LINEAR RESTRICTIONS ON CHI-SQUARE

By FrRaANKLIN E. SATTERTHWAITE

Unaversity of Iowa

Chi-square is a statistic widely used in statistical analysis. It is usually of

the form,
2 2
X = Z{‘ X

v =2 (B,

(L3

where the z,;’s are independent normally distributed variables drawn from popu-
lations with respective means and standard deviations, m; and ¢; . In practical
problems the independence of the z,’s is often modified by placing restrictions
on the x,’s in order to estimate the m,’s or ¢;’s. It is well known that if m such
restrictions which are linear and homogeneous (also algebraically independent)
are placed on the x,’s, then the resulting chi-square, (1), is distributed according
to the chi-square distribution with n — m degrees of freedom. The purpose of
this paper is to study the case where the restrictions are not necessarily
homogeneous.

1. Geometrical development. The x,’s of equation (1) may be considered
as co-ordinates in an n-dimensional space. Equation (1) represents a sphere in
such a space with its center at the origin and with radius, x. We should like
to determine the distribution of x*. First, since the x’s are independent, we
may form their joint distribution,'

F(x1,x2, "+ xa) dV = KII,e_*"? dx ;
2) = Ke ™ dxidxz + -+ dxa
= K™ qv.
We may change the variable in (2) to x* if we can determine dV. Since the
n~dimensional sphere represented by equation (1) has a volume proportional
to x", we may write
dv = Kd(xH*
= KOO dx
Substituting this value in the distribution (2) we obtain for the distribution of
chi-square,
FOO) dx’ = KGO e ™ dyd,
which is the usual form of the chi-square distribution for n degrees of freedom.

1 The letter K will be used throughout as a constant, not necessarily the same constant
from equation to equation.
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We shall next restrict the values of x; by means of a condition,

3) guxa + Guxz + ¢ + AGxa = p1, Ea}j =1,
where p; is a constant. This restriction represents a hyper-plane in our n-dimen-
sional space at a distance p; from the origin. The intersection of this hyper-
plane with our sphere (1) is an (n — 1)-dimensional sphere with radius
X =6 — ot
The differential of the volume of this sphere is
dv = K(x2 _ pi)i(n—l)*l dX2~

Substituting this in the distribution (2) we obtain the distribution of chi-square
subject to the single linear restriction, (3). Thus

. —1)—1 —4x2
FOO) dx' = K — p)' "7 ™ dy,
or more conveniently,
—1)—1 — 252
Fix* — o) d(x’ — p1) = K(x* — p)!" 70 d(x* — p}).

The argument may be readily extended to include additional linear restric-
tions of the form,

anxa + Gaxe + -0+ GXa = p2, Za;i =1,
(4) ... ,
An1X1 + Am2X2 + s + AmaXn = Pm, zami =1
For convenience we shall assume that the restrictions form an orthogonal set’
so that

T = 0, T # k.
The hyper-plane represented by equation (4) is at a distance, p. , from the origin.
Since (4) is orthogonal to (3), it is also at a distance, ps , from the center of the
(n — 1)-dimensional sphere obtained on applying the first restriction. There-
fore the intersection of this hyper-plane with the (» — 1)-dimensional sphere
will give an (n — 2)-dimensional sphere of radius
X' =0 — ot — e
Similarly, if we consider all m restrictions, we obtain an (n — m)-dimensional
sphere with radius

x™ = (¢ — Zo)t

2 Any set of linear restrictions which are algebraically independent and consistent may
be replaced by an orthogonal set. Thus if (4) were not orthogonal to (3), we could replace
(4) by (4) — k(3) where k is determined by the condition

Zai(az; — kayy) =0

or Za;ja2; = kZafi
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The differential of the volume of this sphere will be
av = K = 2o ™A — Zp)).
Substituting this in (2) we see that
™) = x"— 220
is distributed as is chi-square with n — m degrees of freedom.

2. Alternate analytic development. It is perhaps desirable that we present
an analytic proof of the foregoing theorem. Therefore we shall first regard the
p;s as variables and shall determine the joint distribution of x* and the p;s.
We may then pass to the distribution of those values of x* which correspond to
assigned values of the p;’s. Note that the x,’s are considered to be statistically
independent.

The characteristic function of the joint distribution of x* and the p/’s is
known to be’

6—0/2(1—-25'1)

Sty tn) = G

where

Q= E Qi @r it

ik
=1, since Y, axan = 8;.
Applying the Fourier transform, we obtain the joint distribution of x* and
the p,’s:
Flx y=k[-f - dyd
(X,Pl,"'Pu = m b+ -+ dity t,

where
Q = — ity’ — Zit;p; — {63/2(1 — 2it)}

o i 2+ a0 — 20)]
=T 501 — 2)

Performing the integration with respect to ¢, - - - ¢, , we have,

(1 — 26)=p.

—itx2

— K €
F=Ke ’f(1—

=z (1 — 26t)™ 2] dt,

and finally,
F = K(x* — Zpp)!o ™7 e,

3 See A. T. Craig, ““A certain mean value problem in statistics,” Bull. Amer. Math. Soc.,
Vol. 42 (1936), p. 671.
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In our problem we want the distribution of x* (or more conveniently, of x* — Zp?)
when the p/’s take on fixed values. To obtain this we substitute fixed values,
p7s, into the joint distribution and divide by the marginal total,

fF(x2, Profe o+ pm) dx’ = KT [3(n — m)]22"™ 7124,
This gives us the distribution function,

2 _wa) = 1 1(o? — pAZYHmm—L —H2-2ED

which is a chi-square distribution with n — m degrees of freedom.

3. Application. As an example of the use of linear restrictions on chi-square
we shall now examine the effect on the chi-square test of goodness of fit if the
moments of a sample are not corrected for grouping errors in fitting a frequency
curve.

The parameters of the fitted frequency distribution, f(z), are determined from
the equations,

(5) fokf(x)dx=2x'§0i, k=0,1,2,---,

where z; is the mid-point of the j*® group and 6; the corresponding observed
frequency. Next a set of expected frequencies,

aj+q
b = f - Nf(z) de, aj = (g + 2,)/2,

is determined by taking partial areas of the fitted frequency distribution. The
expected frequency is used to transform the actual frequency into a statistic
with mean zero and unit variance by the equation,

x;i=(8;—6)/6".

Equations (5) may now be rearranged into the form of linear restrictions on the
Xi- Thus

(6) Z a0 = pe
where the p; have the values,
pe = 2 750, — T 250;
= fo"f(x) dr — = 7;6;

# 0 in general
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To make our example more specific, let us fit a normal distribution to a sample
of 1000 items with mean zero and unit variance. Let the grouping be about
the midpoints,

z;: -3, -2, -1, 0, 1, 2, 3.
The expected frequencies in each group are
b;: 6, 61, 242, 382, 242, 61, 6.

The variance of these expected frequencies is 1.080 as contrasted with 1.000
for the sample. The linear restrictions, (6), now take the forms,

(7))  24x_3+ 78x 2+ 156x_1+ 19.5x0+ 156x1+ 7.8x:+ 24x3 =0
(8) —7.2x_3 — 15.6x_2 — 15.6x_1+0 + 15.6x1 + 15.6x2 + 7.2xs =0
9) 21.6x_3+31.2x_2+ 156x_1+0 + 15.6x1 + 31.2x2 + 21.6x3 = —80.

Because of the symmetry of the normal distribution, restriction (8) is orthogonal
to (7) and (9). Therefore the only orthogonalization necessary is to replace
(9) by an equivalent restriction which is orthogonal to (7). This can be done
by subtracting 1.080 times (7) from (9) which gives

(10) 19.0x—3 + 22.8x—2 — 1.2x_1 — 21.1x0 — 1.2x1 + 22.8x: + 19.0xs = —80

If these restrictions are each divided by the square root of the sum of the squares
of the coefficients of the x;, they will be the normal orthogonal set required
by the development. The distances of these restrictive planes from the center
of x’-sphere are

ey =0,  pe =0, pay = 1.7

Thus if we test the goodness of fit of the normal distribution to this sample by
calculating chi-square,
A\2
x2 = Ex? = E—————(OI Y 07) )
0;

we should subtract from x° a correction of
=28

before judging the significance. This correction adjusts for the effect of the
grouping error on the chi-square test.

In this example, chi-square has four degrees of freedom so that an error of
2.8 is large enough to affect our judgment of its significance. It can be shown
that the correction is proportional to the size of the sample. Therefore, if our
sample had contained only 100 items, the fit obtained by ignoring grouping
effects would be almost as good as the fit when the sample moments were cor-
rected for grouping. On the other hand, if the sample had 10,000 items, it



LINEAR RESTRICTIONS ON CHI-SQUARE 331

would be practically impossible to obtain a satisfactory fit without correcting
for grouping errors.

4. Conclusion. The theory of the loss of degrees of freedom for chi-square
when the underlying statistics are subject to linear restrictions does not require
the restrictions to be homogeneous. For restrictions which are not homogeneous,
a correction must be subtracted from chi-square equal to the square of the
distance from the center of the sphere,

X =Zxi=0

to the intersection of the restrictive planes. Non-homogeneous restrictions
sometimes arise in practice because of the bias introduced by an approximation.
An example is given from curve fitting.



