) puls) = —L
(s+1)*

respectively. Thus in both cases the characteristic equation has the same roots,
namely
3 1 =
s =0, Se,3 = —§:I:—2\/3,
of which only the first one lies in the half-plane of convergence of the integral
(3.4). Lotka’s method is not applicable since there are only three roots. How-

ever, in the second case, an expansion of type (6.2) is possible. Indeed, we have
by (3.4)

_ enls) _ 1
on(s) = eu(s) &+ 358+ 3s
1t 1
_1_ 6 23 2\/3
3s

3_ 1 .
s+5-5V3 s+ +2\/3

—at

now 1/(s + a) is the Laplace transform of ¢™*, and hence we obtain the solution

u(t) in the form

1 1 J H—8+iVE)e (1 t ) —3—ivE)e
=z—(-—-"_ —(z+ 2
unll) = 3 (6 2\/3)6 *t3v3) ¢
1 1 s ﬁ — 1 gung \/3t
3 3e cos 2 t \/?_’e

%0 General Pearson curves have been investigated recently in connection with (1.1) by
Brown [1], Hadwiger and Ruchti [6] and Rhodes {15]. Hadwiger and Ruchti use a method
of their own, but they are also led to the study of the characteristic equation (6.1) in a
slightly disguised form: their result needs a modification since they arbitrarily drop the
roots lying in the halfplane of divergence of the integral o(s).
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which is an expansion of type (6.2). In the first of the above examples we get
for real positive s

_ el 1
wils) = 1 —Iqol(s) T E s+ )

and it is readily seen that this is the Laplace transform of the solution

R - 1 3(n—2) /2
ul(t) = ne=l P(3n/2) t
The series is convergent for ¢ > 0, but obviously this solution cannot be repre-
sented in a form similar to (6.2).
A similar remark applies to the general Pearson-type III curve

&) = A,
where A, a, B are positive constants; the corresponding Laplace transform is

1 __
G5+ a)fH’

These preparatory remarks enable us to formulate rigorous conditions for the
existence of an expansion of type (6.2). The following theorem shows the limits
of Lotka’s method, but at the same time it also represents an extension of it.
In the formulation of the theorem we have considered only the case of absolute
convergence of (6.2). This was done to avoid complications lacking any practi-
cal significance whatsoever. The conditions can, of course, be relaxed along
customary lines.

TueorREM 6: In order that the solution w(t) of Theorem 2 be representable in
Jorm (6.2), where the series converges absolutely for t > 0 and where the sy denote the
roots of the characteristic equation™ (6.1), it is necessary and sufficient that the La-
place transform w(s) admit an expansion

o(s) = AT(8 + 1)

v(s) =3 A

1—o(s) “s—=a
and that Z| Ay | converges absolutely. The coefficients Ay are determined by

(6.6) w(s) =

_ 7'
A==

In particular, it is necessary that w(s) be a one-valued function.”

Proor: All roots s; of (6.1) satisfy the inequality R(sy) < o', where ¢’ was
defined in Theorem 2. It is therefore readily seen that in case Z | Az | con-
verges, the Laplace transform of (6.2) can be computed for sufficiently large

(6.7)

21 The number of roots may be finite or infinite. It should also be noted that it is not
required that sy — «. If the s; have a point of accumulation, w(s) will have an essential
singularity. That this actually can happen can be shown by examples.

22 This was not so in our example I.
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positive s-values by termwise integration so that (6.6) certainly holds for suffi-
ciently large positive s. Now with Z | A.| converging, (6.6) defines w(s)
uniquely for all complex s (with singularities at the points s, and the points of
accumulation of s, if any). Since the analytic continuation is unique, it follows
that (6.6) holds for all s. The series = | A; | must, of course, converge if (6.2)
is to converge absolutely for ¢ = 0, and this proves the. necessity of our condi-
tion. Conversely, if w(s) = 1————————1(2(3) is given by (6.6), and if = | A:| con-
Verges, then w(s) is the Laplace transform of a function u(f) defined by (6.2).
Since the Laplace transform is unique, u(t) is the solution of (1.1) by Theorem 2.
The series (6.2) converges absolutely for ¢ > 0 since | Axe™'| < | Axle”".
Finally (6.7) follows directly from (6.6).

It is interesting to compare (6.7) with formulas (50) and (56) of Lotka's
paper [8]. Lotka considers the special case g(t) = f(t); in this case y(sy) =

o(st) = 1, and (6.7) reduces to A; = ——,%—) . If s lies in the domain of con-
o' (se
vergence of the integral o(s) = f e *'f(t) dt, that is, if RN(sx) > o then
0
1 — ® —st
6.8) i fo () dt,

in accordance With Lotka’s result. However, (6.8) becomes meaningless for the
roots with R(sx) < o, whereas (6.7) is applicable in all cases.

Theorem 6 can easily be generalized to the case where the characteristic equa-
tion has multiple roots. The expansion (6.6) (which reduces to the customary
expansion into partial fractions whenever w(s) is meromorphic) is to be re-
placed by

_ Algl) A,E2) Algmk) 1
(6.9) w(s) = ; {s e + Gy + ...+ o= s’
where m,, is the multiplicity of the root s . This leads us formally to an
expansion

tmk—l

= skt ) 4 (1) @ t e o
610) () = e {Ak tATG e AT Ty

which now replaces (6.2). Generalizing Theorem 6 it is easy to formulate some
simple conditions under which (6.11) will really represent a solution of (1.1).
Other conditions which ensure that (6.9) is the transform of (6.10) are known
from the general theory of Laplace transforms; such conditions usually use only
function-theoretical properties of (6.9) and are applicable in particular when
w(s) is meromorphic. We mention in particular a theorem of Churchill [17]
which can be used for our purposes.

7. On the practical computation of the solution. There are at hand two main
methods for the practical computation of the solution of (1.1). One of them
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has been developed by Lotka and consists of an approximate computation of a
few coefficients in the series (6.2). The other method uses an expansion

@.1) u(t) = g unlt),

where u,(t) represents the contribution of the nth ‘“generation” and is defined
by z

(7.2) W = 00, vl = [ " n(t — (@) d.

Now the Laplace transform of u.41(f) is v(s)¢"(s), and hence (7.2) corresponds
to the expansion

3) ols) = 20 = 4(5) 55 0.

In practice the functions g(¢) and f(¢) are usually not known exactly. Fre-
quently their values are obtained from some statistical material, so that only
their integrals over some time units, e.g. years, are actually known or, in other
words, only the values

1 (n+1)é

1 (n+1)8
(7.4) =3[ f0d 6= f Ca

are given, where § > 0 is a given constant. Ordinarily in such cases some
theoretical forms (é.g. Pearson curves) are fitted to the empirical data and
equation (1.1) is solved with these theoretical functions. Now such a procedure
is sometimes not only very troublesome, but also somewhat arbitrary. Con-
sider for example the limit of u(f) as ¢t — o ; this asymptotic value is the main
point of interest of the theory and all practical computations. However, as has
been shown above, this limit depends only on the moments of the first two
orders of f(t) and g(¢), and, unless the fitting is done by the method of moments,
the resulting value will depend on the special procedure of fitting. Accordingly
it will sometimes happen that it is of advantage to use the empirical material
as it is, and this can, at least in principle, always be done.

If only the values (7.4) are used it is natural to consider f(t) and g(¢) as step-
functions defined by

(7.5) 0 = f"’} for n6 <t < (n+ 1)s.

g(t) = gn,
In practice only a finite number among the f, and g, will be different from zero:
accordingly the Laplace transforms v(s) and ¢(s) reduce to trigonometrical poly-

nomials, so that the analytic study of w(s) = i—}(—_-s‘p)(s) becomes particularly

simple. Lotka’s method can be applied directly in this case.
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For a convenient computation of (7.1) it is better to return to the more general
equation (1.3), instead of (1.1). The summatory functions F(¢) and G(f) should
not be defined by (1.2) in this case, but simply by

3] Hi
(7.6) F@t) = gf G(t) = 2_209

It is readily seen that the solution U(f) of (1.3) can be written in the form
U(t) = 2. Ua(t), where
n=0

Uo(t) = G(¢), Un(t) = fo ‘ U.(t — z)dF (x);

in our case U,(f) will again be a step-function with jumps at the points ks, the
corresponding saltus being

k
(k) (%) k—r)
u®? =gr,  ulh =2 ulf,.

r=0

Thus we arrive at exactly the same result as would have been obtained if the
integrals (7.2) had been computed, starting from (7.4), by the ordinary methods
for numerical integration of tabulated functions. It is of interest to note that
this method of approximate evaluation of the integrals (7.2) leads to the exact
values of the renewal function of a population where all changes occur in a dis-
continuous way at the end of time intervals of length § in such a way that each
change equals the mean value of the changes of the given population over the
corresponding time interval.
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