TABULATION OF THE PROBABILITIES FOR THE RATIO OF THE
MEAN SQUARE SUCCESSIVE DIFFERENCE
TO THE VARIANCE

By B. I. HarT
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with a note
By JoHN voN NEUMANN

In recent publications von Neumann has determined the distribution of
8*/s’, the ratio of the mean Square successive d1ﬁ'erence to the variance, for odd
values of the sample size n' and for even values of n.* In this paper the prob-
ability function, i.e., the integral of the distribution, is evaluated for specific
values of n.

Let z be a stochastic variable normally distributed with mean { and the stand-
ard deviation o. .The following customary definitions for the sample are:

the mean, =1 >,

N p=1

. &= 1 _\2

the variance, == Z - )7,

p=1

n—1

and the mean square successive difference, §* = —— Z (%431 — 2,)°.  Letting
& 2n

F-a= (1 — ¢), von Neumann shows that the distribution of e, w(e), is
symmetrical with zero mean and intercepts equal to == cos :-: (loc. cit.!, p. 372),
and that w(e) is determined for odd values of n by
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1 John von Neumann, ‘“Distribution of the ratio of the mean square successive differ-
ence to the variance,”’” Annals of Math. Stat., Vol. 12 (1941), pp. 367-395.

2 John von Neumann, “A further remark on the distribution of the ratio of the mean
square successive difference to the variance,” Annals of Math. Stat., Vol. 13 (1942), pp. 86~
88.
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}(n—1)—1
and by d_;(T—T—l“’(‘) = 0 in the even intervals
E A

cos& €= cos?f,
n
cosﬁ;e;cosﬁ, ,cos(n_s)rge>cos(n_2)w
n n
(loc. cit.! pp. 389-390).
For n = 3,
1 1
(1) w(e) el ey ——————1

T 27
0S — = € = COS — .
for ¢ 3_e_ 3

For n = 5,
1 1
/ = —
Y ST X FE
2) cos ™ +cos2F e+ cosT l cosz — cos—z-Ia
1 2 o 5 5 °© 5 5 5
“(0 =;cos"_'-|- cos‘%sn r_ zr.c sI— ’cos’r+ 00821»-
5 5 COSz — COS— COSg —e 5 5
for cos = = € = gIand cosﬁ' Ze= cosﬁr
5~ ~ 5 5 = 5 °
But for cos 255 = € = cos §5-1'-', w'(e) = 0, thus
)] w(e) = const.
Forn = 7,
2 1
) ') = £ =
‘ T/ —éd+ied -3+ &
for cos ; = € = cos 2775 and cos %—r = e = cos (?7—1'- with the + sign, and for
cos 2171[ = € = cos 4; with the — sign.
But for cos 2—71-' = € = cos §-715 and cos g = € = cos 577", w'’(e) = 0, thus
5)- w'(e) = const.

3 The square of the modulus. The numerical evaluation of the inverse sine amplitude
function used for n = 4, 5, 6, is taken from unpublished tables of the Legendrian elliptic
integrals by F. V. Reno of the Ballistic Research Laboratory, Aberdeen Proving Ground.
The square of the modulus is the argument for this tabulation.
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For even values of n von Neumann shows that the distribution of ¢,

waro(e) = %]%]G—j o 94 G) A -t dp (loc. cit.?).

©0o8 —
n

“(5)

war@(€) = % vie VT =

where w, (‘;) = ,1, [— G‘ cos jir)(e; - ""”’3‘41)]_4

WA+(®) V27Ii V(o= V2o + V2e)(l —p)

VI (3123

Forn = 4,

Vit Vae "1+ V2
3r
forcosz €= T

)
dp, where

For n = 6, war(€) = 2 2viV1I—p

R e (CCERe ) REPED

forcos% ;egcos;—randcos%-

8) w(e) = const.

T2e2 cos%‘{,andwhere

2r
forcoss3 = €= cos—3—

The integrals needed to obtain w(e) for n = 6 and w’(e) for n = 7 have been
evaluated by numerical quadrature. Graphs of the distribution of 5*/s*, w(s*/s*
forn = 3, 4, 5, 6, 7, are shown in Fig. 1.

k
The probability function, P(3*/s* < k) = j; w(6*/s*). d(3*/s") has been ob-

tained from w(5’/s’) by numerical quadrature for n = 4, 5, 6, 7. The results

are given in Table III.
As is mentioned by von Neumann, R. H. Kent has suggested a series ap-

proximation of the form

© - in—2+h
wle = > a;.(cos2 = - ez) ,
=0 n
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since the order of vanishing of w(e) is #n — 2, and since w(e) is an even function
of ¢ (loc. cit.! p. 391). Determining the a; by the condition of normalization
and by the first three even moments of the actual distribution, M, , M, and M,
(given on pp. 377-378, loc. cit.'), and integrating the result, we obtain

¢ 3 - fn—2+h
Ple<k) = f . Za;‘, (cos2 a ez> de

8 — h=0
n

_(n— 1)(n; (n+3) LGn —2], 3n — 2])

,[_ 1 My(n+5) _M4(n+5)(n+7)+Ms(n+5)(n+7)(n+9):|
3

m w ™
cos® - 3 cos' -~ 45 cos® -
n n n
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mw mw
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The Tables of the Incomplete Beta-Function' can be used to evaluate (9), with
=1 <—————e—— + 1). Table I shows the results obtained for the eighth and

2 \cos (r/n)
tenth moments for the distribution (9) and for the true distribution for certain

values of n.
2
Table II gives a tabulation of P(f;-2 < k) for n = 7 by the use of (9) and by

the method of (4) and (5). The approximation (9) has been used for the com-
putation of the probabilities of Table III for n = 8.°

It has been shown (loc. cit.' pp. 378-379) that for n — o the distribution of
¢ becomes asymptotically normal. For n = 60 values of §°/s’ are given below
for different levels of significance. These values have been computed from
Table III and from a table of the integral of the normal function with standard

- 2n n—-2

deviation equal to —— L
moment of the distribution of 3°/s’.

the square root of the second

4 Karl Pearson (Editor), Tables of the Incomplete Beta-Function, London: Biometrika
Office, 1934.

5 The results obtained by L. C. Young using the Pearson Type II distribution arc suffi-
ciently precise for the significance levels and sample sizes tabulated. Cf. L. C. Young,
“On randomness in ordered sequences,” Annals of Math. Stat., Vol. 12 (1941), pp. 293-300.
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TABLE I
" M Ms My Mo
) True 9) True
7 .00412 .00413 .00201 .00202
8 .00318 .00318 .00150 .00151
9 .00246 .00246 .00111 .00112
TABLE II

P(a—:];< k) forn =17
844

k By (9) By (4) and (5)
.25 .00001 .00001
.30 .00007 .00007
.40 .00065 .00065
.45 .00124 .00126
.50 .00209 .00214
.55 .00326 .00333
.60 .00478 .00486
.65 .00671 .00678
.70 .00911 .00913
.75 .01203 .01197
.80 .01552 .01534
.85 .01964 .01932
.90 .02443 .02403
.95 .02995 .02957
1.00 .03624 .03598
1.05 .04333 .04325
1.10 .05126 .05137
1.15 .06006 .06036
1.20 .06976 .07020

Values of 8°/s® for Different Levels of Significance

Table ITL............
Normal.............

suggestions and criticisms.

Note to Fig. 1, by John von Neumann. Inspection of the graphs of w(s’/s")
forn = 3, 4, 5, 6, 7 (see Fig. 1) discloses certain singularities of the function

P = 001
1.2558
1.2358

This work was undertaken at the suggestion of Mr. R. H. Kent.
much indebted to him and to Professor John von Neumann for many important

n = 60

w(8®/s), which seem to deserve attention.

P = .005
1.3779
1.3688

P =01 P =05
1.4384 1.6082
1.4333 1.6092

I am



TABLE III

r(5)-[-())

~ n - 5
~—_ 4 5 6 7 8 9 10 1 12
.25 .00001 | .00001 | .00001 | .00001
.30 .00007 | .00007 | .00005 | .00004 | .00002 | .00001
.35 .00006 | .00027 | .00021 | .00014 | .00009 | .00005 | .00003
.40 .00047 | .00065 | .00047 | .00031 ; .00019 | .00012 | . 7
.45 .00126 | .00126 | .00088 | .00059 | .00038 | .00025 | .00016
.50 .00038 | .00246 | .00214 | .00150 | .00103 | .00069 | .00046 | .00031
.55 .00223 | .00409 | .00333 | .00237 | .00168 | .00116 | .00080 | .00055
.60 .00493 | .00615 | .00486 | .00355 | .00259 ; .00185 | .00132 | .00094
.65 .00830 | .00865 | .00678 | .00511 00382 | .00282 | .00208 | .00152
.70 .01225 | .01161 | .00913 | .00710 | .00544 | .00414 | .00313 | .00235
.75 .01673 | .01505 | .01197 | .00958 | .00753 | .00587 | .00455 | .00351
.80 .00356 | .02171 | .01900 | .01534 | .01263 | .01015 | .00809 | .00642 | .00503
.85 .01302 | .02717 | .02348 | .01932 | .01631 01338 | .01089 | .00883 | .00714
.90 .02257 | .03310 | .02851 | .02403 | .02068 | .01729 | .01436 | .01188 | .00980
.95 103223 | .03949 | .03412 | .02957 | .02579 | .02196 | .01858 | .01565 | .01316
1.00 .04199 | .04634 | .04035 | .03598 | .03171 02745 | .02363 | .02025 | .01733
1.05 .05186 | .05364 | .04728 | .04325 | .03849 | .03384 | .02959 | .02578 | .02241
1.10 .06184 | .06140 | .05500 | .05137 | .04618 | .04120 | .03655 | .03232 | .02852
1.15 .07194 | .06963 | .06361 | .06036 | .05482 | .04957 | .04458 | .03997 | .03577
1.20 .07323 | .07020 | .06445 | .05901 | .05375 | .04882 | .04425
1.25 06956 | .06412 | .05894 | .05407
1.30 07040 | .06531
S~ 15 20 i 25 30 40 50 60
g \\ =
.35 .00001
.40 .00002
.45 .00004
.50 .00009 .00001
.55 .00018 .00002
.60 .00033 .00005 .00001
.65 .00059 .00012 .00002
.70 .00100 .00024 .00005 .00001
.75 00161 .00044 .00011 .00003
.80 00250 .00076 .00023 .00007 .00001
.85 00375 .00127 .00044 .00015 .00002
.90 00547 .00206 .00079 .00030 .00004 .00001
.95 .00778 .00323 .00135 .00057 .00010 .00002
1.00 .01079 .00489 00222 .00102 .00022 .00005 .00001
1.05 .01465 .00720 00355 .00176 L0004+ .00012 .00003
1.10 .01950 .01033 00550 .00294 .00085 .00026 .00008
1.15 .02550 .01448 00826 .00474 .00158 .00054 700019
1.20 .03280 .01986 01208 .00738 .00280 .00108 .00043
1.25 .04155 .02670 01723 01117 .00476 .00206 00092
1.30 .05189 .03524 02402 .01644 .00780 .00376 .00185
1.35 .06396 .04571 03276 .02357 .01235 .00656 .00355
1.40 07787 .05834 04379 .03298 .01892 .01098 .00649
1.45 .07333 05743 .04511 .02810 .01769 .01133
1.50 07398 .06038 .04055 .02750 .01893
1.55 .07920 .05696 .04131 .03034
1.60 07797 .06006 .04675
1.65 .08465 06942
1.70 .09949
82
Values of & for which P (;2 < L) =
n k ” k
4 .7811 15 .0468
5 4775 20 .0259
6 .3215 25 .0164
7 .2311 30 .0113
8 .1740 40 .0063
9 L1357 50 .0040
10 .1088 60 .0028
11 .0891
12 L0743
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It will be noted that this function exhibits a more or less singular behavior in
n — 1 points, the points

8%/s = 2n (1 — cos Eﬂ’—r),

n—1

I-‘=17"'yn_17

which is particularly well marked for the smaller values of n.

For odd values of n these singularities are of the order 3(n — 4) (i.e. the
3(n — 3) derivative becomes infinite of order 3). This was shown loc. cit.!,
p- 390.

Thus for n = 3 the function has infinities of order ; for n = 5 the direction
and for n = 7 the curvature have infinities of the same order.

For even values of n these singularities are also of order 3(n — 4) (i.e., the
3(n — 4) derivative has an ordinary discontinuity) when u is odd, but a logarith-
mic factor must be added to this (i.e. the 3(n — 4) derivative becomes logarith-
mically infinite) when u is even. Proofs of these statements will appear later.

Thus for n = 4 the function has an ordinary discontinuity at x = 1, 3 and
a logarithmic infinity at 4 = 2; for n = 6 the direction has corresponding
singularities at u = 1, 3, 5 and at u = 2, 4 respectively.

For n = 8 (both even and odd) these phenomena would probably be much
less easily recognized by mere inspection.



