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ONE NORMAL POPULATION EXCEEDS THAT OF ANOTHER
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1. Introduction. One of the most commonly recurring statistical problems is
to determine, on the basis of statistical evidence, which of two samples, drawn
from different universes, came from the universe with the larger mean value of a
particular variate. Let M, be the mean value which would be obtained with
universe (Y) and M, be the mean value which would be obtained with universe
(X). Then a test may be constructed for the hypothesis' M, > M. .

If 2, - -+, z, are the observed values of the variate obtained from universe
(X), and g1, - - -, yn are the observed values obtained from universe (Y), then
the sample space of the points E: (z1, -+ , s ; %1, - , ¥a) may be divided into
three regions wo, w1, and w.. If the sample point falls in the region w,, the
hypothesis M, > M, is accepted; if the sample point falls in the region w, , the
hypothesis M, > M., is rejected; if the sample point falls in the region w.,
judgment is withheld on the hypothesis. Regions wo, w;, and w, are mutually
exclusive and, together, fill the entire sample space. Any such set of regions
wo , w1, and w, defines a test for the hypothesis M, > M. .

In those cases, then, where the experimental results fall in the region w, , the
test leads to the conclusion that there is need for additional data to establish a
result beyond reasonable doubt. Under these conditions, the test does not
afford any guide to an unavoidable or non-postponable choice. In the applica-
tion of statistical findings to practical problems it often happens, however, that
judgment can not be held in abeyance—that some choice must be made, even at
a risk of error. For example, when planting time comes, a choice must be made
between varieties (X) and (Y) of grain even if neither has been cenclusively
demonstrated, up to that time, to yield a larger erop than the other. It is the
purpose of this paper to propose g criterion which will always permit a choice
between two experimental results, that is, a test in which the regions wy and w,
fill the entire sample space. In the absence of a region w, , any observed result
is interpreted as a definite acceptance or rejection of the hypothesis tested.

2. General characteristics -of the criterion. Let us designate the hypothesis
M, > M. as Hy and the hypothesis M, > M, as H;. Then a pair of tests, T,
and T, for Hy and H, respectively must, to suit our needs, have the following
properties:

(1) The regions we (wew is the region of acceptance for Hy , wy the region of
rejection for Ho ; wn and wy the corresponding regions for H;) and w; must

1 This paper presupposes a familiarity with the theory of testing statistical hypotheses as
set forth by J. Neyman and E. S. Pearson [1].
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coincide; as must the regions wyp and wy .  This correspondence means that when
H, is accepted, H, is rejected, and vice versa. Hence, the tests T, and T, are
identical, and we shall hereafter refer only to the former.

(2) There must be no regions wy and wy; . This means that judgment is never
held in abeyance, no matter what sample is observed.

(3) The regions we and wy must be so bounded that the probability of accept-
ing H, when H, is true (error of the first kind for T,) and the probability of
accepting Ho when H, is true (error of the second kind for T) are, in a certain
sense, minimized. Since H, and H, are composite hypotheses, the probability
that a test will accept H; when H, is true depends upon which of the simple
hypotheses that make up H, is true.

Neyman and Pearson [2] have proposed that a test, T, for a hypothesis be
termed uniformly more powerful than another test, T , if the probability for T,
of accepting the hypothesis if it is false, or the probability of rejecting it if it is
true, does not exceed the corresponding probability for T no matter which of
the simple hypotheses is actually true. Since there is no test which is uniformly
more powerful than all other possible tests, it is usually required that a test be
uniformly most powerful (UMP) among the members of some specified class
of tests.

3. A symmetric test when the two universes have equal standard devia-
tions. Let us consider, first, the hypothesis M, > M, where the universes from
which observations of varieties (X) and (Y), respectively, are drawn are nor-
mally distributed universes with equal standard deviations, s, and means M, and
M, respectively. Let us suppose a sample drawn of n random observations from
the universe of variety (X) and a sample of n independent and random observa-
tions from the universe of (¥). The probability distribution of points in the
sample space is given by

1

nn =2 it T ity
(1) p(xl,_._.  Tni Y1, e ,yn) = (2#7-) ne 2,2[5 ( M) 2+ < (yi—M )2]

In testing the hypothesis M, > M, , there is a certain symmetry between the
alternatives (X) and (Y). If there is no a prior: reason for choosing (X) rather
than (Y), and if the sample point E;: (a1, -+, @s; b1, -+, b,) falls in the region
of acceptance of Hy: then the point Ez: (b1, -+, bs ; a1, - -+, @) should fall in
the region of acceptance of H; . That is, if E, is taken as evidence that M, > M_;
then E; can with equal plausibility be taken as evidence that M, > M, .

Any test such that Ej:(a;, -+, @n; b1, -+, bs) lies in wo whenever Ej:
(b, +++,baja1, -+ ,a,) liesin w, and vice versa, will be designated a symmetric
test of the hypothesis M, > M,. Let Q be the class of symmetric tests of H, .
If T, is a member of ©, and is uniformly more powerful than every other T’
which is a member of Q, then T', s the uniformly most powerful symmetric test of Hy.

The hypothesis M, > M, possesses a UMP symmetric test. This may be
shown as follows. From (1), the ratio can be calculated between the proba-
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bility densities at the sample points E:(z;, -+, Zn; %1, -+, ¥.) and E’:
Wy oy Yn; T, oo, Za). We get

@ T = o {3“ ~ DO - M),

where
-—1 . -—_1._ .
x_ﬁf.’:x" y—nZy.-

Now the condition p(E) > p(E’) is equivalent to g @—-—9M, — M) >0

Hence p(E) > p(E’) whenever (£ — ) has the same sign as (M, — M,).

Now for any symmetric test, if E lies in wy, E’ lies in w;, and vice versa.
Suppose that, in fact, M, > M,. Consider a symmetric test, T, whose region
wp contains a sub-region wyy (of measure greater than zero) such that § < %
for every point in that sub-region. Then for every point E’ in woy, p(E’') <
p(E). Hence, a more powerful test, T could be constructed which would be
identical with T, , except that w;y , the sub-region symmetric to woy , would be
interchanged with woy as a portion of the region of acceptance for Hy. There-
fore, a test such that we contained all points for which § > %, and no others,
would be a UMP symmetric test. This result is independent of the magnitude -
of (M, — M,) provided only M, > M,. We conclude that § > % is a uniformly
most powerful symmetric test for the hypothesis M, > M, .

The probability of committing an error with the UMP symmetric test is a
simple function of the difference | M, — M.|. The exact value can be found
by integrating (1) over the whole region of the sample space for which § < z.
There is no need to distinguish errors of the first and second kind, since an error of
the first kind with T is an error of the second kind with 7T, and vice versa.
The probability of an error is one half when M, = M, , and in all other cases is
less than one half.

4. Relation of UMP symmetric test and test which is-UMP of tests abso-
lutely equivalent to it. Neyman and Pearson [2] have shown the test§ — £ > k
to be UMP among the tests absolutely equivalent to it, for the hypothesis
M, > M,. They have defined a class of tests as absolutely equivalent if, for
each simple hypothesis in H,, the probability of an error of the first kind is
exactly the same for all the tests which are members of the class. If k be set
equal to zero, § > %, and their test reduces to the UMP symmetric test. What is
the relation between these two classes of tests?

If T, be the UMP symmetric test, then it is clear from Section 2 that there is
no other symmetric test, 75, which is absolutely equivalent to 7. . Hence Q,
the class of symmetric tests, and A, the class of tests aboslutely equivalent to
T., have only one member in common—the test T, itself. Neyman and
Pearson have shown 7, to be the UMP test of A, while the results of Section 4
show T, to be the UMP test of Q.
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6. Justification for employing a symmetric test. In introducing Section 3, a
heuristic argument was advanced for the use of a symmetric, rather than an
asymmetric test for the hypothesis M, > M, . Thisargument will now be given
a precise interpretation in terms of probabilities.

Assume, not a single experiment for testing the hypothesis M, > M., but a
series of similar experiments. Suppose a judgment to be formed independently
on the basis of each experiment as to the correctness of the hypothesis. Is
there any test which, if applied to the evidence in each case, will maximize the
probability of a correct judgment in that experiment? Such a test can be shown
to exist, providing one further assumption'is made: that if any criterion be applied
prior to the experiment to test the hypothesis M, > M., the probability of a °
correct decision will be one half. That is, it must be assumed that there is no
evidence which, prior to the experiment, will permit the variety with the greater
yield to be selected with greater-than-chance frequency.

Consider now any asymmetric test for the hypothesis Hy—that is, any test
which is not symmetric. The criterion 4 — & > k, where k > 0, is an example
of such a test. Unlike a symmetric test, an asymmetric test may give a different
result if applied as a test of the hypothesis H, than if applied as a test of the
hypothesis H, . For instance, a sample point such that # — £ = ¢, where k£ >
€ > 0, would be considered a rejection of H, and acceptance of H, if the above
test were applied to H, ; but would be considered a rejection of H; and an ac-
ceptance of H, if the test were applied to H;. Hence, before an asymmetric
test can be applied to a problem of dichotomous choice—a problem where H, or
H, must be determinately selected—a decision must be reached as to whether the
test is to be applied to H, or to H;. This decision cannot be based upon the
evidence of the sample to be tested—for in this case, the complete test, which
would of course include this preliminary decision, would be symmetric by def-
inition.

Let H, be the correct hypothesis (H, or H,, as the case may be) and let H,
be the hypothesis to which the asymmetric test is applied. Since by assumption
there is no prior evidence for deciding whether H, is Ho or H; , we may employ
any random process for deciding whether Hy is to be identified with H, or H, .
If such a random selection is made, it follows that the probability that H, and
H, are identical is one half. '

We designate as the region of asymmetry of a test the region of points E;:
(@, ,@n;b, -+ ,b)and Es:(by, -+ ,ba ;a1, - -+, a,) of aggregate measure
greater than zero such that E; and E; both fall in w, or both fall in w; . Suppose
woa and we, are a particular symmetrically disposed pair of subregions of the
region of asymmetry, which fall in wo of a test To. Suppose that, for every
point, E; , in wea, b > @, and that we, and wg, are of measure greater than zero.
The sum of the probabilities that the sample point will fall in wo, Or wey, is exactly
the same whether H, and H, are the same hypothesis or are contradictory
hypotheses. In the first case H. will be accepted, in the second case H. will be
rejected. These two cases are of equal probability, hence there is a probability
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of .one half of accepting or rejecting H., if the sample point falls in the region of
asymmetry of T9. But from equation (2) of Section 2 above, we see that if the
subregions we. and we, had been in a region of symmetry, and if wy, had been in
wo , the probability of accepting H, would have been greater than the probability
of rejecting H., .

Hence, if it is determined by random selection to which of a pair of hypotheses
an asymmetric test is going to be applied, the probability of a correct judgment
with the asymmetric test will be less than if there were substituted for it the
UMP symmetric test. It may be concluded that the UMP symmetric test is to
be preferred unless there is prior evidence which permits a tentative selection of
the correct hypothesis with greater-than-chance frequency.

6. Symmetric test when standard deviations of universes are unequal.
Thus far, we have restricted ourselves to the case where o, = ¢,. Let us now
relax this condition and see whether a UMP symmetric test for M, > M, exists
in this more general case.

We now have for the ratio of p(E) to p(E’):

bz = Z xf/n’ By = z': yf/n

1

Even if o, and ¢, are known, which is not usually the case, there is no UMP
symmetric test for the hypothesis M, > M,. From (3), the symmetric critical
region which has the lowest probability of errors of the first kind for the hy-
pothesis (M, = ki ; M, = ks ; k1 > k) is the set of points E such that:

4) (oy — 02) (b= — wy) — 2(o3ks — o2k))(E — §) > 0.

Since this region is not the same for all values of k, and k, such that &, > k,,
there is no UMP symmetric region for the composite hypothesis M, > M, .
This result holds, a fortiori when o, and o, are not known.

If there is no UMP symmetric test for M, > M, when o, % ¢, , we must be
satisfied with a test which is UMP among some class of tests morerestricted than
the class of symmetric tests. Let us continue to restrict outselves to the case
where there are an equal number of observations, in our sample, of (X) and of
(Y). Let us pair the observations z;, y;, and consider the differences u; =
z:; — Yi. Is there a UMP test among the tests which are symmetric with

respect to the u’s for the hypothesis that M, — M, = —U > 0? By a sym-
metric test in this case we mean a test such that whenever the point (u;, - - - , u,)
falls into region w,, the point (—w,, ---, —u,) falls into region w, .

If z; and y; are distributed normally about M, and M, with standard devia-
tions ¢, and o, respectively, then u; will be normally distributed about U =
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M. — M, with standard deviation o, = /o> + o5 . The ratio of probabilities
for the sample points Ey: (uy, ~ -+ , %) and Es:(—uy, « -+, —us) is given by:

p(Ev) _ —2n -
®) p(Ey ~ P { - uU}’
where
_ 1
U= - Ug
n s

Hence, p(E,) > p(E,) whenever @ has the same sign as U. Therefore, by the
same process of reasoning as in Section 2, above, we may show that 7 < 0is a
UMP test among tests symmetric in the sample space of the u’s for the hypothe-
sis U £ 0.

1t should be emphasized that ., , the class of symmetric regions in the space
of E,:(uy - -+ uy), is far more restricted than £, , the class of symmetric regions
in the sample space of E:(x, -- - Zn ; %1 - - - Y¥n). In the latter class are included
all regions such that:

(A) E:(ar, -+ ,@s;by, + -+, b,)fallsin wowhenever E:(by, -+ ,bn; 01, -+ ,Gn)
falls in «,. Members of class Q,, satisfy this condition together with the
further condition: )

(B) For all possible sets of n constants ky , -+ ,kn , E: (@1 4+ k1, + -+ ,Za + kn ;
y + ki, -+, Ya + kn) falls in w, whenever E:(z1, - ++, Zn; 41, + -+, yn) falls
inw,. When o, # ¢.,a UMP test for M, > M, with respect to the symmetric
class Q,, exists, but a UMP test with respect to the symmetric class @, does not
exist.
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