STATISTICAL PREDICTION WITH SPECIAL REFERENCE TO THE
PROBLEM OF TOLERANCE LIMITS'

By S. S. WiLks

Princeton University

1. Introduction. Statistical methodology is becoming recognized in industry
as an effective tool for dealing with certain problems of inspection and quality
control in mass production. Quality control experts have found statistical
methods useful in detecting excessive variation in a given quality characteristic
of a product from a series of observations on the given quality characteristic,
and in isolating the causes of such variations back in the materials or operations
involved in manufacturing the product. By a process of successive detection
and elimination of causes of variability, a controlled state of quality is established.
A practical statistical procedure for establishing a controlled state of quality
has been developed by Shewhart.> More recently, manuals for routine applica-
tion of this procedure have been issued by the American Standards Asso-
ciation.?

In this paper we do not propose to go into a discussion of the application of
the well known Shewhart procedure. The reader may refer to the literature
mentioned in footnotes 2 and 3 for such discussion. It is sufficient to remark
that experience shows that the application of this procedure leads to a con-
trolled state of quality. Such a state of control provides a basis for making
statistical predictions about measurements on the given quality characteristic
in future production.

More specifically, suppose a given quality characteristic of a given product is
measured by a variable X, such that X has a specific value for each individual
product-piece. For example, the product may be a given type of fuse and X
may be the blowing time in seconds. A product-piece would be a single fuse,
and X would take on a value for each fuse. Thus, for a sequence of = fuses
taken from the production line, there would be a corresponding sequence of
values of X, say X1, Xs,--- X,. Ifa state of control has been established
with respect to blowing time as measured by X, then the sequence of values
of X will “behave like a random sequence.” By this we mean that the sequence
will be such that we can safely assume that it can be described mathematically
by regarding X as a continuous random variable, i.e., such tlat there exists some

1 An expository paper presented at a joint session of the American Mathematical Society
and the Institute of Mathematical Statistics at Poughkeepsie, September 9, 1942.

2'W. A. Shewhart, Control of Quality of Manufactured Product, D. Van Nostrand Com-
pany, New York, 1931.

3 Guide for Quality Control and Control Chart Method of Analyzing Data (1941), and
Control Chart Method of Controlling Quality During Production (1942), American Standards
Association, New York.
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probabﬂlty function f(x) which describes the distribution of values of X, such
that f f(z) dz is the probability that ¢ < X < b for any two real numbers

a and b. Now, suppose we consider a sequence or sample S; of n values of X,
and let X; and X, be the smallest and largest values of X in the sequence.
The types of questions with which we are concerned are the following: If a
further sample, say S, of N values of X is taken, what is the probability P that
at least N, of the values will lie between X; and X, as determined by S,? If
we choose a given probability «, at least what proportion of values of X in an
indefinitely large sample S, will fall between X; and X of S; with probability a?
What is the probability P’ that at least N, of the values of S; will exceed X;
of S;? At least what proportion of values of X in an indefinitely large sample
S will exceed X; with probability «? These questions suggest several of a
more general nature which can be treated by methods similar to those which
will be discussed. For example, instead of taking X; and X, , i.e. the smallest
and largest items in S, as tolerance limits we could use X,, and X,_pny1. More
generally, we may define 100R.9, tolerance limits IL,(x1, 3, --- x,) and
Ly(xy, x2, - - - , x,) for probability level a of a sample S; of size n from a popula-
tion with distribution f(x) dx as two functions of the X’s in S; such that the
probability is a that at least 100R,%, of the X’s of a further indefinitely large
sample S: (i.e. the population) will lie between L; and L, . Or more briefly

P(j:zf(x)dx > Ra> = a.

The same notion clearly applies if S is a finite sample of size N, rather than an
indefinitely large one. In this case we would be interested in the largest integer
N, such that the probability is at least a that at least 100R.%, (R., = 2—{,‘—')
of the X’s in S; would lie between L; and L,. In most practical situations we
are able to assume nothing more about f(x) than it is a probability density
function. We make only this assumption here. The only functions of the
values of X in S; that we shall consider here in setting tolerance limits are order
statistics, i.e. the ordered values of X, because the results will then be fairly
simple and independent of f(x).

2. A General Probability Formula. It will be convenient perhaps to derive
a general probability formula at this stage from which we can derive certain
special cases as we need them.

Let X1, X,, .-+, X, be the n values of X in S, arranged in order of in-
creasing magnitude. Let r1, ry, -+, r; be integers such that 1 < r, < r, <
- <r,<n Letz,,%,, -,z bekreal numbers. Let

[ =, [ @ = s, oo, [ @) 2 = pe,
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from which
f@.) dz,, = dpy, f@,,) dz,, = dpa, -+ -, f(xs,) d2,, = dpi .

Then assuming X;, X, --+, X, to be a random sample (ordered) from a
population with probability element f(z) dz it follows from the multinomial
distribution law* that the probability of z,, < X,, < z,, +dz,, ¢ = 1,2, --- , k)
is given by

n! prl—l prz—rl—l .
(1) 7'1‘—“1!7'2—1‘1—1!--'7'k—Tk_1—'1!n—Tk! ! 2
piF T T pi dpudpe -+ - dpe

except for terms of order higher than (dpdp: « - - dpx). Given that X, =

Ty, , X, = %, in Si, the conditional probability that N, Nj, ---,
k1

Nipa (E N,=N ) of the values of X in S, will fall in the intervals (— «, z,,),
1
(Try 5 Xry)y =+ * 5 (T, , ) respectively is by the multinomial law

N! Ny N N+t
® Ni! Nyl ... NkH!pl D2’ et Detll .

The joint probability law of X, , X,,,--- X, and Ni, Nz, -+, Npys
k+1

(Z N;=N ) is given by the product of (1) and (2). Integrating this product
1

with respect to the x’s (i.e. the p’s) we find the probability law of the N’s to be

(3) N!n!N1+r1—-1!N2+r2—r1— 1!--.- N;,+r;,-—-rk_1—1!Nk+1+n-—-rk!
rl-—-1!1‘2-—-7'1—1!---rk—rk_l-—l!n-—-rk!N+n!N1!N2!---Nk+1!

which is clearly independent of f(x). This result can be derived by direct com-
binatorial methods but the present derivation provides a simple proof that the
result is independent of f(x).

3. The Problem of One Tolerance Limit. There are problems in quality
control in which it is important to consider only one tolerance limit. For
example, in testing breaking strength of steel wire the most significant tolerance
limit is the lower one. The problem of prediction in this case is as follows:

4+ Which states that if a trial results in one and only one of the mutually exclusive events
E,,E,,-- ,E:,the probability P that in a total of n trials n, will result in Ei , nz in
k

Ez’... ’nkin Ex (Z Nng="n ,ngiVEIlby
1

n! ﬁl n nk
- . 2 ...
P nl!nz!---nk!pl P, Py
k
where p1, P2, +**, Pk, (Z P = 1) are the probabilities of a single trial resulting in E, ,
1
E,, .-, Ey respectively.
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Suppose the given quality characteristic, as measured by X, is in a state of
statistical control, and that a sequence of n measurements on X have been
made. Let X, be the smallest of the n values. What is the probability that at
least Ny of N further measurements on X will exceed the value X; as deter-
mined by the initial sample? Instead of considering the smallest value of X
as the lower tolerance limit we could just as easily choose the second smallest,
or any other small order statistic but the case of the smallest value is perhaps
of greater practical interest than any other case. The problem of an upper
tolerance limit is entirely similar to that of a lower tolerance limit.

TasBrLE I

Values of N, and R for a = 0.99 and 0.95 for several combinations of values of N
and n, and for the problem of one tolerance limit. (For N = o, R, is denoted

by Ra)
a =.0.99 a = 0.95
n N
N R N s R

10 10 5 .500 7 .700

10 20 11 .550 14 .700

10 o0 — .631 — .741

50 50 44 .880 46 .920

50 100 90 .900 93 .930

50 0 — .912 — .942
100 100 94 .940 96 .960
109 200 189 .945 193 .965
100 © —_ .955 — .970
500 500 494 .988 496 .992
500 1000 989 .989 993 .993
500 0 — .991 — .994

The probability Pi(N,) that N, of the N further measurements will exceed the
smallest value of X in an initially drawn sample of size n is given by (3) for
k= 1,1’1 = l,Nz = No,N1 =N —No,i.e.

_ NINo+n — 11
4) Py(No) = n NJN a1 °
Values of P;(N,) can be easily calculated by using the recursion formula
- N
(5) Pl(No 1) = m PI(NO).
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For given values of N, n and a we are interested in the largest integer N, for
which

N

(6) > PNy > a.

No=Ngqg

If we set % = R, and set Lim B, = R, it can be verified that the value of
N—o0

R, is given by solving the following equation for R,
1

0 n| £7dE=a
Ry

It will be observed that n™™ d¢ is to within terms of order d¢ the probability
that ¢ < f f(@)dx < ¢ + df in samples of size n from a distribution with
X1

probability element f(x) dz, where X, is the smallest value of X in the sample.
The statistical interpretation of (7) is simply this: The probability is o that the
proportion of values of X exceeding X, in a further indefinitely large sample 7s
at least R, .

Choosing a = 0.99 and 0.95 Table I shows values of N, and R, for various
combinations of values of n and N for the case of one tolerance limit. The
table indicates the degree of precision with which predictions about a single
tolerance limit can be made from a sample of size n about a further sample of
size N for a few important values of n and N. It should be noted that each
prediction is made concerning a pair of samples, i.e. an initial sample of size n
and a further sample of size N and that the prediction holds for any function f(z).
Thus as a typical entry we may state that if a sample of 100 is drawn and also
a sample of 200, then the probability is 0.99 (approx.) that the X’s of at least
189 (or 94.59%,) of the cases in the second sample will exceed thesmallest Xin

the first sample.

4. The Problem of Two Tolerance Limits. Again, suppose the given quality
characteristic as measured by X is in a state of statistical control and that a
sequence of n measurements are made on X. Let X; and X, be the smallest
and largest values of X respectively. The question to be considered now is the
following: What is the probability that at least Ny of N further measurements
on X will lie between the values X, and X, , as determined by the initialsample?

We proceed by considering the special case of (3) for whichk = 2, r, = 1
ro = n,N2a= Ny, Ny =N — No— N:. We find for the joint distribution
of N; and N,

N!n!No+n — 2!

€©)) P(NI’N°)=n—2!No!N+n!'
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To obtain the distribution of Ny, we simply sum (8) with respect to N, from
0 to N — N, thus obtaining

N!No+n — 2!
NN +n!

A convenient recursion formula for computation purposes is
No(N — No+ 2
0( 0 + ) P2( NO)-

(9 Py(No) = n(n — 1)(N — No + 1)

10 Py(Ny— 1) =
(10) “No — 1) (N=No+ D(No+n — 2)
For given values of N, n and a we require the largest value of N, for which
N
(11) 2 PNo)2a.
No=Ng

Setting Nw-“ = R, and Lim B, = R, one finds that R, is given by solving

N—=roo

the equation’ for R,
1

(12) nn—1)| £l -§dt=a.
Ra

It can be verified that n(n — 1)§"°(1 — £) d¢ is to within terms of order d
Xn

the probability that ¢ < f f(x)dx < & + dg, thus showing that (12) is the
X

probability that the proportion of an indefinitely large number of further values
of X lying between Xy and X, is at least R, .

Table II gives, for the case of two tolerance limits, values of N, and R, for
several important combinations of n and N, including limiting values R, of R.
for indefinitely large N.

It should be noted that the problem of two tolerance limits can be immediately
extended to the case where the lower and upper tolerance limits may be any two
of the order statistics in S; .

5. The Problem of Tolerance Limits for Two Quality Characteristics. We
have thus far devoted our discussion to the problem of tolerance limits for a
single quality characteristic. The problem of two or more quality character-
istics can be treated by methods similar to those already used. The simplest -
case is that in which each product-piece under consideration is measured on two
independent quality characteristics. Suppose the two characteristics are meas-
ured by X and Y. Let a sample of n product-pieces be taken, assuming a state
of statistical control has been established, and let X; be the smallest of the X
values and Y, the smallest of the ¥ values. The question with which we are

5 This limiting case in the problem of tolerance limits as well as that expressed in (7)
and other similar limiting cases have been considered by the author in an earlier paper:
“Determination of Sample Sizes for Setting Tolerance Limits,”” Annals of Math. Stat.

Vol. XII (1941) pp. 91-96.
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concerned here is the following: If N further product-pieces are measured on X
and Y, what is the probability that X > X; and ¥ > Y, for Nyof the pieces?
Let X and Y be statistically independent and let f(z) and g(y) be the probability

X 41
functions of X and Y respectively. Let f f(x) dx = p and [ 9(y) dy = q.
The probability law of p and ¢ is
(13) n*(1 — p)" (1 — ¢)" " dp dy.

TaBLE II

Values of N, and R, for a = .99 and .95 for several combinations of values of N
and n and for the problem of two tolerance limits. (For N = «, R, is denoted

by Ra)
a = 0.99 a = 0.95
n N
N R N Ros
10 10 4 .400 5 .500
10 20 8 .400 11 .550
10 © — .496 — .606
50 50 42 .840 44 .880
50 100 85 .850 90 .900
50 0 — .874 — .909
100 100 89 .890 92 .920
100 200 184 .920 188 .940
100 © — .935 — .953
500 500 491 .982 494 .988
500 1000 985 .985 989 .989
500 © — .987 — .991

In a further sample of size N the probability that for N, of the cases, X > X,
and ¥ > Y1, X; and Y; being determined by the first sample, is

N!
N N — N,!
The joint probability law of N, p and q is given by the product of (13) and (14).
Integrating this product with respect to p and ¢ we obtain as the probability
law of N,

(14) (1 =p)A = I"1 = (1 = p)A — I"™.
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For given values of N, n and « it is important, as before, to determine N, as
the largest integer for which

(16) 3 PV > a

No=Nq

Setting % = R,and Lim B, = R, one finds R, to be given by solving the

N—x

following equation for R,
1

17) —n2f £ log tdE = a.
Rq

The expression —nzg"‘_l log £dt is simply the probability that & <
< f f(x) dx)( f 9(y) dy) < ¢ + dt to within terms of order d¢, which is the
X, Y,

proportion of the population pairs (X, Y) for which X > X;and Y > Y,.

In the problem of two tolerance limits for each quality characteristic, as deter-
mined by an initial sample of size n, we calculate the probability that Ny mem-
bers of a further sample of size N will fall within the two sets of tolerance limits,
with respect to the two characteristics. The problem is similar to that for
one tolerance limit for each of two quality characteristics. For this case, we
find corresponding to (15), (16), (17), respectively, the following:

_ 2 2 N2 (N — N, (-1)°
(18)  PuNo) = n'ln — 1) (M) §,< i )(No+n—1+i)2(No+n+l)2’

and

(19) S PN 2
and
(20) W =17 [ £ — 10 = G+ 1) log ) d = .

The derivations of results analogous to (15), (16), (17), (18), (19), (20) for
tolerance limits defined by other order statistics than least and greatest and
also for more than two independent® quality characteristics are straightforward.

6. Further Remarks and Discussion. For a given set of tolerance limits on a
random variable X as determined by an initial sample of size n, we have dis-
cussed the problem of predicting, with a given degree of probability, at least
what proportion of values of x in a further sample (finite or .indefinitely large)
will lie between these tolerance limits. We have obtained theoretical results

¢ In a paper to appear in a forthcoming issue of the Annals of Math. Stat., A. Wald has
shown how to set up tolerance limits for the case of two or more statistically dependent
variables.
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which depend only on the assumption that X is a continuous random variable.
with some probability element f(x) dx, where f(x) is not assumed known.

It should be emphasized that the concept of a random variable is very broad
in the sense that X may be a random variable determined as a result of calcula-
tions on other random variables. For example, X may be the difference,
product, or ratio of two random variables, or the average or any other “reason-
able” function of several random variables which may be of interest in any given
situation. Thus, on the basis of an initial sample of differences of two random
variables, we may set up tolerance limits of differences and make predictions,
for a given probability level as to how many differences in a further sample
of differences will lie between these tolerance limits. Similarly for products,
ratios, and other functions of random variables.

From the point of view of practical application, we should again note that the
mathematical assumption that X is a random variable means that a state of
statistical control as described in §1 must exist in the measurements to which
the tolerance limit prediction theory is to be applied. In practice X is often a
discrete variable, i.e. one which can take on only certain isolated values. For
example, if X is the number of defective product-pieces in a drawing of one
product-piece, X is either 0 or 1, depending on whether the piece was non-
defective or defective. Our theory would not be applicable to such a case.
However, if we take as a new variable the average value of X for several product-
pieces, we then obtain a variable that is continuous enough for the tolerance
limit theory to be applicable for all practical purposes.

Finally, we remark that although we have used, as concrete examples, situa-
tions in mass proeduction engineering, the notions of tolerance limits and predic-
tions within tolerance limits which have been discussed apply equally well to
situations in any branch of applied science where measurements are made and
used as a basis for predictions concerning future measurements.

7. Summary. After a state of statistical control has been established with
respect to a quality characteristic of product-pieces in mass production by the
standard statistical quality control methods developed and refined by Shewhart
and others, there remains the problem of determining the accuracy of predic-
tions as to how many future product-pieces will fall within tolerance limits
specified by measurements on product-pieces already produced under the given
state of control. This problem and some of its extensions are discussed in the
present paper.

More specifically, suppose an initial sample of n product-pieces, manufactured
under a given state of statistical control, are measured with respect to a given
quality characteristic. Let X be a variable which measures the given charac-
teristic, so that X has a definite value for each product-piece. Let X; be the
smallest and X, the largest value of X which occurs in the initial sample. Now
consider a further sample of size N. The following problems of prediction re-
lating to the second sample from information yielded by the initial sample are
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considered: (1) What is the probability that at least N, values of X in the second
sample will exceed the tolerance limit- X, set by the first sample? (2) What is the
probability that at least N, values of X in the second sample will lie between the
two tolerance limits X, and X, set by the first sample? (3) For given values
of n and N and « (e.g., .99 or .95), what is the largest integer N, such that the
probability is at least « that Ny > N,? (4) What is the limiting value of
N.

v = B. as N increases indefinitely? Tables of values of N, and R, are given

for each of the two problems (1) and (2), for several important combinations of
values of n and N and for @ = .99 and .95.
Problems similar to (1), (2) and (3) are discussed for the case in which toler-
ance limits are placed on two or more quality characteristics simultaneously.
The generality of the theory of tolerance limits and how it applies to differ-
ences, products and ratios and other functions of two or more random variables
are briefly discussed.



