SOME RECENT ADVANCES IN MATHEMATICAL STATISTICS, I

By Burron H. Camp!
Wesleyan University

The papers considered in this partial review are listed at the end. For the
most part they have appeared within the last five years, but in order to explain
what has been done within the last five years it has been necessary occasionally
to use material that appeared earlier. The subject mdtter is divided into
four parts.

Part I. The Theory of Tests. Since an attempt is being made to present
the material of this paper in such a form that it may be read rapidly by those
who have not read the underlying literature, the author will endeavor to do little
more, in Part I, than to define and illustrate several terms which are being used.
Altogether there are nine of these terms. It is fortunate that their meanings
can be explained pretty well by reference to an extremely simple picture. Let
each of the curves in the figure indicate a probability distribution p(x; 6), in
which there is a single variate  and a single parameter 6.

1
Example 1. p(z, 6) = \/——;— e—*(’—m, the normal distribution in which the
s
center is at x = 6, and the standard deviation is unity.
Let a random sample E be drawn from a population indicated by such a

curve. In the simplest case E = , a single individual. Shortly, we shall have
to suppose that there are N individuals: E = 2, ---,zy. Eventually, the

() 6, e,

UNIVARIATE DISTRIBUTIONS

picture will be generalized much further. The population will be described by a
function of n variables, so that, in place of each z of our sample, we shall have

1 One of two papers read by Cecil C. Craig and by the author at a joint meeting of the
Institute of Mathematical Statistics, the Econometric Society and the American Statistical
Association, held in New York City on December 30, 1941.
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2, «--, 2; moreover there will be, not one parameter, but ! parameters
9%, -+ -, 6"; so that our probability distribution will be multivariate and will
be denoted by
pa®, -, 260, -, D).

A common way of putting this is to say that x and 6 are vectors in n and
dimensions, respectively, and to leave the form as originally, p(z; 6). In the
figure the space which the samples (E = z) can occupy is of course not more
than the z-axis, but in the most general case the sample space will be a part or
all of a space of nN dimensions and will be denoted by W. As is well under-
stood, a significance test is an inequality which specifies in W a certain region
w as a critical region, and if E is in this w, the hypothesis being tested is rejected.
For example, in the figure, one might test the hypothesis H, that § = 6,. The
rejection region w, might be the part of the r-axis where £ > z,. In all such
cases we shall let a equal the probability that E is in w, if 6 = 6,. This state-
ment will be denoted as follows:

(1) a = P(w I 60),

P standing for probability.

(?) Power of a test. A good test should satisfy two conditions: (a) if our
sample is drawn from the population specified by 8, , the hypothesis H, that

= 6 should be accepted as often as possible, and (b) if our sample is drawn
from a population specified by some other value of 6, say 6, , then the hypothesis
that § = 6, should also be accepted as often as possible. Suppose first that
there are but these two admissible populations. The probability of (a) is 1 — a.
We commonly make the artificial requirement that this shall be some larger
fraction such as 0.99. The probability of (b) is commonly denoted by B, and
in the figure, when w = wy, 8 is the area under the 6, curve which lies to the
right of * = 2,. Relative to 6y, 6;, and «, the quantity g is called the power
of that test which designates wo as the critical region. Also, @ and (1 — B)
are the probabilities of the so-called errors of the first and second kinds,
respectively.

(¢0) Unbiased test. As stated, we would like to have 8 large. In any case
we would like to have 8 = a. If B8 2 «, the test and the corresponding region
wo are “unbiased” (relative to the preassigned quantities 6, 6;, and &). The
region wo appears to be unbiased in our figure. This definition can obviously
be extended to the case where, in addition to 6, , there is an infinity of admissible
values of 8; then the test is unbiased relative to the whole family of admissible
values of @ if, for every one of these 6’s, 8 = a.

(?5) UMP test and CBC region. If, with respect to a family of admissible
¢’s, a critical region w, exists such that, for each of these 6’s (# ), 8 is greater
than it would be for any other critical region satisfying (1), then this wo is said
to be the common best critical (CBC) region and the corresponding test is the
uniformly most powerful (UMP) test.
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() UMPU test and CBCU region. If there is no CBC region, still it may
happen that, if one restricts one’s view to only unbiased regions, there may be
among them a CBC region. Such a region is said to be a common best critical
unbiased (CBCU) region, and the corresponding test is the uniformly most
powerful unbiased (UMPU) test.

In the following examples, and elsewhere, we shall now use H, to indicate the
hypothesis being tested, H* to indicate all admissible alternatives.

Example 2: p(z, §) normal as in Example 1, E =z, Hy : 0 = 6,, H*: 6 > 6, .
The CBC region is where z > k if

fk p(z; o) dz = a.

This region is the interval indicated by wp in the figure.

Example 3: Same as the preceding example except that now we have as
H*: 9 == 6,. There is no CBC region, but the CBCU region consists of two tail
;ntervals, where |z | > kif

[ " oz, 6) dz = o
k

A little reflection will convince the reader that the statements in these two
examples are at least apparently true. It is geometrically evident, for example,
that the last mentioned region (two tail intervals) is not as powerful with respect
to the alternatives of Example 1 (6 > 6) as is the single tail region w, in the
figure.

(v) Type A regions. 1t is often difficult to find even a CBCU region, or such
a region may not exist, but it may be that there is a region which has the required
properties if one admits only values of 8 near to the value 6, being tested. Type
A regions have this property. More precisely, they have the property that
the power of wy is a minimum at 8, with respect to small changes in 6, and that
this is a sharper minimum at 6, than is the power of any other w, which satisfies
equation (1). Here the words “small changes” are used as in the calculus.
The full definition [4] of an unbiased region of type A is that it shall satisfy (1)
and also the following conditions:

(2) 6 shall be a single parameter (not a vector),

3) gop(w.,w) —0if 6 = 6,

a a

¢ > 2
@) HPwlo) = 2
the preceding conditions imposed on w,. There are also other types of regions
designated by A,, B, C, and D, which resemble Type A [9]. The following
example illustrates Type A; it is a familiar problem with an unfamiliar solution

{4]. .
Example 4. p(z; 0) = R/—zr;re"””’; E =2z, ,2y; Hy: 0 = a0

P(w | 6) when 6 = 6, for all regions w which satisfy
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H*: ¢ # oo. The CBCU region of type A is determined by two tail areas
(but they are not equal tail areas) of the distribution of =z} .

(v) Test unbiased in the limit [11]. (vit) Asymptotically MP test [15). (viii)
Asymptotically MPU test [15]. In these cases the complete definitions are too
lengthy to be repeated here, and they cannot be recapitulated briefly. The
general idea is that, if none of the regions of the preceding types exist, still it
may be true that there are regions which do have approximately the desired
properties if E = z,, ---,zy, and N is large. The following example [11]
illustrates (v7).

Example 5. p(z; 6) =1 1 y E=o,---,zny; Hy: 0 = 0;

*1 + (= — 6?2’
H*: 9 = 0. Regions of Type A unbiased in the limit are defined by the in-

equality,
1 T 5N N
2w +z‘)’ 22.-31+x3+4( 1+x) My35 ~ %
Here M is a quantity that has to be approximated and tabulated. The in-
equality is not simple, but it furnishes a definite answer to the problem.

(ix) Regions similar to sample space. All the preceding definitions apply to
the case where z is a vector in n space, but not all to the case where 6 is a vector
in I space. Suppose now that this is the case, or, as we have said before, that
there are ! different parameters 6, - - - , 6°, each being capable of taking on a
variety of values. Suppose we fix our attention on 6 and wish to test the
hypethesis that 8 = 6{”. TFirst of all we wish to find a critical region w, for
which an equation like (1) will be true, independently of what the values of the
other parameters may be. Sucl. a region is said to be ‘“‘similar’” to sample
space; the ‘“similarity” consists in the fact that the equation like (1) would be
true independently of the other parameters, if w, were replaced by all of sample
space W, and if « = 1. Feller [10] has shown that there are simple cases in
which there is no region similar to sample space. He and others have investi-
gated the conditions under which such regions do exist. “Generally speaking
it seems that for most of the probability laws p(z, 6®, - -+, 8”) in which the
composite probability law for sample space is made up by multiplication,

@ I G [0, -+, 6,

there do exist such similar regions, at least if N > [.”

Part I. Estimation. (z) Estimation by interval. So far we have been con-
sidering possible answers to the question: Shall specified values of 6, - .- , 6%
be accepted? The totality of values of the #’s which are so acceptable might
be called the acceptable point set in parameter (l-dimensional) space. This
point set is determined by the sample or experiment (E), and usually different
point sets are determined by different E’s. Frequently this set of points consti-



66 BURTON H. CAMP

tutes a simple closed region, or, in the case of only one parameter, it may be a
single interval. Such an interval is called a fiducial or confidence interval.
The fundamental property of such a point set or interval is well known, but has
to be stated with some care: If « = 0.01, and if one is about to take a sample

from a population in which the true values of the parameters 6, -, 6% are
66V, - -+, 6§V, then the probability is 0.99 that the sample will be such that the
point set determined by it will contain this true parameter point 65V, - - -, 8.

It does not matter whether or not one knows what these true values of the
parameters are. If there is more than one parameter, the fiducial interval for
one of these parameters often does not exist; that is, there is often no such in-
terval which is independent of the values of the other parameters. The question
whether there is such an interval is obviously connected with the question
whether there are regions similar to sample space. But if one fiducial interval
does exist, then usually there are an infinity of them, and our problem is to
choose the best one. This problem is called “‘estimation by interval.” One
answer is to choose the shortest interval. More precisely one should say, the
shortest system of intervals. One gets a system of intervals by fixing & but
not E. What is desired is a formula which will give the shortest interval for
every E, but it may well happen that one formula (system) will supply the
shortest intervals for some E’s, and another will supply the shortest intervals
for other E’s. The choice between the two systems will then depend on the
relative frequency’ with which the shortest intervals will be supplied by one

system or by the other.
Example 6: p(z; £ o) is normal, ¢ indicating the mean and ¢ the standard
deviation. Given E = z;, ---, 2y ; to estimate §£. The shortest system of

confidence intervals does not exist (independently of ¢).

Example 7. Same as Example 6, except that now one seeks only an upper
limit to the confidence interval which the parameter must not exceed. Then
the shortest system (best one-sided estimate) is: ¢ < % + 3, where Fisher’s ¢
and s are meant; ¢ corresponds to a preassigned «, and Z is the mean of the
sample.

In cases like Example 6, where the shortest system does not exist, Neyman
[7] defines a “‘short unbiased system.”

Example 8. The short unbiased system for Example 6 is: £ — ts < ¢ <
Z + ts, (t, s, Z) as in Example 7.

(%) Single estimators. Suppose that, as before, we have a sample (E) and
wish to choose the best single value for one of the parameters, not as before its
best fiducial interval. It is well known that there often exists a fiducial func-
tion g(6) which, like a probability function, is everywhere positive or zero and
has an integral,

[[o@ao=1,

and is further useful in determining confidence intervals. In particular, if 6 is a
location parameter and if the composite probability function is as in (2), with
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only one parameter 0: g(6) = kp(xy — 0) --- p(zy — 6), k being a constant.
An estimate commonly thought of as best is the maximum likelihood estimate:
this is the mode of g(6). Other estimates that have interesting properties are
the mean and the median of ¢g(f). Pitman [14] defines a new ‘“best” esti-
mate 0. This has the property that, for every h > 0, 05 is within h of the
true value 6 more often than is any other estimate. More precisely, if

P(l6s — 0| =h) = P(6—06|=<h)
for all positive values of h, and if the inequality sign between the P’s holds for

some positive value of h, 6, being every other estimate, then 85 is the ‘‘best”
estimate. As before P stands for probability.

Example 9. If p(zx; £ o) is normal and the sample E = z,, -+, zx, the
. . Zxp . . Szt 2z
¢« 2] 2 : : it il
best’”’ estimate of ¢ is =3 instead of the usual estimdtes: N1 W

(i%5) Weight function. Wald [13] defines a weight function V(6, 6z) which
depends on the seriousness of the error committed when the estimate 8 is used
in place of the true value of the parameter §. The sample £ = z;, -+ , 2y ;
and 0 may be a vector. Thence he defines a risk function,

M0 = [ Vepa, -,z 0) aw,
and the ‘“best” 8 as that value of  which minimizes the total risk,

[ voasco),

this integral being taken over all of the parameter space, and f(6) being the
a priori distribution of 6. It is undesirable to introduce f(6), but it can be
shown that, subject to slight restrictions on the nature of f, one can obtain a
best estimate by finding a value 6 which for all 8’s makes r equal to a constant
and also satisfies other general conditions; this equation and these conditions
do not contain f(6). In a symmetrical but otherwise fairly general case 6 is
the maximum likelihood solution.

Part III. Likelihood Tests. This part has to do mostly with special cases
of likelihood tests. As is well known, this test consists in selecting a critical
rejection region w in sample space where

(a) P(wIHO) = aq

(b) the relative likelihood of H, is small; more precisely, where A < constant,

and
_ max, P(E|w)
" maxg P(E|Q)’

w being the region in parameter space specified by the hypothesis tested H,,
and € being the region in parameter space specified by all admissible hypotheses.
(In special cases maz is replaced by least upper bound.) If H, is simple (w being
a point) and if the CBC region w exists, then w is bounded by the contour,
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A = constant [19]. Otherwise this A test does not necessarily yield the same
critical regions as do any of the preceding tests. But it is generally much
easier to apply, and, in many of the cases that follow, these X tests are good ones
as judged by the preceding theory. They are powerful even if they are not the
most powerful of all tests, and often this power can be found and tabulated.
In fact Wilks [28] has shown that the appropriate distribution of A (omitting
terms of order 1/4/N) can be found® if the distribution of E is

N
I]; p(zi, 6P, --+, 67), (Nlarge)

and® if the optimum estimates §°, - - , §° exist and are distributed (except for
certain terms of order 1/4/N) normally. This theorem has now been general-
ized by Wald, in a paper presented to the American Mathematical Society in
December, 1941.

There are many of these tests, made to fit all sorts of hypotheses. The author
will try to summarize a considerable group of them; all members of this group
might be called generalizations of the Student-Fisher ¢-test. They fall naturally
into two classes, according as to whether the individuals of the sample are taken
from a univariate or from a multivariate universe. Unless otherwise stated all
universes shall be normal. H, shall stand for the hypothesis being tested, and
H* for all admissible alternatives to H, .

(2) Undvariate case. The sample consists of N elements, as before, z1, - - , zw,
chosen independently from N normal populations indicated by their parameters
(&, 01), - -+, (¢, on). About these populations we may ask a variety of ques-
tions resulting in a variety of problems and tests.

Problem a: If the populations are all identical (¢, o), does ¢ = & (specified
in advance)? This results in the well-known t-test. The hypothesis tested H,
is that £ = & , and the alternative hypothesis H* is that ¢ = & ; it being assumed
at the outset that all the populations are identical. The t-test has been shown
to be an UMPU test relative to H*.

Problems b, ¢, d: Let these same samples be arranged in k groups or “columns”

2® ... g®

... z®
where the n; are not necessarily all equal. Let it be assumed that the popula-
tions (¢, ¢) do not change within the columns. Problems (b), (c) and (d), with
their corresponding tests, may be indicated as follows:

(b) Are (¢, o) constant from column to column? (The Ay = L test.)

2 Distribution of (—2 log A) is like that of x? except for terms of order 1/4/N.
8 See Doob’s conditions, Transactions of American Mathematical Society, vol. 36 (1934),
pp. 759-775.
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(c) Is o constant from column to column regardless of what values the £'s
may have? (The Ag, = L, test.)
(d) Is ¢ constant from column to column assuming the o’s constant? (The
)\112 = Lz test.)
In Problem (b), H, is that (£, o) are constant, H* that they are not constant.
In Problem (c), H, is that o is constant, H* that it is not constant. In Problem
(d), Hy is that £ is constant, H* that it is not constant. The test of Problem (c)
has recently been shown to be unbiased only if the numbers in all the columns
are the same (n, = .-+ = m). It is, however, unbiased in the limit. Power
tables were published in 1937 [23]. Bartlett’s (1937) u is another test for this
problem, and Pitman’s [36] L test is another, but it has been shown that these
two tests are equivalent. Both are unbiased; they are not likelihood tests.
This problem is frequently called the problem of the “homogeneity’ of a set of
variances.
All these tests are, of course, functions of the observations, and the details
are readily available in the papers listed. For example, Pitman’s

L=43iN logl—?,% - E(n.- logn—t:svl),
where S; is what he calls the “squariance” for the ¢th column, and a large value
of L is significant. The squariance is what the physicists had called and what
statisticians dught therefore to have called the second moment, viz.: Nuy ; pe is
really the unit second moment.

(e) Linear Hypothesis. Problems like the above, and many others, cdn be
included in a general theorem by Kolodziejczyk, who showed how to write out
quite simply the likelihood test if each £ is a linear function of ! parameters
(I < N) and if the hypothesis H, specifies the values of r different linear functions
of the s (r £ ). Furthermore, the power of this test (with numerous applica-
tions) was discussed and tabulated by Tang in an important paper [39].

Problem (f). This method (e) has been used by Neyman' [43] to test the
homogeneity of a set of variances, the problem already studied by a number of
authors. It has been stated that some of their tests were unbiased with respect
to the alternative hypothesis that the o’s were not all equal. Neyman gives
reasons for supposing, in the industrial problem he is considering, that it would
be more realistic to consider another alternative hypothesis, namely, H* that
the ¢’s are not all equal and that their distribution can be approximately
described by saying that 1/¢" has a x° distribution. No UMP test exists but
there does exist a critical region whose power, with respect to a sub-family of H*
is independent of the means, and the corresponding test is the most powerful
test for this sub-family of alternatives. Tables of its power are furnished.
More applications are promised.

(#) Multivariate case. The sample consists of N elements, exactly as before,
except that now each z is a vector in n space and comes from a multivariate
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normal universe whose means may be represented again by £ if we think of &
as being a vector in n space. The other parameters of this universe are the
variances and covariances a;;. So, with these changes, we may repeat the
statement at the beginning of (z) that the sample is ;, - - - , z», and that the
populations are (&1, aij1), -+, (v, aijv). The questions to be asked about
these populations correspond exactly to those asked in the simpler case.

Problem (a): If the populations are all identical (¢, a;;), does § = & (specified
in advance)? The answer is given by Hotelling’s T test. The hypothesis
tested is H, that the vector § = &, and the alternative hypothesis H* is that
these two vectors are not identical. P. Hsu [28] has shown that this test is the
most powerful in a special sense, and has given a new demonstration of it by the
use of the Laplace transform. Incidentally he has shown that the Laplace
transform of an elementary ‘probability law determines the law uniquely except
perhaps at a null set of points.

Problems (b), (¢), (d): Now let the same sample be arranged in & groups or
columns, as in (2) b, ¢, d; and let it be assumed that the populations (£, o)
do not change within the columns. Problems (b), (¢), and (d), with their corre-
sponding tests, may be indicated as follows:

(b) Are (¢, a;;) constant from column to column? (The Agm test).

(c) Are a;; constant from column to column regardless of what, values the £’s

may have? (The Mgy test).

(d) Is the vector £ constant from column to column assuming the a;; constant

from column to column? (The Ay test).
Unfortunately, in the customary notation, the A’s for this case (¢Z) do not follow
the pattern adopted in (). It would be better to put (n) after each of the N’s
(or L’s) in (¢) to signify the corresponding tests in (¢7). But, even if this were
agreed upon, there would still be a confused notation because there are many
other “N” and “L” tests besides those listed here. Apparently* the power func-
tions of these last three multivariate tests have not been found yet.

(e) The linear hypothesis theory was shown to be applicable to the multi-
variate case in a special instance by P. Hsu in 1940 [38]. Since then he has
generalized it further [45].

(79%) Bivariate case. This important special case of (¢Z) has now been pretty
thoroughly solved. A general summary of various tests which have been de-
vised by Finney, Pitman, Morgan, Wilks, and E. S. Pearson was given by C.
Hsu in 1940 [42], with some slight additipns and with tables of power functions
with respect to certain alternatives. Altogether there are seven of these tests
corresponding to seven different problems, including the four just referred to as
Problems a, b, ¢, and d.

Part IV. The Method of Randomization. This part concerns randomization
of the individuals within a sample to obtain a method of testing hypotheses
without making use of any characteristic of the population from which the
sample was drawn. It does not deal with randomization in field experi-

4 So far as the author is aware; but he does not pretend to have made a careful search.
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ments to off-set the effects of variable fertility. Also, in this discussion, the
hypothesis being tested is not that the sample was a random sample. It is
assumed that the given sample is random. We begin with an example from
Pitman [46]. Two samples, (z1, -+, z~) and (1, - -, y»), have been drawn
at random from two populations. The means of the samples are £ and 7,
respectively. Let |Z — §| be called the spread of these samples. Now re-
arrange these same z’s and y’s with each other in all possible ways to obtain all
possible spreads. The larger the observed spread, among all these possible
spreads, the more significant it is supposed to be as a test of the (null) hypothesis
that the two populations were identical. Similarly, tests have been devised for
correlations, variances, etc.

E. 8. Pearson [51] in 1938 published-a criticism of this general theory which
in substance seems to be that the reason why one calls the largest spreads sig-
nificant, rather than the smallest ones, in the illustration just used, is that one
is assuming tacitly that the admissible populations are such that large spreads
would be more likely on some other than the null hypothesis; that if one does
not make some such implicit assumption, then one might quite as well call the
smallest spreads significant; and that therefore, barring such implicit assump-
tions, one can control only errors of the first kind by this method.

It seems to the author that Pearson’s criticism is sound, and that, if indeed
one is unwilling to make any assumption whatever about the populations con-
sidered, then this device is of no’ value in testing the null hypothesis. For, if
all that one pretends to do is to control errors of the first kind, one can do that
by eonsulting a table of random numbers of two digits. Thus one can control
errors of the first kind without performing the experiment at all, let alone
making the long computations usually required by the method of randomiza-
tion. Or, better, one can reduce that error to zero simply by making up one’s
mind that one will never reject the hypothesis being tested: certainly one will
never reject it improperly if one never rejects it at all.

However, if one is willing to make in the illustration used the very mild
assumption that the populations considered are such that unusually large
spreads would more probably be obtained from some admissible hypothesis
other than the null hypothesis, then it would seem to the author that the method
would be useful. Similar remarks apply to the tests for correlations, vari-
ances, etc.
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