ON THE CORRECT USE OF BAYES’ FORMULA

By R. v. MisEs
Harvard Unaversity

The problem that we try to solve by using Bayes’ formula consists in making
an inference from an observed statistical value upon the unknown value of a
parameter, and in examining the chance of this inference being correct. One
may call this the principle problem of practical statistics or the estimation
problem, or, as the author put it in German (Rueckschluss-Wahrscheinlichkeit)
problem of inference probability; at any rate we encounter this kind of problem
in various forms in almost every branch of statistical investigation. It will be
convenient to base the following discussion on a concrete question in quite
specified form which will allow us to see clearer the points that are to be stressed

in this paper.

1. The problem. In examining the quality of water supplies with respect
to the number of bacterias of a certain kind they contain, a definite procedure is
usually adopted. One takes n = 5 samples out of the water, each sample of
exactly 10 cem. Then by a certain biological test one finds out whether or not
each sample contains at least one bacteria of the kind under consideration. The
number z (zero to five) of positive tests is the observed value from which an
inference is drawn upon the probability @ for a sample containing at least one
bacteria. It is assumed that this 6 is connected with the average number A

of bacterias per 10 ccm by
(1) 0=1—¢" 6=6=063 forrx=1

according to Poisson’s law. A particular question which we want to answer is
this: What is the chance of being right, if we- conclude from the observed fact
z = 0, (in other cases from x = 1) that @ lies between 0 and 6, = 0.63 (or A

between 0 and 1)?
For a given 6 the probability of getting z positive tests out of n tests is

according to Bernoulli’s formula

@) pal0) = (2)ea - o

The chance of having a 6-value between 0 and 6 when z positive tests are ob-
served is according to Bayes’ formula

01

(3) P j; p(x|6) dP(0)
2 (0) =

[ »19) aP@)
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where P(6) is a distribution function, monotonically increasing from 0 to 1
and usually known as the a prior: probability.

2. The apriori. The function P(f) is generally considered as a troublemaker.
As one uses to call P the a priori probability most people think that it has some-
thing to do with those absurd conceptions of non-empirical, a priori known
probabilities that cannot be tested by any experiments etec. This cannot be
strongly, enough refuted. In our particular case the meaning of P(6) is the
following. Each probability statement refers, as we know, to a certain infinite
sequence of experiments or trials which form a kollektiv. If we ask for the
chance P,(6;) of having a 6-value between zero and 6; when a certain « has been
observed, we have in mind a sequence of trials each consisting of two steps,
first, picking out one particular water supply, and then testing the number z
of samples that contain bacillas. Among the first N trials of this kind we shall
have N, cases where the 6-value for the water supply picked out lies between 0
and 6,, then we shall have N, cases where the number of positive tests is z,
and finally in a number N, of cases both conditions will be fulfilled. The
chance P.(6;) we ask for is then by definition

. Nu
@ P.(6) = lim ==,
while the so-called a priori probability is
(5) P@) = lim 2.
Later on we shall also use the probability
. N,
(6) Q= ;y-lg v

All these magnitudes are to the same extent empirical or non-empirical. They
are “empirical,” since we get approximate values for them out of a long sequence
of experiments, and they may be considered as something super-empirical since
the concepts of an infinite sequence and of a limit are used in the definition—as
each theory must involve a certain amount of ‘‘idealization.”

In order to avoid the above mentioned equivocation the author had sug-
gested a long time ago’ to call the probabilities corresponding to P(6) and P.(6)
respectively the initial and the final probability. Another expression which
could be used in connection with the distribution function P(6) is overall distri-
bution, since it means the distribution of #-values within the total mass of
samples, not regarding what the values of z are in each case.

3. No randomness required. Now, the first remark we have to make is the
following: In the Bayes’ formula (3) the existence of a function P(§) is presup-

1 Cf. reference [2], p. 152.
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posed, i.e. we assume that in the sequence of successive trials the frequency of
those cases in which @ falls into a certain region has a definite limit. But
nothing is assumed about this limit being independent of a place selection.
The sequence of trials must fulfill the first condition of a kollektiv, with respect
to 6 but not the second; in other words the randomness in the succession of 6-values
is not required. Thus we may say that 8 is not supposed to be a chance variable
in the usual sense of this term. Sometimes people are shocked by the idea that
in Bayes’ theory the individual cases are supposed to be picked out at random,
and it is often considered as a superiority of the method of confidence intervals
that here such assumption is avoided.

It is true that in the latter method even the existence of the frequency limit is
not required,” but this does not seem to make any essential difference. The
fact is that, if we want to make an inference upon the value of 6 i.e. an assertion
about the chance of 8 falling into a certain interval, we have to assume that in
the long run different §-values may occur with certain frequencies.

It may be useful to have different expressions for the two cases where a fre-
quency limit is or is not supposed to be independent of an arbitrary place
selection. As we use the word probability in the first case it seems suitable to
apply the word chance in the second. Thus, if P(6) is the initial or the over all
chance of § we would say that P,(6;) is the final chance of 8 being smaller than
or equal to 6, for a certain observed z-value. When P(6) is supposed to be a
probability, i.e. to fulfill the condition of randomness, then P,(6,) will have this
property too and has to be called probability.

4. Inequalities for the final chance P,(f). A much better founded objection
against the practical application of Bayes’ formula consists in saying that in
most cases we haye no sufficient information about the function P(6). This
undeniable fact leads often to an incorrect simplification of the formula by re-
placing in it dP(6) by d6 which means an a priori probability of constant density.
It is obvious that this is no solution: if you do not know what P(6) is, to assume
it equal to 9. On the other hand, if we accept Bayes’ formula as correct (and
there is no reason for not doing so) we learn that the value P.(6) we ask for
depends essentially on P(6), and is undetermined as far as P(6) is undetermined.
The only consequence in this situation is, first to use all information we can get
about P(6), and then to make the answer as vague or undetermined as the in-
completeness of this information requires.

One way to do this consists in setting up inequalities for P,(f) based on
certain inequalities for P(6). A formula which turns out to be useful, at least
in a well-known asymptotic problem is the following:

Let us consider the general case where 6 stands for several variable parameters,
and let A be the set of all possible values of 8. We are interested in the final
probability P of a subset C of A given by

2 Cf. reference [4], p. 201.
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(6) ., f( _ p(z]0) dP@)

IIRELEL0

where z is supposed to be known.
Let P, be the value of P, under the assumption of a constant initial density
and denote by P, Py the analogous values for a subset B which includes C so

as to have
(") C <B<A.

The quantities Py and P depend only on the function p(z | 6) and the sets B
and C while Py and P change with P(6).
If we assume that the initial density p(6) has the limits

) m = p(6) <M within B
m’ = p(0) £ M’ within A — B, (4 minus B)

it can easily be shown that
’ ’ 4 ’
(9 mPma-Pyszts P+ .

We may consider the following application of these inequalities.

If we are concerned with a case where a great number 7 of trials is involved,
the function p(z | §)—which determines the P’ values—shows an increasing con-
centration at a certain point of the set A. In other words, for large n we have
a subset B more and more reducing to one single point for which P} is as near
to 1 as we want. If we then assume that the density p(6) is continuous and
bounded, the difference between m and M tends to zero, and if m is supposed to
have a positive lower bound, both the first and the last expression in (9) tend
to unit or P, approaches P;. This is a generalized form of the statement
which the author proved for the first time in 1919, that in the original Bayes’
problem where we are concerned with » repetitive observations of an alterna-
tive, the final probability becomes more and more independent of the initial proba-
bility P(0) as the number n of observations involved increases.

6. Using previous experience. The inequalities (9) may be of use in many
cases. But to be sure, in general, they are not the basis upon which practical
estimation judgments rest. Everybody acquainted with the conditions of test-
ing water supplies takes it for granted that the outcome z = 0 (no positive test)
supplies a sufficient reason for the statement 6§ < 6, = 0.63 (less than one

3 Cf. reference [1], p. 84.
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bacteria per 10 cc). But, if nothing were known about the initial distribution
P(6), we could assume P(6) in the form

P@) = 6™,  p(8) = me™" for0 <6 <1,

with a large value of m. With n = 5, z = 0 equations (2) and (3) give Py(6;) =
0.50 for m = 10, and Py(6;) = 0.88 if m is 5. These values are much too low
to justify any recommendation of a water supply for which z was found to be
zero. Thus we have to ask: What is the real source of the confidence we put in
the inference from z = O upon 6 < 6, ? i

There is no doubt, that this confidence is based on previous experience. We
know that the water supplies subjected to the routine test in the past formed a
class of rather clean than dirty water and we rely that a new sample will belong
to the same class. The author was given the following information about the
results under the jurisdiction of Massachusetts during the last decade. Out
of a total of N = 3420 examinations there were found

3086 cases with z = 0 (no positive test)
279 cases with = 1 (one positive test)
32 cases with x = 2
15 cases with x = 3
5 cases with z = 4
3 cases withz = 5

The overwhelming majority of cases with x = 0 is evident. The question is
only how we can use these statistics of past experiments for obtaining a nu-
merical inference upon the value of P.(6).

If the initial distribution P(6) were known, we could find the probability Q-
of getting z positive tests out of n:

(10) 0= o] 6) dP@) = (:) [ '# (1 — 0™ dPG).

Using the numbers N, , N,, Ny, introduced in section 2 the probability Q(z)
is defined by equation (6).

If the number N of past examinations is considered as sufficiently large, we
can take the ratios 3086/3420, 279/3420 etc. as approximate values for Qo,
Q, etc. Now, according to the well-known identities

(11) %g z (:) 0°(1 — 0)"" = 0.
1 . n z n—z _ 2
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and using (10) we can derive from the values @, Qi , - - - , Q. the first and second
moments of the distribution function P(6):

1 n
= [oarw =130
=0
(13) . . .
= 02 dP 0) = ———— -1 z .
0, = [[0aP0) = oL 3 ata - 1
If we introduce here the above mentioned empirical ratios for Q. we find the
approximate values for the first and second moments of P(6):

(13") M, = 0.02474 M, = 0.00401.

6. Determination of a distribution function by its first moments. In an
earlier paper the author showed [3] how the exact upper and lower bounds for a
distribution function P(6) can be found, if the expected values of two functions
J(6) and g(6) are known. The only condition was that the curve represented
in a Cartesian coordinate system by z = f(6), y = g(6) is convex. Let us take

7(8) = g(6) =0 foro <0
(14) f0) =96, g6 =¢ for0<6=1
1(0) = g(6) =1 for 6 > 1.

In this case the condition is fulfilled and the expected values of f(8) and g(6)
are the moments M,, M,, respectively. The results obtained in the paper
quoted above take the following form:

First, we have to derive from the given values 1, and M, two points ¢’ and
¢’ of the internal 0 < 6 < 1

4 = M " — A_I_z
(18) "=1ow YT
Then the limits for P(6) are:
M, - A}
=< < = - <69
O-P(o)‘,Mz—2Mlo+6‘-' for0<6=<6
ae) - - BT pe g WO g cp <
I ¥ — 2
_@h-6 SP@O =<1 forg” =0 < 1.

M,y — 2M,6 + 62

In our case we find ¢ = 0.0213, ¢’ = 0.1619 and the point 6, = 0.6321 falls
into the third interval 6, 1. ThelinesO 4 B C and O D E F G in Fig. 1 show
(slightly distorted) the lower and upper bounds for P(6).
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F1G. 1. The limits of the overall distribution function
F1a. 2. The 99% region in the methods of confidence intervals

7. Application to Bayes’ formula. The inequalities (16) enable us to find in a
simple way a lower bound for the end probability P.(6;) defined by (2) and (3)
in the case £ = 0. Let us denote by A the numeratof in (3) and by B the
supplementary integral

1
) B = [ »(|0) aPO),
1
8o as to have 4 + B for the denominator in (3). If the subscripts min and max

denote a lower and upper bound respectively we can write

— A Amin
(18) P0) = 275 2 4o + B’

Now, taking z = 0 we find by product integration
01
(19) A=PO)1—8)" +n fo P@®)(1 — 0)™ do.

Therefore, Amin is found when we introduce in this expression the lower lim
for P(6) as given in (16). If we do this and use the values for M, and M,
according to (13’), numerical computation leads to Amin = 0.712.

In the same way we obtain B in the form

(20) 3 = —PO)(1 —6)" +n f' PO — 0™ db.

The upper bound B, is reached, if we introduce in the integral P() = 1 and
in the first term the minimum value for P(6;) following from (16). The second
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term becomes thus equal to (1 — 6;)" and the numerical result is Bn.x =
0.0000607. Therefore the inequality (18) supplies

, 0712 _
(18" Py(8,) = 071206 — 0.99915.

The final outcome secured in this way can be formulated as follows: If we
assume that in continuing the experiments the distribution of test results will be
about the same as it has been in the past 3420 cases, we have a chance of more than
99.99, of being right, when we state in each case of no posttive test that the density
of bacterias is less than 1 per 10 ccm.

The high value of 99.99, for P(8,) is of course strictly bound to the assump-
tion that the entire mass of water supplies to be tested is homogeneous and
sufficiently characterized by the distribution of test results found in the past.
If e.g. we had to assume that the six possible values for z (0 to 5) in the long
run appear with equal frequencies so as to have @y = @, = --- @5 = £, the
same method would give M; = %, M, = %, then ¢ = %, 6’ = %, and the final
result would be Py(6;) = 0.73. The assumption of a constant initial density
P(6) = 6 would give Py(6;) = Py(6;) = 0.9975, a little less than the value
found above in (18’).

8. The case x = 1. The results are less favorable in the case of one positive
test,z = 1. Here we have

(21) p(1]6) = n6(1 — )" = 50(1 — 6)",

and the derivative of p is first positive, then negative. We can conclude from
Fig. 1 that the minimum value for A and the maximum for B will be reached
when the distribution function P(8) is represented by the line O DI H J G
where I H is horizontal and H the point on B C with abscissa 6; . The abscissa
0o of I is determined by the equation

M—Mi  _ (Mi—6)
1‘12—2M100+03 M2—2M101+0§’

which supplies 6, = 0.0190. We then have

(22)

o
(23) Auin = [ p(11) P,
0
with the value p(1 | 6) from (21) and with
. M,—- M;
PO = s o

according to (16). On the other hand B« is found, as in the former case, to be

(24) Bmax = p(l I 01)[1 - P(ol)]y
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where we have to take for P(#) its minimum value according to (16). The
numerical computation yields Amin = 0.0062 and Bna.x = 0.00052 so as to give
62
P = — =0.92.
) 2 7 = 0.9

The result is that—under the assumption above mentioned—we have more
than 929, chance of being right, if we predict each time one out of five tests has
been positive that the density of bacilli is less than 1 per 10 cem.—The chance
computed under the assumption of a uniform initial distribution P(8) = 6
would be 0.97.

9. The method of confidence intervals. One may ask what kind of answer
to our questions can be deduced from the principle of confidence intervals.
This method has undeniably to its credit that no use is made here of the initial
distribution P(8) and that, therefore, all its statements are completely inde-
pendent of what is assumed about P(6).

In order to apply this method* we have to select for a given degree of confi-
dence, say a = 0.99, a region of acceptance, i.e. an area in the two dimensional
z, 0 plane limited by two lines x;(8) and z.(6) so as to have for each 6

(25) Prob {x,(0) < = < 2:(0)} = a.

The region is, of course, not uniquely determined by (25). In our case, how-
ever, one will generally agree that the best way to determine the region consists
in assuming for z;(f) and x3(6) two step lines with steps at the integer values
z=0,1,2, --- as indicated in Fig. 2. Then the formula (2) for p(z | 6) com-
bined with (25) supplies the abscissae of the steps, if z is given. If we transform
the limits for  into limits for A using equation (1), the final outcome reads as
follows:

Whatever the initial distribution P(0) may be, we have a chance of 999, of being
right, if we predict:

each time x = 0 1s observed that \ lies between 0 and 0.92,
each time x = 1 1s observed that \ lies between 0.002 and 1.51,
each time x = 2 1s observed that \ lies between 0.036 and 2.24,
each time x = 3 is observed that \ lies between 0.112 and 3.41,
each time x = 4 1s observed that \ lies between 0.25 and 8.48,
each time x = 5 1s observed that \ lies between 0.51 and «.

It is true that in this way we obtain a result independent of any assumption
on P(6). But it is essential that the chance of &« = 999, holds only for the six
joint statements as a whole. This means it may happen that for instance the
first assertion (that A is smaller than 0.92 in the case x = 0) is correct but very
seldom or even never, while other assertions (e.g. those for + = 4 and 5) have

4 Cf. reference [5] and reference [4], p. 203.
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a much greater chance than 999, of being correct. Whether this happerns or
not depends on the initial distribution P(6). As long as we know nothing about
P(6) we are not in the position to conclude, by using the method of confidence
intervals, that the particular statement ‘“A < 0.92 if x = 0” has a chance of
999, or even any chance at all of being correct. On the other hand, whenz = 0
has been observed we are in no way interested in consequences that may be
drawn in the case = 4 or x = 5 or in a set of statements that includesthe
cases ¢ = 4 and x = 5. The only practical question that is relevant to the
purpose for which the tests are made is this: What can we conclude from the fact
that in a certain instance x = O has been observed (or in another instance x = 1)?
It seems that the method of confidence intervals, discarding any consideration
of the initial distribution, can supply no contribution towards the answering
this particular question.
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